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Summary. In this paper we show some auxiliary facts for sequence func-
tion to be pseudo-metric. Next we prove the Nagata-Smirnov theorem that every

topological space is metrizable if and only if it has σ-locally finite basis. We attach

also the proof of the Bing’s theorem that every topological space is metrizable if

and only if its basis is σ-discrete.

MML Identifier: NAGATA 2.

The terminology and notation used in this paper have been introduced in the

following articles: [9], [27], [28], [32], [20], [5], [12], [8], [21], [15], [2], [17], [14],

[18], [19], [6], [10], [11], [24], [23], [4], [33], [1], [3], [25], [16], [26], [7], [13], [29],

[31], [34], [30], and [22].

For simplicity, we adopt the following convention: i, k, m, n denote natural

numbers, r, s denote real numbers, X denotes a set, T , T1, T2 denote non empty

topological spaces, p denotes a point of T , A denotes a subset of T , A′ denotes

a non empty subset of T , p1 denotes an element of [: the carrier of T , the carrier

of T :], p2 denotes a function from [: the carrier of T , the carrier of T :] into R, p′
1

denotes a real map of [:T, T :], f denotes a real map of T , F2 denotes a sequence

of partial functions from [: the carrier of T , the carrier of T :] into R, and s1

denotes a sequence of real numbers.

The following proposition is true

(1) For every i such that i > 0 there exist n, m such that i = 2n · (2 ·m+1).

The function PairFunc from [: N, N :] into N is defined by:

(Def. 1) For all n, m holds PairFunc(〈〈n, m〉〉) = 2n · (2 ·m + 1)− 1.

We now state the proposition
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(2) PairFunc is bijective.

Let X be a set, let f be a function from [:X, X :] into R, and let x be an

element of X. The functor ρ(f, x) yielding a function from X into R is defined

as follows:

(Def. 2) For every element y of X holds (ρ(f, x))(y) = f(x, y).

The following two propositions are true:

(3) Let D be a subset of [:T1, T2 :]. Suppose D is open. Let x1 be a point of

T1, x2 be a point of T2, X1 be a subset of T1, and X2 be a subset of T2.

Then

(i) if X1 = π1((the carrier of T1)× the carrier of T2)
◦(D ∩ [: the carrier of

T1, {x2} :]), then X1 is open, and

(ii) if X2 = π2((the carrier of T1)×the carrier of T2)
◦(D∩[: {x1}, the carrier

of T2 :]), then X2 is open.

(4) For every p2 such that for every p′
1
such that p2 = p′

1
holds p′

1
is conti-

nuous and for every point x of T holds ρ(p2, x) is continuous.

Let X be a non empty set, let f be a function from [:X, X :] into R, and let

A be a subset of X. The functor inf(f, A) yielding a function from X into R is

defined by:

(Def. 3) For every element x of X holds (inf(f, A))(x) = inf((ρ(f, x))◦A).

One can prove the following propositions:

(5) Let X be a non empty set and f be a function from [:X, X :] into R.

Suppose f is a pseudometric of. Let A be a non empty subset of X and x

be an element of X. Then (inf(f, A))(x)  0.

(6) Let X be a non empty set and f be a function from [:X, X :] into R.

Suppose f is a pseudometric of. Let A be a subset of X and x be an

element of X. If x ∈ A, then (inf(f, A))(x) = 0.

(7) Let given p2. Suppose p2 is a pseudometric of. Let x, y be points of T and

A be a non empty subset of T . Then |(inf(p2, A))(x) − (inf(p2, A))(y)| ¬

p2(x, y).

(8) Let given p2. Suppose p2 is a pseudometric of and for every p holds

ρ(p2, p) is continuous. Let A be a non empty subset of T . Then inf(p2, A)

is continuous.

(9) For every function f from [:X, X :] into R such that f is a metric of X

holds f is a pseudometric of.

(10) Let given p2. Suppose p2 is a metric of the carrier of T and for every

non empty subset A of T holds A = {p; p ranges over points of T :

(inf(p2, A))(p) = 0}. Then T is metrizable.

(11) Let given F2. Suppose for every n there exists p2 such that F2(n) = p2

and p2 is a pseudometric of and for every p1 holds F2#p1 is summable.
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Let given p2. If for every p1 holds p2(p1) =
∑

(F2#p1), then p2 is a pseu-

dometric of.

(12) For all n, s1 such that for every m such that m ¬ n holds s1(m) ¬ r and

for every m such that m ¬ n holds (
∑

κ

α=0
(s1)(α))κ∈N(m) ¬ r · (m + 1).

(13) For every k holds |(
∑

κ

α=0
(s1)(α))κ∈N(k)| ¬ (

∑
κ

α=0
|s1|(α))κ∈N(k).

(14) Let F1 be a sequence of partial functions from the carrier of T into R.

Suppose that

(i) for every n there exists f such that F1(n) = f and f is continuous and

for every p holds f(p)  0, and

(ii) there exists s1 such that s1 is summable and for all n, p holds

(F1#p)(n) ¬ s1(n).

Let given f . If for every p holds f(p) =
∑

(F1#p), then f is continuous.

(15) Let given s, F2. Suppose that for every n there exists p2 such that

F2(n) = p2 and p2 is a pseudometric of and for every p1 holds p2(p1) ¬ s

and for every p′
1
such that p2 = p′

1
holds p′

1
is continuous. Let given p2.

Suppose that for every p1 holds p2(p1) =
∑

(((1

2
)κ)κ∈N (F2#p1)). Then

p2 is a pseudometric of and for every p′
1
such that p2 = p′

1
holds p′

1
is

continuous.

(16) Let given p2. Suppose p2 is a pseudometric of and for every p′
1
such that

p2 = p′
1
holds p′

1
is continuous. Let A be a non empty subset of T and

given p. If p ∈ A, then (inf(p2, A))(p) = 0.

(17) Let given T . Suppose T is a T1 space. Let given s, F2. Suppose that

(i) for every n there exists p2 such that F2(n) = p2 and p2 is a pseudometric

of and for every p1 holds p2(p1) ¬ s and for every p′
1
such that p2 = p′

1

holds p′
1
is continuous, and

(ii) for all p, A′ such that p /∈ A′ and A′ is closed there exists n such that

for every p2 such that F2(n) = p2 holds (inf(p2, A
′))(p) > 0.

Then there exists p2 such that p2 is a metric of the carrier of T and for

every p1 holds p2(p1) =
∑

(((1

2
)κ)κ∈N (F2#p1)) and T is metrizable.

(18) Let D be a non empty set, p, q be finite sequences of elements of D, and

B be a binary operation on D. Suppose that

(i) p is one-to-one,

(ii) q is one-to-one,

(iii) rng q ⊆ rng p,

(iv) B is commutative and associative, and

(v) B has a unity or len q  1 and len p > len q.

Then there exists a finite sequence r of elements of D such that r is one-

to-one and rng r = rng p \ rng q and B ⊙ p = B(B ⊙ q, B ⊙ r).

(19) Let given T . Then T is a T3 space and a T1 space and there exists a

family sequence of T which is Basis-sigma-locally finite if and only if T is

metrizable.



388 karol pa̧k

(20) Suppose T is metrizable. Let F3 be a family of subsets of T . Suppose F3

is a cover of T and open. Then there exists a family sequence U1 of T such

that
⋃

U1 is open and
⋃

U1 is a cover of T and
⋃

U1 is finer than F3 and

U1 is sigma-discrete.

(21) For every T such that T is metrizable holds there exists a family sequence

of T which is Basis-sigma-discrete.

(22) For every T holds T is a T3 space and a T1 space and there exists a

family sequence of T which is Basis-sigma-discrete iff T is metrizable.
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