The Operation of Addition of Relational Structures

Katarzyna RomanowiczAdam Grabowski1University of BiałystokUniversity of Białystok

Summary. The article contains the formalization of the addition operator on relational structures as defined by A. Wroński [8] (as a generalization of Troelstra's sum or Jaśkowski's star addition). The ordering relation of $A \otimes B$ is given by

$$\leqslant_{A\otimes B} = \leqslant_A \cup \leqslant_B \cup (\leqslant_A \circ \leqslant_B),$$

where the carrier is defined as the set-theoretical union of carriers of A and B. Main part – Section 3 – is devoted to the Mizar translation of Theorem 1 (iv–xiii), p. 66 of [8].

 ${\rm MML} \ {\rm Identifier:} \ {\tt LATSUM_1}.$

The terminology and notation used in this paper are introduced in the following articles: [4], [6], [7], [5], [2], [3], and [1].

1. Preliminaries

One can prove the following proposition

(1) Let x, y, A, B be sets. Suppose $x \in A \cup B$ and $y \in A \cup B$. Then $x \in A \setminus B$ and $y \in A \setminus B$ or $x \in B$ and $y \in B$ or $x \in A \setminus B$ and $y \in B$ or $x \in B$ and $y \in A \setminus B$.

Let R, S be relational structures. The predicate $R \approx S$ is defined by the condition (Def. 1).

(Def. 1) Let x, y be sets. Suppose $x \in (\text{the carrier of } R) \cap (\text{the carrier of } S)$ and $y \in (\text{the carrier of } R) \cap (\text{the carrier of } S)$. Then $\langle x, y \rangle \in \text{the internal relation of } R$ if and only if $\langle x, y \rangle \in \text{the internal relation of } S$.

C 2004 University of Białystok ISSN 1426-2630

¹This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102.

2. The Wroński's Operation

Let R, S be relational structures. The functor $R \otimes S$ yields a strict relational structure and is defined by the conditions (Def. 2).

- (Def. 2)(i) The carrier of $R \otimes S =$ (the carrier of $R) \cup$ (the carrier of S), and
 - (ii) the internal relation of $R \otimes S =$ (the internal relation of $R) \cup$ (the internal relation of $S) \cup$ (the internal relation of $R) \cdot$ (the internal relation of S).

Let R be a relational structure and let S be a non empty relational structure. Observe that $R \otimes S$ is non empty.

Let R be a non empty relational structure and let S be a relational structure. Observe that $R \otimes S$ is non empty.

One can prove the following two propositions:

- (2) Let R, S be relational structures. Then
- (i) the internal relation of $R \subseteq$ the internal relation of $R \otimes S$, and
- (ii) the internal relation of $S \subseteq$ the internal relation of $R \otimes S$.
- (3) For all relational structures R, S such that R is reflexive and S is reflexive holds $R \otimes S$ is reflexive.

3. PROPERTIES OF THE ADDITION

Next we state a number of propositions:

- (4) Let R, S be relational structures and a, b be sets. Suppose that
- (i) $\langle a, b \rangle \in$ the internal relation of $R \otimes S$,
- (ii) $a \in \text{the carrier of } R$,
- (iii) $b \in \text{the carrier of } R$,
- (iv) $R \approx S$, and
- (v) R is transitive.

Then $\langle a, b \rangle \in$ the internal relation of R.

- (5) Let R, S be relational structures and a, b be sets. Suppose that
- (i) $\langle a, b \rangle \in$ the internal relation of $R \otimes S$,
- (ii) $a \in \text{the carrier of } S$,
- (iii) $b \in \text{the carrier of } S$,
- (iv) $R \approx S$, and
- (v) S is transitive.

Then $\langle a, b \rangle \in$ the internal relation of S.

- (6) Let R, S be relational structures and a, b be sets. Then
- (i) if $\langle a, b \rangle \in$ the internal relation of R, then $\langle a, b \rangle \in$ the internal relation of $R \otimes S$, and
- (ii) if $\langle a, b \rangle \in$ the internal relation of S, then $\langle a, b \rangle \in$ the internal relation of $R \otimes S$.

- (7) Let R, S be non empty relational structures and x be an element of $R \otimes S$. Then $x \in$ the carrier of R or $x \in$ (the carrier of S) \ (the carrier of R).
- (8) Let R, S be non empty relational structures, x, y be elements of R, and a, b be elements of $R \otimes S$. Suppose x = a and y = b and $R \approx S$ and R is transitive. Then $x \leq y$ if and only if $a \leq b$.
- (9) Let R, S be non empty relational structures, a, b be elements of $R \otimes S$, and c, d be elements of S. Suppose a = c and b = d and $R \approx S$ and S is transitive. Then $a \leq b$ if and only if $c \leq d$.
- (10) Let R, S be antisymmetric reflexive transitive non empty relational structures with l.u.b.'s and x be a set. If $x \in$ the carrier of R, then x is an element of $R \otimes S$.
- (11) Let R, S be antisymmetric reflexive transitive non empty relational structures with l.u.b.'s and x be a set. If $x \in$ the carrier of S, then x is an element of $R \otimes S$.
- (12) Let R, S be non empty relational structures and x be a set. Suppose $x \in (\text{the carrier of } R) \cap (\text{the carrier of } S)$. Then x is an element of R.
- (13) Let R, S be non empty relational structures and x be a set. Suppose $x \in (\text{the carrier of } R) \cap (\text{the carrier of } S)$. Then x is an element of S.
- (14) Let R, S be antisymmetric reflexive transitive non empty relational structures with l.u.b.'s and x, y be elements of $R \otimes S$. Suppose $x \in$ the carrier of R and $y \in$ the carrier of S and $R \approx S$. Then $x \leq y$ if and only if there exists an element a of $R \otimes S$ such that $a \in$ (the carrier of R) \cap (the carrier of S) and $x \leq a$ and $a \leq y$.
- (15) Let R, S be non empty relational structures, a, b be elements of R, and c, d be elements of S. Suppose a = c and b = d and $R \approx S$ and R is transitive and S is transitive. Then $a \leq b$ if and only if $c \leq d$.
- (16) Let R be an antisymmetric reflexive transitive non empty relational structure with l.u.b.'s, D be a lower directed subset of R, and x, y be elements of R. If $x \in D$ and $y \in D$, then $x \sqcup y \in D$.
- (17) Let R, S be relational structures and a, b be sets. Suppose that
 - (i) (the carrier of R) \cap (the carrier of S) is an upper subset of R,
- (ii) $\langle a, b \rangle \in$ the internal relation of $R \otimes S$, and
- (iii) $a \in$ the carrier of S. Then $b \in$ the carrier of S.
- (18) Let R, S be relational structures and a, b be elements of $R \otimes S$. Suppose (the carrier of R) \cap (the carrier of S) is an upper subset of R and $a \leq b$ and $a \in$ the carrier of S. Then $b \in$ the carrier of S.
- (19) Let R, S be antisymmetric reflexive transitive non empty relational structures with l.u.b.'s, x, y be elements of R, and a, b be elements of

S. Suppose that

- (i) (the carrier of R) \cap (the carrier of S) is a lower directed subset of S,
- (ii) (the carrier of R) \cap (the carrier of S) is an upper subset of R,
- (iii) $R \approx S$,
- (iv) x = a, and
- $(\mathbf{v}) \quad y = b.$

Then $x \sqcup y = a \sqcup b$.

- (20) Let R, S be lower-bounded antisymmetric reflexive transitive non empty relational structures with l.u.b.'s. Suppose (the carrier of R) \cap (the carrier of S) is a non empty lower directed subset of S. Then $\perp_S \in$ the carrier of R.
- (21) Let R, S be relational structures and a, b be sets. Suppose that
 - (i) (the carrier of R) \cap (the carrier of S) is a lower subset of S,
 - (ii) $\langle a, b \rangle \in$ the internal relation of $R \otimes S$, and
- (iii) $b \in \text{the carrier of } R.$

Then $a \in$ the carrier of R.

- (22) Let x, y be sets and R, S be relational structures. Suppose $\langle x, y \rangle \in$ the internal relation of $R \otimes S$ and (the carrier of R) \cap (the carrier of S) is an upper subset of R. Then
 - (i) $x \in$ the carrier of R and $y \in$ the carrier of R, or
 - (ii) $x \in$ the carrier of S and $y \in$ the carrier of S, or
- (iii) $x \in (\text{the carrier of } R) \setminus (\text{the carrier of } S) \text{ and } y \in (\text{the carrier of } S) \setminus (\text{the carrier of } R).$
- (23) Let R, S be relational structures and a, b be elements of $R \otimes S$. Suppose (the carrier of R) \cap (the carrier of S) is a lower subset of S and $a \leq b$ and $b \in$ the carrier of R. Then $a \in$ the carrier of R.
- (24) Let R, S be relational structures. Suppose that
 - (i) $R \approx S$,
 - (ii) (the carrier of R) \cap (the carrier of S) is an upper subset of R,
- (iii) (the carrier of R) \cap (the carrier of S) is a lower subset of S,
- (iv) R is transitive and antisymmetric, and
- (v) S is transitive and antisymmetric.

Then $R \otimes S$ is antisymmetric.

- (25) Let R, S be relational structures. Suppose that
 - (i) (the carrier of R) \cap (the carrier of S) is an upper subset of R,
 - (ii) (the carrier of R) \cap (the carrier of S) is a lower subset of S,
- (iii) $R \approx S$,
- (iv) R is transitive, and
- (v) S is transitive.

Then $R \otimes S$ is transitive.

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. *Formalized Mathematics*, 6(1):81–91, 1997.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [5] Wojciech A. Trybulec. Partially ordered sets. *Formalized Mathematics*, 1(2):313–319, 1990.
- [6] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [7] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.
- [8] Andrzej Wroński. Remarks on intermediate logics with axioms containing only one variable. Reports on Mathematical Logic, 2:63–76, 1974.

Received May 24, 2004