Continuous Mappings between Finite and One-Dimensional Finite Topological Spaces

Hiroshi Imura
Shinshu University
Nagano

Masami Tanaka
Shinshu University
Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. We showed relations between separateness and inflation operation. We also gave some relations between separateness and connectedness defined before. For two finite topological spaces, we defined a continuous function from one to another. Some topological concepts are preserved by such continuous functions. We gave one-dimensional concrete models of finite topological space.

MML Identifier: FINTOPO4.

The notation and terminology used here are introduced in the following articles: [12], [5], [13], [1], [14], [3], [4], [2], [6], [10], [9], [11], [7], and [8].

Let F_{1} be a non empty finite topology space and let A, B be subsets of F_{1}. We say that A and B are separated if and only if:
(Def. 1) $\quad A^{b}$ misses B and A misses B^{b}.
Next we state a number of propositions:
(1) Let F_{1} be a filled non empty finite topology space, A be a subset of F_{1}, and n, m be natural numbers. If $n \leqslant m$, then $\operatorname{Finf}(A, n) \subseteq \operatorname{Finf}(A, m)$.
(2) Let F_{1} be a filled non empty finite topology space, A be a subset of F_{1}, and n, m be natural numbers. If $n \leqslant m$, then $\operatorname{Fcl}(A, n) \subseteq \operatorname{Fcl}(A, m)$.
(3) Let F_{1} be a filled non empty finite topology space, A be a subset of F_{1}, and n, m be natural numbers. If $n \leqslant m$, then $\operatorname{Fdfl}(A, m) \subseteq \operatorname{Fdfl}(A, n)$.
(4) Let F_{1} be a filled non empty finite topology space, A be a subset of F_{1}, and n, m be natural numbers. If $n \leqslant m$, then $\operatorname{Fint}(A, m) \subseteq \operatorname{Fint}(A, n)$.
(5) Let F_{1} be a non empty finite topology space and A, B be subsets of F_{1}. If A and B are separated, then B and A are separated.
(6) Let F_{1} be a filled non empty finite topology space and A, B be subsets of F_{1}. If A and B are separated, then A misses B.
(7) Let F_{1} be a non empty finite topology space and A, B be subsets of F_{1}. Suppose F_{1} is symmetric. Then A and B are separated if and only if A^{f} misses B and A misses B^{f}.
(8) Let F_{1} be a filled non empty finite topology space and A, B be subsets of F_{1}. If F_{1} is symmetric and A^{b} misses B, then A misses B^{b}.
(9) Let F_{1} be a filled non empty finite topology space and A, B be subsets of F_{1}. If F_{1} is symmetric and A misses B^{b}, then A^{b} misses B.
(10) Let F_{1} be a filled non empty finite topology space and A, B be subsets of F_{1}. Suppose F_{1} is symmetric. Then A and B are separated if and only if A^{b} misses B.
(11) Let F_{1} be a filled non empty finite topology space and A, B be subsets of F_{1}. Suppose F_{1} is symmetric. Then A and B are separated if and only if A misses B^{b}.
(12) Let F_{1} be a filled non empty finite topology space and I_{1} be a subset of F_{1}. Suppose F_{1} is symmetric. Then I_{1} is connected if and only if for all subsets A, B of F_{1} such that $I_{1}=A \cup B$ and A and B are separated holds $A=I_{1}$ or $B=I_{1}$.
(13) Let F_{1} be a filled non empty finite topology space and B be a subset of F_{1}. Suppose F_{1} is symmetric. Then B is connected if and only if it is not true that there exists a subset C of F_{1} such that $C \neq \emptyset$ and $B \backslash C \neq \emptyset$ and $C \subseteq B$ and C^{b} misses $B \backslash C$.

Let F_{2}, F_{3} be non empty finite topology spaces, let f be a function from the carrier of F_{2} into the carrier of F_{3}, and let n be a natural number. We say that f is continuous n if and only if:
(Def. 2) For every element x of F_{2} and for every element y of F_{3} such that $x \in$ the carrier of F_{2} and $y=f(x)$ holds $f^{\circ} U(x, 0) \subseteq U(y, n)$.
Next we state four propositions:
(14) Let F_{2} be a non empty finite topology space, F_{3} be a filled non empty finite topology space, n be a natural number, and f be a function from the carrier of F_{2} into the carrier of F_{3}. If f is continuous 0 , then f is continuous n.
(15) Let F_{2} be a non empty finite topology space, F_{3} be a filled non empty finite topology space, n_{0}, n be natural numbers, and f be a function from the carrier of F_{2} into the carrier of F_{3}. If f is continuous n_{0} and $n_{0} \leqslant n$, then f is continuous n.
(16) Let F_{2}, F_{3} be non empty finite topology spaces, A be a subset of F_{2}, B be a subset of F_{3}, and f be a function from the carrier of F_{2} into the carrier of F_{3}. If f is continuous 0 and $B=f^{\circ} A$, then $f^{\circ} A^{b} \subseteq B^{b}$.
(17) Let F_{2}, F_{3} be non empty finite topology spaces, A be a subset of F_{2}, B be a subset of F_{3}, and f be a function from the carrier of F_{2} into the carrier of F_{3}. Suppose A is connected and f is continuous 0 and $B=f^{\circ} A$. Then B is connected.
Let n be a natural number. The functor $\operatorname{Nbdl1}(n)$ yielding a function from $\operatorname{Seg} n$ into $2^{\operatorname{Seg} n}$ is defined as follows:
(Def. 3) $\quad \operatorname{dom} \operatorname{Nbdl1}(n)=\operatorname{Seg} n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $(\operatorname{Nbdl1}(n))(i)=\left\{i, \max \left(i-^{\prime} 1,1\right), \min (i+1, n)\right\}$.
Let n be a natural number. Let us assume that $n>0$. The functor $\operatorname{FTSL} 1(n)$ yielding a non empty finite topology space is defined as follows:
(Def. 4) $\operatorname{FTSL} 1(n)=\langle\operatorname{Seg} n, \operatorname{Nbdl1}(n)\rangle$.
We now state two propositions:
(18) For every natural number n such that $n>0$ holds FTSL1 (n) is filled.
(19) For every natural number n such that $n>0$ holds $\operatorname{FTSL} 1(n)$ is symmetric.

Let n be a natural number. The functor $\operatorname{Nbdc} 1(n)$ yielding a function from $\operatorname{Seg} n$ into $2^{\operatorname{Seg} n}$ is defined by the conditions (Def. 5).
(Def. 5)(i) $\quad \operatorname{dom} \operatorname{Nbdc} 1(n)=\operatorname{Seg} n$, and
(ii) for every natural number i such that $i \in \operatorname{Seg} n$ holds if $1<i$ and $i<n$, then $(\operatorname{Nbdc} 1(n))(i)=\left\{i, i-^{\prime} 1, i+1\right\}$ and if $i=1$ and $i<n$, then $(\operatorname{Nbdc} 1(n))(i)=\{i, n, i+1\}$ and if $1<i$ and $i=n$, then $(\operatorname{Nbdc} 1(n))(i)=$ $\left\{i, i-^{\prime} 1,1\right\}$ and if $i=1$ and $i=n$, then $(\operatorname{Nbdc} 1(n))(i)=\{i\}$.
Let n be a natural number. Let us assume that $n>0$. The functor $\operatorname{FTSC} 1(n)$ yielding a non empty finite topology space is defined as follows:
(Def. 6) $\operatorname{FTSC1}(n)=\langle\operatorname{Seg} n, \operatorname{Nbdc} 1(n)\rangle$.
We now state two propositions:
(20) For every natural number n such that $n>0$ holds $\operatorname{FTSC1}(n)$ is filled.
(21) For every natural number n such that $n>0$ holds $\operatorname{FTSC1}(n)$ is symmetric.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics, $3(\mathbf{2}): 189-193,1992$.
[7] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[8] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
[9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[10] Masami Tanaka and Yatsuka Nakamura. Some set series in finite topological spaces. Fundamental concepts for image processing. Formalized Mathematics, 12(2):125-129, 2004.
[11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received July 13, 2004

