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Summary. We showed relations between separateness and inflation ope-
ration. We also gave some relations between separateness and connectedness de-

fined before. For two finite topological spaces, we defined a continuous function

from one to another. Some topological concepts are preserved by such continuous

functions. We gave one-dimensional concrete models of finite topological space.

MML Identifier: FINTOPO4.

The notation and terminology used here are introduced in the following articles:

[12], [5], [13], [1], [14], [3], [4], [2], [6], [10], [9], [11], [7], and [8].

Let F1 be a non empty finite topology space and let A, B be subsets of F1.

We say that A and B are separated if and only if:

(Def. 1) Ab misses B and A misses Bb.

Next we state a number of propositions:

(1) Let F1 be a filled non empty finite topology space, A be a subset of F1,

and n, m be natural numbers. If n ¬ m, then Finf(A, n) ⊆ Finf(A,m).

(2) Let F1 be a filled non empty finite topology space, A be a subset of F1,

and n, m be natural numbers. If n ¬ m, then Fcl(A,n) ⊆ Fcl(A, m).

(3) Let F1 be a filled non empty finite topology space, A be a subset of F1,

and n, m be natural numbers. If n ¬ m, then Fdfl(A,m) ⊆ Fdfl(A,n).

(4) Let F1 be a filled non empty finite topology space, A be a subset of F1,

and n, m be natural numbers. If n ¬ m, then Fint(A,m) ⊆ Fint(A, n).

(5) Let F1 be a non empty finite topology space and A, B be subsets of F1.

If A and B are separated, then B and A are separated.
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(6) Let F1 be a filled non empty finite topology space and A, B be subsets

of F1. If A and B are separated, then A misses B.

(7) Let F1 be a non empty finite topology space and A, B be subsets of F1.

Suppose F1 is symmetric. Then A and B are separated if and only if Af

misses B and A misses Bf .

(8) Let F1 be a filled non empty finite topology space and A, B be subsets

of F1. If F1 is symmetric and Ab misses B, then A misses Bb.

(9) Let F1 be a filled non empty finite topology space and A, B be subsets

of F1. If F1 is symmetric and A misses Bb, then Ab misses B.

(10) Let F1 be a filled non empty finite topology space and A, B be subsets

of F1. Suppose F1 is symmetric. Then A and B are separated if and only

if Ab misses B.

(11) Let F1 be a filled non empty finite topology space and A, B be subsets

of F1. Suppose F1 is symmetric. Then A and B are separated if and only

if A misses Bb.

(12) Let F1 be a filled non empty finite topology space and I1 be a subset of

F1. Suppose F1 is symmetric. Then I1 is connected if and only if for all

subsets A, B of F1 such that I1 = A∪B and A and B are separated holds

A = I1 or B = I1.

(13) Let F1 be a filled non empty finite topology space and B be a subset of

F1. Suppose F1 is symmetric. Then B is connected if and only if it is not

true that there exists a subset C of F1 such that C 6= ∅ and B \ C 6= ∅

and C ⊆ B and Cb misses B \ C.

Let F2, F3 be non empty finite topology spaces, let f be a function from the

carrier of F2 into the carrier of F3, and let n be a natural number. We say that

f is continuous n if and only if:

(Def. 2) For every element x of F2 and for every element y of F3 such that x ∈ the

carrier of F2 and y = f(x) holds f◦U(x, 0) ⊆ U(y, n).

Next we state four propositions:

(14) Let F2 be a non empty finite topology space, F3 be a filled non empty

finite topology space, n be a natural number, and f be a function from

the carrier of F2 into the carrier of F3. If f is continuous 0, then f is

continuous n.

(15) Let F2 be a non empty finite topology space, F3 be a filled non empty

finite topology space, n0, n be natural numbers, and f be a function from

the carrier of F2 into the carrier of F3. If f is continuous n0 and n0 ¬ n,

then f is continuous n.

(16) Let F2, F3 be non empty finite topology spaces, A be a subset of F2,

B be a subset of F3, and f be a function from the carrier of F2 into the

carrier of F3. If f is continuous 0 and B = f◦A, then f◦Ab ⊆ Bb.
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(17) Let F2, F3 be non empty finite topology spaces, A be a subset of F2,

B be a subset of F3, and f be a function from the carrier of F2 into the

carrier of F3. Suppose A is connected and f is continuous 0 and B = f◦A.

Then B is connected.

Let n be a natural number. The functor Nbdl1(n) yielding a function from

Seg n into 2Segn is defined as follows:

(Def. 3) domNbdl1(n) = Segn and for every natural number i such that i ∈ Seg n

holds (Nbdl1(n))(i) = {i,max(i−′ 1, 1),min(i + 1, n)}.

Let n be a natural number. Let us assume that n > 0. The functor FTSL1(n)

yielding a non empty finite topology space is defined as follows:

(Def. 4) FTSL1(n) = 〈Seg n,Nbdl1(n)〉.

We now state two propositions:

(18) For every natural number n such that n > 0 holds FTSL1(n) is filled.

(19) For every natural number n such that n > 0 holds FTSL1(n) is symme-

tric.

Let n be a natural number. The functor Nbdc1(n) yielding a function from

Seg n into 2Segn is defined by the conditions (Def. 5).

(Def. 5)(i) domNbdc1(n) = Seg n, and

(ii) for every natural number i such that i ∈ Seg n holds if 1 < i and

i < n, then (Nbdc1(n))(i) = {i, i−′ 1, i + 1} and if i = 1 and i < n, then

(Nbdc1(n))(i) = {i, n, i+1} and if 1 < i and i = n, then (Nbdc1(n))(i) =

{i, i−′ 1, 1} and if i = 1 and i = n, then (Nbdc1(n))(i) = {i}.

Let n be a natural number. Let us assume that n > 0. The functor FTSC1(n)

yielding a non empty finite topology space is defined as follows:

(Def. 6) FTSC1(n) = 〈Seg n,Nbdc1(n)〉.

We now state two propositions:

(20) For every natural number n such that n > 0 holds FTSC1(n) is filled.

(21) For every natural number n such that n > 0 holds FTSC1(n) is symme-

tric.
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