Some Properties of Fibonacci Numbers

Magdalena Jastrzębska
University of Białystok

Adam Grabowski ${ }^{1}$
University of Białystok

Abstract

Summary. We formalized some basic properties of the Fibonacci numbers using definitions and lemmas from [7] and [23], e.g. Cassini's and Catalan's identities. We also showed the connections between Fibonacci numbers and Pythagorean triples as defined in [31]. The main result of this article is a proof of Carmichael's Theorem on prime divisors of prime-generated Fibonacci numbers. According to it, if we look at the prime factors of a Fibonacci number generated by a prime number, none of them have appeared as a factor in any earlier Fi bonacci number. We plan to develop the full proof of the Carmichael Theorem following [33].

MML Identifier: FIB_NUM2.

The papers [26], [3], [4], [30], [24], [1], [28], [29], [2], [18], [13], [27], [32], [9], [10], [7], [12], [8], [17], [21], [19], [22], [25], [6], [20], [11], [23], [15], [31], [14], [16], and [5] provide the terminology and notation for this paper.

1. Preliminaries

In this paper n, k, r, m, i, j denote natural numbers.
We now state a number of propositions:
(1) For every non empty natural number n holds $\left(n-^{\prime} 1\right)+2=n+1$.
(2) For every odd integer n and for every non empty real number m holds $(-m)^{n}=-m^{n}$.
(3) For every odd integer n holds $(-1)^{n}=-1$.
(4) For every even integer n and for every non empty real number m holds $(-m)^{n}=m^{n}$.

[^0](5) For every even integer n holds $(-1)^{n}=1$.
(6) For every non empty real number m and for every integer n holds ((-1). $m)^{n}=(-1)^{n} \cdot m^{n}$.
(7) For every non empty real number a holds $a^{k+m}=a^{k} \cdot a^{m}$.
(8) For every non empty real number k and for every odd integer m holds $\left(k^{m}\right)^{n}=k^{m \cdot n}$.
(9) $\left((-1)^{-n}\right)^{2}=1$.
(10) For every non empty real number a holds $a^{-k} \cdot a^{-m}=a^{-k-m}$.
(11) $(-1)^{-2 \cdot n}=1$.
(12) For every non empty real number a holds $a^{k} \cdot a^{-k}=1$.

Let n be an odd integer. One can verify that $-n$ is odd.
Let n be an even integer. Note that $-n$ is even.
One can prove the following two propositions:
(13) $(-1)^{-n}=(-1)^{n}$.
(14) For all natural numbers k, m, m_{1}, n_{1} such that $k \mid m$ and $k \mid n$ holds $k \mid m \cdot m_{1}+n \cdot n_{1}$.
One can check that there exists a set which is finite, non empty, and naturalmembered and has non empty elements.

Let f be a function from \mathbb{N} into \mathbb{N} and let A be a finite natural-membered set with non empty elements. Note that $f \upharpoonright A$ is finite subsequence-like.

One can prove the following proposition
(15) For every finite subsequence p holds $\operatorname{rng} \operatorname{Seq} p \subseteq \operatorname{rng} p$.

Let f be a function from \mathbb{N} into \mathbb{N} and let A be a finite natural-membered set with non empty elements. The functor $\operatorname{Prefix}(f, A)$ yields a finite sequence of elements of \mathbb{N} and is defined as follows:
(Def. 1) $\operatorname{Prefix}(f, A)=\operatorname{Seq}(f \upharpoonright A)$.
The following proposition is true
(16) For every natural number k such that $k \neq 0$ holds if $k+m \leqslant n$, then $m<n$.

Let us mention that \mathbb{N} is lower bounded.
Let us mention that $\{1,2,3\}$ is natural-membered and has non empty elements.

Let us note that $\{1,2,3,4\}$ is natural-membered and has non empty elements.

The following propositions are true:
(17) For all sets x, y such that $0<i$ and $i<j$ holds $\{\langle i, x\rangle,\langle j, y\rangle\}$ is a finite subsequence.
(18) For all sets x, y and for every finite subsequence q such that $i<j$ and $q=\{\langle i, x\rangle,\langle j, y\rangle\}$ holds $\operatorname{Seq} q=\langle x, y\rangle$.

Let n be a natural number. Observe that $\operatorname{Seg} n$ has non empty elements.
Let A be a set with non empty elements. Note that every subset of A has non empty elements.

Let A be a set with non empty elements and let B be a set. Observe that $A \cap B$ has non empty elements and $B \cap A$ has non empty elements.

We now state four propositions:
(19) For every natural number k and for every set a such that $k \geqslant 1$ holds $\{\langle k, a\rangle\}$ is a finite subsequence.
(20) Let i, k be natural numbers, y be a set, and f be a finite subsequence. If $f=\{\langle 1, y\rangle\}$, then Shift ${ }^{i} f=\{\langle 1+i, y\rangle\}$.
(21) Let q be a finite subsequence and k, n be natural numbers. Suppose $\operatorname{dom} q \subseteq \operatorname{Seg} k$ and $n>k$. Then there exists a finite sequence p such that $q \subseteq p$ and $\operatorname{dom} p=\operatorname{Seg} n$.
(22) For every finite subsequence q there exists a finite sequence p such that $q \subseteq p$.

2. Fibonacci Numbers

In this article we present several logical schemes. The scheme Fib Ind 1 concerns a unary predicate \mathcal{P}, and states that:

For every non empty natural number k holds $\mathcal{P}[k]$
provided the parameters have the following properties:

- $\mathcal{P}[1]$,
- $\mathcal{P}[2]$, and
- For every non empty natural number k such that $\mathcal{P}[k]$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k+2]$.
The scheme Fib Ind 2 concerns a unary predicate \mathcal{P}, and states that:
For every non trivial natural number k holds $\mathcal{P}[k]$
provided the parameters meet the following conditions:
- $\mathcal{P}[2]$,
- \mathcal{P} [3], and
- For every non trivial natural number k such that $\mathcal{P}[k]$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k+2]$.
Next we state a number of propositions:
(23) $\operatorname{Fib}(2)=1$.
(24) $\operatorname{Fib}(3)=2$.
(25) $\operatorname{Fib}(4)=3$.
(26) $\operatorname{Fib}(n+2)=\operatorname{Fib}(n)+\operatorname{Fib}(n+1)$.
(27) $\operatorname{Fib}(n+3)=\operatorname{Fib}(n+2)+\operatorname{Fib}(n+1)$.
(28) $\operatorname{Fib}(n+4)=\operatorname{Fib}(n+2)+\operatorname{Fib}(n+3)$.
(29) $\operatorname{Fib}(n+5)=\operatorname{Fib}(n+3)+\operatorname{Fib}(n+4)$.
(30) $\operatorname{Fib}(n+2)=\operatorname{Fib}(n+3)-\operatorname{Fib}(n+1)$.
(31) $\operatorname{Fib}(n+1)=\operatorname{Fib}(n+2)-\operatorname{Fib}(n)$.
(32) $\operatorname{Fib}(n)=\operatorname{Fib}(n+2)-\operatorname{Fib}(n+1)$.

3. Cassini's and Catalan's Identities

The following propositions are true:
(33) $\operatorname{Fib}(n) \cdot \operatorname{Fib}(n+2)-\operatorname{Fib}(n+1)^{2}=(-1)^{n+1}$.
(34) For every non empty natural number n holds $\operatorname{Fib}\left(n-{ }^{\prime} 1\right) \cdot \operatorname{Fib}(n+1)-$ $\operatorname{Fib}(n)^{2}=(-1)^{n}$.
(35) $\tau>0$.
(36) $\bar{\tau}=(-\tau)^{-1}$.
(37) $\quad(-\tau)^{(-1) \cdot n}=\left((-\tau)^{-1}\right)^{n}$.
(38) $-\frac{1}{\tau}=\bar{\tau}$.
(39) $\left(\left(\tau^{r}\right)^{2}-2 \cdot(-1)^{r}\right)+\left(\tau^{-r}\right)^{\mathbf{2}}=\left(\tau^{r}-\bar{\tau}^{r}\right)^{2}$.
(40) For all non empty natural numbers n, r such that $r \leqslant n$ holds $\operatorname{Fib}(n)^{2}-$ $\operatorname{Fib}(n+r) \cdot \operatorname{Fib}\left(n-^{\prime} r\right)=(-1)^{n-^{\prime} r} \cdot \operatorname{Fib}(r)^{2}$.
(41) $\operatorname{Fib}(n)^{2}+\operatorname{Fib}(n+1)^{2}=\operatorname{Fib}(2 \cdot n+1)$.
(42) For every non empty natural number k holds $\operatorname{Fib}(n+k)=\operatorname{Fib}(k)$. $\operatorname{Fib}(n+1)+\operatorname{Fib}\left(k-^{\prime} 1\right) \cdot \operatorname{Fib}(n)$.
(43) For every non empty natural number n holds $\operatorname{Fib}(n) \mid \operatorname{Fib}(n \cdot k)$.
(44) For every non empty natural number k such that $k \mid n$ holds $\operatorname{Fib}(k) \mid$ $\operatorname{Fib}(n)$.
(45) $\operatorname{Fib}(n) \leqslant \operatorname{Fib}(n+1)$.
(46) For every natural number n such that $n>1$ holds $\operatorname{Fib}(n)<\operatorname{Fib}(n+1)$.
(47) For all natural numbers m, n such that $m \geqslant n$ holds $\operatorname{Fib}(m) \geqslant \operatorname{Fib}(n)$.
(48) For every natural number k such that $k>1$ holds if $k<n$, then $\operatorname{Fib}(k)<$ $\operatorname{Fib}(n)$.
(49) $\operatorname{Fib}(k)=1$ iff $k=1$ or $k=2$.
(50) Let k, n be natural numbers. Suppose $n>1$ and $k \neq 0$ and $k \neq 1$ and $k \neq 1$ and $n \neq 2$ or $k \neq 2$ and $n \neq 1$. Then $\operatorname{Fib}(k)=\operatorname{Fib}(n)$ if and only if $k=n$.
(51) Let n be a natural number. Suppose $n>1$ and $n \neq 4$. Suppose n is non prime. Then there exists a non empty natural number k such that $k \neq 1$ and $k \neq 2$ and $k \neq n$ and $k \mid n$.
(52) For every natural number n such that $n>1$ and $n \neq 4$ holds if $\operatorname{Fib}(n)$ is prime, then n is prime.

4. Sequence of Fibonacci Numbers

The function FIB from \mathbb{N} into \mathbb{N} is defined as follows:
(Def. 2) For every natural number k holds $\operatorname{FIB}(k)=\operatorname{Fib}(k)$.
The subset $\mathbb{N}_{\text {even }}$ of \mathbb{N} is defined by:
(Def. 3) $\mathbb{N}_{\text {even }}=\{2 \cdot k: k$ ranges over natural numbers $\}$.
The subset $\mathbb{N}_{\text {odd }}$ of \mathbb{N} is defined as follows:
(Def. 4) $\mathbb{N}_{\text {odd }}=\{2 \cdot k+1: k$ ranges over natural numbers $\}$.
One can prove the following two propositions:
(53) For every natural number k holds $2 \cdot k \in \mathbb{N}_{\text {even }}$ and $2 \cdot k+1 \notin \mathbb{N}_{\text {even }}$.
(54) For every natural number k holds $2 \cdot k+1 \in \mathbb{N}_{\text {odd }}$ and $2 \cdot k \notin \mathbb{N}_{\text {odd }}$.

Let n be a natural number. The functor $\operatorname{EvenFibs}(n)$ yielding a finite sequence of elements of \mathbb{N} is defined by:
(Def. 5) $\quad \operatorname{EvenFibs}(n)=\operatorname{Prefix}\left(\mathrm{FIB}, \mathbb{N}_{\text {even }} \cap \operatorname{Seg} n\right)$.
The functor $\operatorname{OddFibs}(n)$ yields a finite sequence of elements of \mathbb{N} and is defined by:
(Def. 6) $\operatorname{OddFibs}(n)=\operatorname{Prefix}\left(\mathrm{FIB}, \mathbb{N}_{\text {odd }} \cap \operatorname{Seg} n\right)$.
We now state a number of propositions:
(55) $\operatorname{EvenFibs}(0)=\emptyset$.
(56) $\operatorname{Seq}($ FIB $\upharpoonright\{2\})=\langle 1\rangle$.
(57) $\operatorname{EvenFibs}(2)=\langle 1\rangle$.
(58) EvenFibs(4) $=\langle 1,3\rangle$.
(59) For every natural number k holds $\mathbb{N}_{\text {even }} \cap \operatorname{Seg}(2 \cdot k+2) \cup\{2 \cdot k+4\}=$ $\mathbb{N}_{\text {even }} \cap \operatorname{Seg}(2 \cdot k+4)$.
(60) For every natural number k holds FIB $\upharpoonright\left(\mathbb{N}_{\text {even }} \cap \operatorname{Seg}(2 \cdot k+2)\right) \cup\{\langle 2 \cdot k+4$, $\operatorname{FIB}(2 \cdot k+4)\rangle\}=\operatorname{FIB} \upharpoonright\left(\mathbb{N}_{\text {even }} \cap \operatorname{Seg}(2 \cdot k+4)\right)$.
(61) For every natural number n holds EvenFibs $(2 \cdot n+2)=\operatorname{EvenFibs}(2$. $n)^{\wedge}\langle\operatorname{Fib}(2 \cdot n+2)\rangle$.
(62) $\operatorname{OddFibs}(1)=\langle 1\rangle$.
(63) $\operatorname{OddFibs}(3)=\langle 1,2\rangle$.
(64) For every natural number k holds $\mathbb{N}_{\text {odd }} \cap \operatorname{Seg}(2 \cdot k+3) \cup\{2 \cdot k+5\}=$ $\mathbb{N}_{\text {odd }} \cap \operatorname{Seg}(2 \cdot k+5)$.
(65) For every natural number k holds FIB $\upharpoonright\left(\mathbb{N}_{\text {odd }} \cap \operatorname{Seg}(2 \cdot k+3)\right) \cup\{\langle 2 \cdot k+5$, $\operatorname{FIB}(2 \cdot k+5)\rangle\}=\operatorname{FIB} \upharpoonright\left(\mathbb{N}_{\text {odd }} \cap \operatorname{Seg}(2 \cdot k+5)\right)$.
(66) For every natural number n holds $\operatorname{OddFibs}(2 \cdot n+3)=\operatorname{OddFibs}(2 \cdot n+$ 1) $\wedge\langle\operatorname{Fib}(2 \cdot n+3)\rangle$.
(67) For every natural number n holds $\sum \operatorname{EvenFibs}(2 \cdot n+2)=\operatorname{Fib}(2 \cdot n+3)-1$.
(68) For every natural number n holds $\sum \operatorname{OddFibs}(2 \cdot n+1)=\operatorname{Fib}(2 \cdot n+2)$.

5. Carmichael's Theorem on Prime Divisors

One can prove the following three propositions:
(69) For every natural number n holds $\operatorname{Fib}(n)$ and $\operatorname{Fib}(n+1)$ are relative prime.
(70) For every non empty natural number n and for every natural number m such that $m \neq 1$ holds if $m \mid \operatorname{Fib}(n)$, then $m \nmid \operatorname{Fib}\left(n-{ }^{\prime} 1\right)$.
(71) Let n be a non empty natural number. Suppose m is prime and n is prime and $m \mid \operatorname{Fib}(n)$. Let r be a natural number. If $r<n$ and $r \neq 0$, then $m \nmid \operatorname{Fib}(r)$.

6. Fibonacci Numbers and Pythagorean Triples

We now state the proposition
(72) For every non empty natural number n holds $\{\operatorname{Fib}(n) \cdot \operatorname{Fib}(n+3), 2$. $\left.\operatorname{Fib}(n+1) \cdot \operatorname{Fib}(n+2), \operatorname{Fib}(n+1)^{2}+\operatorname{Fib}(n+2)^{2}\right\}$ is a Pythagorean triple.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[5] Grzegorz Bancerek, Mitsuru Aoki, Akio Matsumoto, and Yasunari Shidama. Processes in Petri nets. Formalized Mathematics, 11(1):125-132, 2003.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.
[8] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.
[15] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
[16] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[17] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[18] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[19] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[20] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[21] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[22] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[23] Robert M. Solovay. Fibonacci numbers. Formalized Mathematics, 10(2):81-83, 2002.
[24] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[26] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[27] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[28] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[29] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[31] Freek Wiedijk. Pythagorean triples. Formalized Mathematics, 9(4):809-812, 2001.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[33] Minoru Yabuta. A simple proof of Carmichael's theorem of primitive divisors. The Fibonacci Quarterly, 39(5):439-443, 2001.

[^0]: ${ }^{1}$ This work has been partially supported by the CALCULEMUS grant HPRN-CT-200000102.

