Continuous Mappings between Finite and One-Dimensional Finite Topological Spaces

Hiroshi Imura Shinshu University Nagano Masami Tanaka Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. We showed relations between separateness and inflation operation. We also gave some relations between separateness and connectedness defined before. For two finite topological spaces, we defined a continuous function from one to another. Some topological concepts are preserved by such continuous functions. We gave one-dimensional concrete models of finite topological space.

MML Identifier: FINTOPO4.

The notation and terminology used here are introduced in the following articles: [12], [5], [13], [1], [14], [3], [4], [2], [6], [10], [9], [11], [7], and [8].

Let F_1 be a non empty finite topology space and let A, B be subsets of F_1 . We say that A and B are separated if and only if:

(Def. 1) A^b misses B and A misses B^b .

Next we state a number of propositions:

- (1) Let F_1 be a filled non empty finite topology space, A be a subset of F_1 , and n, m be natural numbers. If $n \leq m$, then $\operatorname{Finf}(A, n) \subseteq \operatorname{Finf}(A, m)$.
- (2) Let F_1 be a filled non empty finite topology space, A be a subset of F_1 , and n, m be natural numbers. If $n \leq m$, then $\operatorname{Fcl}(A, n) \subseteq \operatorname{Fcl}(A, m)$.
- (3) Let F_1 be a filled non empty finite topology space, A be a subset of F_1 , and n, m be natural numbers. If $n \leq m$, then $\operatorname{Fdfl}(A, m) \subseteq \operatorname{Fdfl}(A, n)$.
- (4) Let F_1 be a filled non empty finite topology space, A be a subset of F_1 , and n, m be natural numbers. If $n \leq m$, then $\operatorname{Fint}(A, m) \subseteq \operatorname{Fint}(A, n)$.
- (5) Let F_1 be a non empty finite topology space and A, B be subsets of F_1 . If A and B are separated, then B and A are separated.

C 2004 University of Białystok ISSN 1426-2630

HIROSHI IMURA et al.

- (6) Let F_1 be a filled non empty finite topology space and A, B be subsets of F_1 . If A and B are separated, then A misses B.
- (7) Let F_1 be a non empty finite topology space and A, B be subsets of F_1 . Suppose F_1 is symmetric. Then A and B are separated if and only if A^f misses B and A misses B^f .
- (8) Let F_1 be a filled non empty finite topology space and A, B be subsets of F_1 . If F_1 is symmetric and A^b misses B, then A misses B^b .
- (9) Let F_1 be a filled non empty finite topology space and A, B be subsets of F_1 . If F_1 is symmetric and A misses B^b , then A^b misses B.
- (10) Let F_1 be a filled non empty finite topology space and A, B be subsets of F_1 . Suppose F_1 is symmetric. Then A and B are separated if and only if A^b misses B.
- (11) Let F_1 be a filled non empty finite topology space and A, B be subsets of F_1 . Suppose F_1 is symmetric. Then A and B are separated if and only if A misses B^b .
- (12) Let F_1 be a filled non empty finite topology space and I_1 be a subset of F_1 . Suppose F_1 is symmetric. Then I_1 is connected if and only if for all subsets A, B of F_1 such that $I_1 = A \cup B$ and A and B are separated holds $A = I_1$ or $B = I_1$.
- (13) Let F_1 be a filled non empty finite topology space and B be a subset of F_1 . Suppose F_1 is symmetric. Then B is connected if and only if it is not true that there exists a subset C of F_1 such that $C \neq \emptyset$ and $B \setminus C \neq \emptyset$ and $C \subseteq B$ and C^b misses $B \setminus C$.

Let F_2 , F_3 be non empty finite topology spaces, let f be a function from the carrier of F_2 into the carrier of F_3 , and let n be a natural number. We say that f is continuous n if and only if:

(Def. 2) For every element x of F_2 and for every element y of F_3 such that $x \in$ the carrier of F_2 and y = f(x) holds $f^{\circ}U(x,0) \subseteq U(y,n)$.

Next we state four propositions:

- (14) Let F_2 be a non empty finite topology space, F_3 be a filled non empty finite topology space, n be a natural number, and f be a function from the carrier of F_2 into the carrier of F_3 . If f is continuous 0, then f is continuous n.
- (15) Let F_2 be a non empty finite topology space, F_3 be a filled non empty finite topology space, n_0 , n be natural numbers, and f be a function from the carrier of F_2 into the carrier of F_3 . If f is continuous n_0 and $n_0 \leq n$, then f is continuous n.
- (16) Let F_2 , F_3 be non empty finite topology spaces, A be a subset of F_2 , B be a subset of F_3 , and f be a function from the carrier of F_2 into the carrier of F_3 . If f is continuous 0 and $B = f^{\circ}A$, then $f^{\circ}A^b \subseteq B^b$.

382

(17) Let F_2 , F_3 be non empty finite topology spaces, A be a subset of F_2 , B be a subset of F_3 , and f be a function from the carrier of F_2 into the carrier of F_3 . Suppose A is connected and f is continuous 0 and $B = f^{\circ}A$. Then B is connected.

Let n be a natural number. The functor Nbdl1(n) yielding a function from $\operatorname{Seg} n$ into $2^{\operatorname{Seg} n}$ is defined as follows:

(Def. 3) dom Nbdl1(n) = Seg n and for every natural number i such that $i \in Seg n$ holds (Nbdl1(n))(i) = $\{i, \max(i - 1, 1), \min(i + 1, n)\}$.

Let n be a natural number. Let us assume that n > 0. The functor FTSL1(n) yielding a non empty finite topology space is defined as follows:

(Def. 4) $\operatorname{FTSL1}(n) = \langle \operatorname{Seg} n, \operatorname{Nbdl1}(n) \rangle.$

We now state two propositions:

- (18) For every natural number n such that n > 0 holds FTSL1(n) is filled.
- (19) For every natural number n such that n > 0 holds FTSL1(n) is symmetric.

Let n be a natural number. The functor Nbdc1(n) yielding a function from $\operatorname{Seg} n$ into $2^{\operatorname{Seg} n}$ is defined by the conditions (Def. 5).

- (Def. 5)(i) dom Nbdc1(n) = Seg n, and
 - (ii) for every natural number i such that $i \in \text{Seg } n$ holds if 1 < i and i < n, then $(\text{Nbdc1}(n))(i) = \{i, i 1, i + 1\}$ and if i = 1 and i < n, then $(\text{Nbdc1}(n))(i) = \{i, n, i + 1\}$ and if 1 < i and i = n, then $(\text{Nbdc1}(n))(i) = \{i, n, i + 1\}$ and if 1 < i and i = n, then $(\text{Nbdc1}(n))(i) = \{i, n, i + 1\}$ and if i = 1 and i = n, then $(\text{Nbdc1}(n))(i) = \{i\}$.

Let n be a natural number. Let us assume that n > 0. The functor FTSC1(n) yielding a non empty finite topology space is defined as follows:

(Def. 6) $\operatorname{FTSC1}(n) = \langle \operatorname{Seg} n, \operatorname{Nbdc1}(n) \rangle.$

We now state two propositions:

- (20) For every natural number n such that n > 0 holds FTSC1(n) is filled.
- (21) For every natural number n such that n > 0 holds FTSC1(n) is symmetric.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
 [5] Czesław Byliński. Sume haris and set a set. Formalized Mathematics, 1(1):47, 52.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
 [6] Hirochi Imura and Masayoshi Esuchi. Finita tapological spaces. Formalized Mathematics.
- [6] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics, 3(2):189–193, 1992.

HIROSHI IMURA et al.

- [7] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [8] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279–288, 1992.
- [9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
- [10] Masami Tanaka and Yatsuka Nakamura. Some set series in finite topological spaces. Fundamental concepts for image processing. Formalized Mathematics, 12(2):125-129, 2004.
- [11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received July 13, 2004

384