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Summary. The article contains the formalization of the addition opera-
tor on relational structures as defined by A. Wroński [8] (as a generalization of

Troelstra’s sum or Jaśkowski’s star addition). The ordering relation of A⊗ B is

given by

¬A⊗B =¬A ∪ ¬B ∪ (¬A ◦ ¬B),

where the carrier is defined as the set-theoretical union of carriers of A and B.

Main part – Section 3 – is devoted to the Mizar translation of Theorem 1 (iv–xiii),

p. 66 of [8].

MML Identifier: LATSUM 1.

The terminology and notation used in this paper are introduced in the following

articles: [4], [6], [7], [5], [2], [3], and [1].

1. Preliminaries

One can prove the following proposition

(1) Let x, y, A, B be sets. Suppose x ∈ A∪B and y ∈ A∪B. Then x ∈ A\B

and y ∈ A \B or x ∈ B and y ∈ B or x ∈ A \B and y ∈ B or x ∈ B and

y ∈ A \B.

Let R, S be relational structures. The predicate R ≈ S is defined by the

condition (Def. 1).

(Def. 1) Let x, y be sets. Suppose x ∈ (the carrier of R) ∩ (the carrier of S) and

y ∈ (the carrier of R) ∩ (the carrier of S). Then 〈〈x, y〉〉 ∈ the internal

relation of R if and only if 〈〈x, y〉〉 ∈ the internal relation of S.
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2. The Wroński’s Operation

Let R, S be relational structures. The functor R⊗S yields a strict relational

structure and is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of R⊗ S = (the carrier of R) ∪ (the carrier of S), and

(ii) the internal relation of R ⊗ S = (the internal relation of R) ∪ (the

internal relation of S)∪ (the internal relation of R) · (the internal relation

of S).

Let R be a relational structure and let S be a non empty relational structure.

Observe that R⊗ S is non empty.

Let R be a non empty relational structure and let S be a relational structure.

Observe that R⊗ S is non empty.

One can prove the following two propositions:

(2) Let R, S be relational structures. Then

(i) the internal relation of R ⊆ the internal relation of R⊗ S, and

(ii) the internal relation of S ⊆ the internal relation of R⊗ S.

(3) For all relational structuresR, S such that R is reflexive and S is reflexive

holds R⊗ S is reflexive.

3. Properties of the Addition

Next we state a number of propositions:

(4) Let R, S be relational structures and a, b be sets. Suppose that

(i) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S,

(ii) a ∈ the carrier of R,

(iii) b ∈ the carrier of R,

(iv) R ≈ S, and

(v) R is transitive.

Then 〈〈a, b〉〉 ∈ the internal relation of R.

(5) Let R, S be relational structures and a, b be sets. Suppose that

(i) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S,

(ii) a ∈ the carrier of S,

(iii) b ∈ the carrier of S,

(iv) R ≈ S, and

(v) S is transitive.

Then 〈〈a, b〉〉 ∈ the internal relation of S.

(6) Let R, S be relational structures and a, b be sets. Then

(i) if 〈〈a, b〉〉 ∈ the internal relation of R, then 〈〈a, b〉〉 ∈ the internal relation

of R⊗ S, and

(ii) if 〈〈a, b〉〉 ∈ the internal relation of S, then 〈〈a, b〉〉 ∈ the internal relation

of R⊗ S.
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(7) Let R, S be non empty relational structures and x be an element of

R⊗ S. Then x ∈ the carrier of R or x ∈ (the carrier of S) \ (the carrier of

R).

(8) Let R, S be non empty relational structures, x, y be elements of R, and

a, b be elements of R ⊗ S. Suppose x = a and y = b and R ≈ S and R is

transitive. Then x ¬ y if and only if a ¬ b.

(9) Let R, S be non empty relational structures, a, b be elements of R⊗ S,

and c, d be elements of S. Suppose a = c and b = d and R ≈ S and S is

transitive. Then a ¬ b if and only if c ¬ d.

(10) Let R, S be antisymmetric reflexive transitive non empty relational

structures with l.u.b.’s and x be a set. If x ∈ the carrier of R, then x

is an element of R⊗ S.

(11) Let R, S be antisymmetric reflexive transitive non empty relational

structures with l.u.b.’s and x be a set. If x ∈ the carrier of S, then x

is an element of R⊗ S.

(12) Let R, S be non empty relational structures and x be a set. Suppose

x ∈ (the carrier of R) ∩ (the carrier of S). Then x is an element of R.

(13) Let R, S be non empty relational structures and x be a set. Suppose

x ∈ (the carrier of R) ∩ (the carrier of S). Then x is an element of S.

(14) Let R, S be antisymmetric reflexive transitive non empty relational

structures with l.u.b.’s and x, y be elements of R ⊗ S. Suppose x ∈ the

carrier of R and y ∈ the carrier of S and R ≈ S. Then x ¬ y if and only if

there exists an element a of R⊗ S such that a ∈ (the carrier of R) ∩ (the

carrier of S) and x ¬ a and a ¬ y.

(15) Let R, S be non empty relational structures, a, b be elements of R, and

c, d be elements of S. Suppose a = c and b = d and R ≈ S and R is

transitive and S is transitive. Then a ¬ b if and only if c ¬ d.

(16) Let R be an antisymmetric reflexive transitive non empty relational

structure with l.u.b.’s, D be a lower directed subset of R, and x, y be

elements of R. If x ∈ D and y ∈ D, then x ⊔ y ∈ D.

(17) Let R, S be relational structures and a, b be sets. Suppose that

(i) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,

(ii) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S, and

(iii) a ∈ the carrier of S.

Then b ∈ the carrier of S.

(18) Let R, S be relational structures and a, b be elements of R⊗S. Suppose

(the carrier of R) ∩ (the carrier of S) is an upper subset of R and a ¬ b

and a ∈ the carrier of S. Then b ∈ the carrier of S.

(19) Let R, S be antisymmetric reflexive transitive non empty relational

structures with l.u.b.’s, x, y be elements of R, and a, b be elements of
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S. Suppose that

(i) (the carrier of R) ∩ (the carrier of S) is a lower directed subset of S,

(ii) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,

(iii) R ≈ S,

(iv) x = a, and

(v) y = b.

Then x ⊔ y = a ⊔ b.

(20) Let R, S be lower-bounded antisymmetric reflexive transitive non empty

relational structures with l.u.b.’s. Suppose (the carrier of R)∩ (the carrier

of S) is a non empty lower directed subset of S. Then ⊥S ∈ the carrier of

R.

(21) Let R, S be relational structures and a, b be sets. Suppose that

(i) (the carrier of R) ∩ (the carrier of S) is a lower subset of S,

(ii) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S, and

(iii) b ∈ the carrier of R.

Then a ∈ the carrier of R.

(22) Let x, y be sets and R, S be relational structures. Suppose 〈〈x, y〉〉 ∈ the

internal relation of R⊗ S and (the carrier of R) ∩ (the carrier of S) is an

upper subset of R. Then

(i) x ∈ the carrier of R and y ∈ the carrier of R, or

(ii) x ∈ the carrier of S and y ∈ the carrier of S, or

(iii) x ∈ (the carrier of R)\(the carrier of S) and y ∈ (the carrier of S)\(the

carrier of R).

(23) Let R, S be relational structures and a, b be elements of R⊗S. Suppose

(the carrier of R)∩ (the carrier of S) is a lower subset of S and a ¬ b and

b ∈ the carrier of R. Then a ∈ the carrier of R.

(24) Let R, S be relational structures. Suppose that

(i) R ≈ S,

(ii) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,

(iii) (the carrier of R) ∩ (the carrier of S) is a lower subset of S,

(iv) R is transitive and antisymmetric, and

(v) S is transitive and antisymmetric.

Then R⊗ S is antisymmetric.

(25) Let R, S be relational structures. Suppose that

(i) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,

(ii) (the carrier of R) ∩ (the carrier of S) is a lower subset of S,

(iii) R ≈ S,

(iv) R is transitive, and

(v) S is transitive.

Then R⊗ S is transitive.
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