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Summary. The recursive definition of Fibonacci sequences [3] is a good
starting point for various variants and generalizations. We can here point out e.g.
Lucas (with 2 and 1 as opening values) and the so-called generalized Fibonacci
numbers (starting with arbitrary integers a and b).

In this paper, we introduce Lucas and G-numbers and we state their basic
properties analogous to those proven in [10] and [5].

MML Identifier: FIB_NUM3.

The papers [15], [14], [11], [2], [6], [1], [13], [12], [8], [9], [4], [7], [3], and [10]
provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper a, b, k, n denote natural numbers.
The following propositions are true:

(1) For every real number a and for every natural number n such that a™ = 0
holds a = 0.

(2) For every non negative real number a holds v/a - v/a = a.

(3) For every non empty real number a holds a? = (—a)?.

(4) For every non empty natural number k holds (k—'1)+2 = (k+2) /1.
(5) (a+b?>=a-a+a-b+a-b+b-b.

(

6) For every non empty real number a holds (a™)? = a?™.
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(7) For all real numbers a, b holds (a + b) - (a — b) = a® — b2.
(8) For all non empty real numbers a, b holds (a - b)"™ = a™ - b™.

Let us mention that 7 is positive and 7 is negative.

The following propositions are true:

n+1 +2

=TT,

(10) For every natural number n holds 7" + 7"+ = 77+2,

(9) For every natural number n holds 7" + 7

2. LucAs NUMBERS

Let n be a natural number. The functor Luc(n) yielding a natural number
is defined by the condition (Def. 1).
(Def. 1) There exists a function L from N into [N, N ] such that Luc(n) = L(n)1
and L(0) = (2, 1) and for every natural number n holds L(n+1) = (L(n)a2,
L(n)1 + L(n)2).
The following propositions are true:
(11) Luc(0) = 2 and Luc(1) = 1 and for every natural number n holds Luc(n+
1+ 1) = Luc(n) + Luc(n + 1).

(12) For every natural number n holds Luc(n + 2) = Luc(n) + Luc(n + 1).
(13) For every natural number n holds Luc(n + 1) + Luc(n+2) = Luc(n +3).
(14) Luc(2) = 3.

(15) Luc(3) = 4.

(16) Luc(4) =T7.

(17) For every natural number k holds Luc(k) > k.

(18) For every non empty natural number m holds Luc(m + 1) > Luc(m).

Let n be a natural number. Note that Luc(n) is positive.
Next we state a number of propositions:

For every natural number n holds 2 - Luc(n 4 2) = Luc(n) + Luc(n + 3).
For every natural number n holds Luc(n + 1) = Fib(n) + Fib(n + 2).
For every natural number n holds Luc(n) = 7" + 7".
For every natural number n holds 2-Luc(n) +Luc(n+1) = 5-Fib(n+1).
For every natural number n holds Luc(n + 3) — 2 - Luc(n) = 5 - Fib(n).
For every natural number n holds Luc(n) + Fib(n) = 2 - Fib(n + 1).
For every natural number n holds 3 - Fib(n) 4+ Luc(n) = 2 - Fib(n + 2).
For all natural numbers n, m holds 2 - Luc(n + m) = Luc(n) - Luc(m) +

5 - Fib(n) - Fib(m).

(27) For every natural number n holds Luc(n + 3) - Luc(n) = Luc(n + 2)? —

Luc(n + 1)2.
(28) For every natural number n holds Fib(2 - n) = Fib(n) - Luc(n).
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(29) For every natural number n holds 2-Fib(2-n+1) = Luc(n+1)-Fib(n) +
Luc(n) - Fib(n + 1).
(30) For every natural number n holds 5 - Fib(n)? — Luc(n)? = 4 - (—1)"*1,

(31) For every natural number n holds Fib(2-n + 1) = Fib(n + 1) - Luc(n +
1) — Fib(n) - Luc(n).

3. GENERALIZED FIBONACCI NUMBERS

Let a, b, n be natural numbers. The functor GFib(a, b, n) yielding a natural
number is defined by the condition (Def. 2).

(Def. 2) There exists a function L from N into [ N, N] such that GFib(a,b,n) =
L(n)1 and L(0) = (a, b) and for every natural number n holds L(n+1) =
(L(n)2, L(n)1 + L(n)2).

Next we state a number of propositions:

(32) For all natural numbers a, b holds GFib(a, b,0) = a and GFib(a,b,1) =b
and for every natural number n holds GFib(a, b,n+1+1) = GFib(a,b,n)+
GFib(a, b,n + 1).

(33) (GFib(a,b, k + 1) + GFib(a, b,k + 1 + 1)) = GFib(a,b,k + 1)2 + 2 -
GFib(a,b,k + 1) - GFib(a, b,k + 1 + 1) + GFib(a, b, k + 1 + 1)2,

(34) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a,b,n+ 1) =
GFib(a, b,n + 2).

(35) For all natural numbers a, b, n holds GFib(a, b, n+1)+GFib(a, b, n+2) =
GFib(a, b,n + 3).

(36) For all natural numbers a, b, n holds GFib(a, b, n+2)+GFib(a, b, n+3) =
GFib(a, b,n + 4).

(37) For every natural number n holds GFib(0,1,n) = Fib(n).

(38) For every natural number n holds GFib(2,1,n) = Luc(n).

(39) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a,b,n + 3) =
2. GFib(a, b,n + 2).

(40) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a,b,n 4+ 4) =
3. GFib(a, b, + 2).

(41) For all natural numbers a, b, n holds GFib(a,b,n + 3) — GFib(a,b,n) =
2. GFib(a, b,n + 1).

(42) For all non empty natural numbers a, b, n holds GFib(a,b,n) =
GFib(a,b,0) - Fib(n —' 1) + GFib(a,b,1) - Fib(n).

(43) For all natural numbers n, m holds Fib(m) - Luc(n) 4+ Luc(m) - Fib(n) =
GFib(Fib(0), Luc(0),n + m).

(44) For every natural number n holds Luc(n) + Luc(n + 3) = 2 - Luc(n + 2).
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(45) For all natural numbers a, n holds GFib(a,a,n) = w - (Fib(n) +
Luc(n)).

(46) For all natural numbers a, b, n holds GFib(b,a+b,n) = GFib(a, b,n+1).

(47) For all natural numbers a, b, n holds GFib(a, b, n + 2) - GFib(a, b, n) —
GFib(a,b,n +1)? = (—=1)" - (GFib(a, b, 2)?> — GFib(a, b, 1) - GFib(a, b, 3)).

(48) For all natural numbers a, b, k, n holds GFib(GFib(a, b, k), GFib(a, b, k+
1),n) = GFib(a,b,n + k).

(49) For all natural numbers a, b, n holds GFib(a,b,n + 1) = a - Fib(n) +b-
Fib(n + 1).

(50) For all natural numbers a, b, n holds GFib(0,b,n) = b - Fib(n).

(51) For all natural numbers a, b, n holds GFib(a,0,n + 1) = a - Fib(n).

(52) For all natural numbers a, b, ¢, d, n holds GFib(a, b, n) + GFib(c,d,n) =
GFib(a + ¢,b+d,n).

(53) For all natural numbers a, b, k, n holds GFib(k - a,k - b,n) = k -
GFib(a,b,n).

(54) For all natural numbers a, b, n holds GFib(a, b,n) = (a'_?er)'T:L/Jg(a'T_b)'Fn :

(55) For all natural numbers a, n holds GFib(2-a+1,2-a+1,n+ 1) =
(2-a+1)-Fib(n+2).
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