# The Nagata-Smirnov Theorem. Part II ${ }^{1}$ 

Karol Pąk<br>University of Białystok


#### Abstract

Summary. In this paper we show some auxiliary facts for sequence function to be pseudo-metric. Next we prove the Nagata-Smirnov theorem that every topological space is metrizable if and only if it has $\sigma$-locally finite basis. We attach also the proof of the Bing's theorem that every topological space is metrizable if and only if its basis is $\sigma$-discrete.


MML Identifier: NAGATA_2.

The terminology and notation used in this paper have been introduced in the following articles: [9], [27], [28], [32], [20], [5], [12], [8], [21], [15], [2], [17], [14], [18], [19], [6], [10], [11], [24], [23], [4], [33], [1], [3], [25], [16], [26], [7], [13], [29], [31], [34], [30], and [22].

For simplicity, we adopt the following convention: $i, k, m, n$ denote natural numbers, $r, s$ denote real numbers, $X$ denotes a set, $T, T_{1}, T_{2}$ denote non empty topological spaces, $p$ denotes a point of $T, A$ denotes a subset of $T, A^{\prime}$ denotes a non empty subset of $T, p_{1}$ denotes an element of : the carrier of $T$, the carrier of $T$ !, $p_{2}$ denotes a function from : the carrier of $T$, the carrier of $T$ : into $\mathbb{R}, p_{1}^{\prime}$ denotes a real map of : $T, T:, f$ denotes a real map of $T, F_{2}$ denotes a sequence of partial functions from : the carrier of $T$, the carrier of $T$ : into $\mathbb{R}$, and $s_{1}$ denotes a sequence of real numbers.

The following proposition is true
(1) For every $i$ such that $i>0$ there exist $n, m$ such that $i=2^{n} \cdot(2 \cdot m+1)$.

The function PairFunc from $: \mathbb{N}, \mathbb{N}]$ into $\mathbb{N}$ is defined by:
(Def. 1) For all $n, m$ holds PairFunc $(\langle n, m\rangle)=2^{n} \cdot(2 \cdot m+1)-1$.
We now state the proposition

[^0](2) PairFunc is bijective.

Let $X$ be a set, let $f$ be a function from $: X, X:$ into $\mathbb{R}$, and let $x$ be an element of $X$. The functor $\rho(f, x)$ yielding a function from $X$ into $\mathbb{R}$ is defined as follows:
(Def. 2) For every element $y$ of $X$ holds $(\rho(f, x))(y)=f(x, y)$.
The following two propositions are true:
(3) Let $D$ be a subset of $: T_{1}, T_{2}:$. Suppose $D$ is open. Let $x_{1}$ be a point of $T_{1}, x_{2}$ be a point of $T_{2}, X_{1}$ be a subset of $T_{1}$, and $X_{2}$ be a subset of $T_{2}$. Then
(i) if $X_{1}=\pi_{1}\left(\left(\text { the carrier of } T_{1}\right) \times \text { the carrier of } T_{2}\right)^{\circ}(D \cap$ : the carrier of $T_{1},\left\{x_{2}\right\}$ : ), then $X_{1}$ is open, and
(ii) if $X_{2}=\pi_{2}\left(\left(\text { the carrier of } T_{1}\right) \times \text { the carrier of } T_{2}\right)^{\circ}\left(D \cap:\left\{x_{1}\right\}\right.$, the carrier of $T_{2} \ddagger$ ), then $X_{2}$ is open.
(4) For every $p_{2}$ such that for every $p_{1}^{\prime}$ such that $p_{2}=p_{1}^{\prime}$ holds $p_{1}^{\prime}$ is continuous and for every point $x$ of $T$ holds $\rho\left(p_{2}, x\right)$ is continuous.
Let $X$ be a non empty set, let $f$ be a function from $: X, X$ : into $\mathbb{R}$, and let $A$ be a subset of $X$. The functor $\inf (f, A)$ yielding a function from $X$ into $\mathbb{R}$ is defined by:
(Def. 3) For every element $x$ of $X$ holds $(\inf (f, A))(x)=\inf \left((\rho(f, x))^{\circ} A\right)$.
One can prove the following propositions:
(5) Let $X$ be a non empty set and $f$ be a function from $: X, X$ : into $\mathbb{R}$. Suppose $f$ is a pseudometric of. Let $A$ be a non empty subset of $X$ and $x$ be an element of $X$. Then $(\inf (f, A))(x) \geqslant 0$.
(6) Let $X$ be a non empty set and $f$ be a function from $: X, X$ : into $\mathbb{R}$. Suppose $f$ is a pseudometric of. Let $A$ be a subset of $X$ and $x$ be an element of $X$. If $x \in A$, then $(\inf (f, A))(x)=0$.
(7) Let given $p_{2}$. Suppose $p_{2}$ is a pseudometric of. Let $x, y$ be points of $T$ and $A$ be a non empty subset of $T$. Then $\left|\left(\inf \left(p_{2}, A\right)\right)(x)-\left(\inf \left(p_{2}, A\right)\right)(y)\right| \leqslant$ $p_{2}(x, y)$.
(8) Let given $p_{2}$. Suppose $p_{2}$ is a pseudometric of and for every $p$ holds $\rho\left(p_{2}, p\right)$ is continuous. Let $A$ be a non empty subset of $T . \operatorname{Then} \inf \left(p_{2}, A\right)$ is continuous.
(9) For every function $f$ from $: X, X:$ into $\mathbb{R}$ such that $f$ is a metric of $X$ holds $f$ is a pseudometric of.
(10) Let given $p_{2}$. Suppose $p_{2}$ is a metric of the carrier of $T$ and for every non empty subset $A$ of $T$ holds $\bar{A}=\{p ; p$ ranges over points of $T$ : $\left.\left(\inf \left(p_{2}, A\right)\right)(p)=0\right\}$. Then $T$ is metrizable.
(11) Let given $F_{2}$. Suppose for every $n$ there exists $p_{2}$ such that $F_{2}(n)=p_{2}$ and $p_{2}$ is a pseudometric of and for every $p_{1}$ holds $F_{2} \# p_{1}$ is summable.

Let given $p_{2}$. If for every $p_{1}$ holds $p_{2}\left(p_{1}\right)=\sum\left(F_{2} \# p_{1}\right)$, then $p_{2}$ is a pseudometric of.
(12) For all $n, s_{1}$ such that for every $m$ such that $m \leqslant n$ holds $s_{1}(m) \leqslant r$ and for every $m$ such that $m \leqslant n$ holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \leqslant r \cdot(m+1)$.
(13) For every $k$ holds $\left|\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right| \leqslant\left(\sum_{\alpha=0}^{\kappa}\left|s_{1}\right|(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(14) Let $F_{1}$ be a sequence of partial functions from the carrier of $T$ into $\mathbb{R}$. Suppose that
(i) for every $n$ there exists $f$ such that $F_{1}(n)=f$ and $f$ is continuous and for every $p$ holds $f(p) \geqslant 0$, and
(ii) there exists $s_{1}$ such that $s_{1}$ is summable and for all $n, p$ holds $\left(F_{1} \# p\right)(n) \leqslant s_{1}(n)$.
Let given $f$. If for every $p$ holds $f(p)=\sum\left(F_{1} \# p\right)$, then $f$ is continuous.
(15) Let given $s, F_{2}$. Suppose that for every $n$ there exists $p_{2}$ such that $F_{2}(n)=p_{2}$ and $p_{2}$ is a pseudometric of and for every $p_{1}$ holds $p_{2}\left(p_{1}\right) \leqslant s$ and for every $p_{1}^{\prime}$ such that $p_{2}=p_{1}^{\prime}$ holds $p_{1}^{\prime}$ is continuous. Let given $p_{2}$. Suppose that for every $p_{1}$ holds $p_{2}\left(p_{1}\right)=\sum\left(\left(\left(\frac{1}{2}\right)^{\kappa}\right)_{\kappa \in \mathbb{N}}\left(F_{2} \# p_{1}\right)\right)$. Then $p_{2}$ is a pseudometric of and for every $p_{1}^{\prime}$ such that $p_{2}=p_{1}^{\prime}$ holds $p_{1}^{\prime}$ is continuous.
(16) Let given $p_{2}$. Suppose $p_{2}$ is a pseudometric of and for every $p_{1}^{\prime}$ such that $p_{2}=p_{1}^{\prime}$ holds $p_{1}^{\prime}$ is continuous. Let $A$ be a non empty subset of $T$ and given $p$. If $p \in \bar{A}$, then $\left(\inf \left(p_{2}, A\right)\right)(p)=0$.
(17) Let given $T$. Suppose $T$ is a $T_{1}$ space. Let given $s, F_{2}$. Suppose that
(i) for every $n$ there exists $p_{2}$ such that $F_{2}(n)=p_{2}$ and $p_{2}$ is a pseudometric of and for every $p_{1}$ holds $p_{2}\left(p_{1}\right) \leqslant s$ and for every $p_{1}^{\prime}$ such that $p_{2}=p_{1}^{\prime}$ holds $p_{1}^{\prime}$ is continuous, and
(ii) for all $p, A^{\prime}$ such that $p \notin A^{\prime}$ and $A^{\prime}$ is closed there exists $n$ such that for every $p_{2}$ such that $F_{2}(n)=p_{2}$ holds $\left(\inf \left(p_{2}, A^{\prime}\right)\right)(p)>0$.
Then there exists $p_{2}$ such that $p_{2}$ is a metric of the carrier of $T$ and for every $p_{1}$ holds $p_{2}\left(p_{1}\right)=\sum\left(\left(\left(\frac{1}{2}\right)^{\kappa}\right)_{\kappa \in \mathbb{N}}\left(F_{2} \# p_{1}\right)\right)$ and $T$ is metrizable.
(18) Let $D$ be a non empty set, $p, q$ be finite sequences of elements of $D$, and $B$ be a binary operation on $D$. Suppose that
(i) $p$ is one-to-one,
(ii) $q$ is one-to-one,
(iii) $\quad \operatorname{rng} q \subseteq \operatorname{rng} p$,
(iv) $B$ is commutative and associative, and
(v) $B$ has a unity or len $q \geqslant 1$ and len $p>\operatorname{len} q$.

Then there exists a finite sequence $r$ of elements of $D$ such that $r$ is one-to-one and $\operatorname{rng} r=\operatorname{rng} p \backslash \operatorname{rng} q$ and $B \odot p=B(B \odot q, B \odot r)$.
(19) Let given $T$. Then $T$ is a $T_{3}$ space and a $T_{1}$ space and there exists a family sequence of $T$ which is Basis-sigma-locally finite if and only if $T$ is metrizable.
(20) Suppose $T$ is metrizable. Let $F_{3}$ be a family of subsets of $T$. Suppose $F_{3}$ is a cover of $T$ and open. Then there exists a family sequence $U_{1}$ of $T$ such that $\bigcup U_{1}$ is open and $\bigcup U_{1}$ is a cover of $T$ and $\bigcup U_{1}$ is finer than $F_{3}$ and $U_{1}$ is sigma-discrete.
(21) For every $T$ such that $T$ is metrizable holds there exists a family sequence of $T$ which is Basis-sigma-discrete.
(22) For every $T$ holds $T$ is a $T_{3}$ space and a $T_{1}$ space and there exists a family sequence of $T$ which is Basis-sigma-discrete iff $T$ is metrizable.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[6] Józef Białas and Yatsuka Nakamura. Dyadic numbers and $\mathrm{T}_{4}$ topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[7] Józef Białas and Yatsuka Nakamura. The Urysohn lemma. Formalized Mathematics, 9(3):631-636, 2001.
[8] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[9] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[10] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in $\mathcal{E}^{2}$. Formalized Mathematics, 6(3):427-440, 1997.
[14] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[18] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[19] Andrzej Nędzusiak. $\sigma$-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[20] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[22] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[23] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[24] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[26] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, $1(3): 495-500,1990$.
[27] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[29] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[30] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[31] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received July 22, 2004


[^0]:    ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102 and KBN grant 4 T11C 03924.

