# Complex Valued Functions Space 

Noboru Endou<br>Gifu National College of Technology

Summary. This article is an extension of [9] to complex valued functions.

MML Identifier: CFUNCDOM.

The articles [14], [5], [16], [10], [17], [3], [4], [1], [12], [11], [15], [2], [8], [13], [9], [7], and [6] provide the notation and terminology for this paper.

## 1. Operation of Complex Functions

We adopt the following convention: $x_{1}, x_{2}, z$ are sets, $A$ is a non empty set, and $f, g, h$ are elements of $\mathbb{C}^{A}$.

Let us consider $A$. The functor $+_{\mathbb{C}^{A}}$ yielding a binary operation on $\mathbb{C}^{A}$ is defined by:
(Def. 1) For all elements $f, g$ of $\mathbb{C}^{A}$ holds $+_{\mathbb{C}^{A}}(f, g)=\left(+_{\mathbb{C}}\right)^{\circ}(f, g)$.
Let us consider $A$. The functor $\cdot \mathbb{C}^{A}$ yielding a binary operation on $\mathbb{C}^{A}$ is defined as follows:
(Def. 2) For all elements $f, g$ of $\mathbb{C}^{A}$ holds $\cdot \mathbb{C}^{A}(f, g)=(\cdot \mathbb{C})^{\circ}(f, g)$.
Let us consider $A$. The functor ${\underset{\mathbb{C}}{ }}_{\mathbb{C}}^{\operatorname{C}}$ yielding a function from $: \mathbb{C}, \mathbb{C}^{A}$ : into $\mathbb{C}^{A}$ is defined by:
(Def. 3) For every complex number $z$ and for every element $f$ of $\mathbb{C}^{A}$ and for every element $x$ of $A$ holds $\cdot \mathbb{C}^{\mathbb{C}}(\langle z, f\rangle)(x)=z \cdot f(x)$.
Let us consider $A$. The functor $\mathbf{0}_{\mathbb{C} A}$ yielding an element of $\mathbb{C}^{A}$ is defined by:
(Def. 4) $\quad \mathbf{0}_{\mathbb{C}^{A}}=A \longmapsto 0_{\mathbb{C}}$.
Let us consider $A$. The functor $\mathbf{1}_{\mathbb{C}^{A}}$ yields an element of $\mathbb{C}^{A}$ and is defined by:
(Def. 5) $\quad \mathbf{1}_{\mathbb{C}}=A \longmapsto 1_{\mathbb{C}}$.

One can prove the following propositions:
(1) $h=+_{\mathbb{C}^{A}}(f, g)$ iff for every element $x$ of $A$ holds $h(x)=f(x)+g(x)$.
(2) $h=\mathbb{C}^{A}(f, g)$ iff for every element $x$ of $A$ holds $h(x)=f(x) \cdot g(x)$.
(3) For every element $x$ of $A$ holds $\mathbf{1}_{\mathbb{C}^{A}}(x)=1_{\mathbb{C}}$.
(4) For every element $x$ of $A$ holds $\mathbf{0}_{\mathbb{C}^{A}}(x)=0_{\mathbb{C}}$.
(5) $\mathbf{0}_{\mathbb{C}^{A}} \neq \mathbf{1}_{\mathbb{C}^{A}}$.

In the sequel $a, b$ denote complex numbers.
The following proposition is true
(6) $h=: \mathbb{C}^{A}(\langle a, f\rangle)$ iff for every element $x$ of $A$ holds $h(x)=a \cdot f(x)$.

In the sequel $u, v, w$ are vectors of $\left\langle\mathbb{C}^{A}, \mathbf{0}_{\mathbb{C}^{A}},+_{\mathbb{C}^{A}}, \mathbb{C}_{\mathbb{C}^{A}}\right\rangle$.
One can prove the following propositions:
(7) $+_{\mathbb{C}^{A}}(f, g)=+_{\mathbb{C}^{A}}(g, f)$.
(8) $+_{\mathbb{C}^{A}}\left(f,+_{\mathbb{C}^{A}}(g, h)\right)=+_{\mathbb{C}^{A}}\left(+_{\mathbb{C}^{A}}(f, g), h\right)$.
(9) $\cdot \mathbb{C}^{A}(f, g)=\cdot \mathbb{C}^{A}(g, f)$.
(10) $\cdot \mathbb{C}^{A}\left(f, \cdot \mathbb{C}^{A}(g, h)\right)=\cdot \mathbb{C}^{A}\left(\cdot \mathbb{C}^{A}(f, g), h\right)$.
(11) $\cdot \mathbb{C}^{A}\left(\mathbf{1}_{\mathbb{C}^{A}}, f\right)=f$.
(12) $+_{\mathbb{C}^{A}}\left(\mathbf{0}_{\mathbb{C}^{A}}, f\right)=f$.
(13) $+_{\mathbb{C}^{A}}\left(f, \stackrel{C}{\mathbb{C}}^{A}\left(\left\langle-1_{\mathbb{C}}, f\right\rangle\right)\right)=\mathbf{0}_{\mathbb{C}^{A}}$.
(14) $\quad:_{\mathbb{C}^{A}}\left(\left\langle 1_{\mathbb{C}}, f\right\rangle\right)=f$.
(15) $\quad:_{\mathbb{C}^{A}}^{\mathbb{C}}\left(\left\langle a, \cdot \mathbb{C}_{\mathbb{C}^{A}}(\langle b, f\rangle)\right\rangle\right)=\cdot \mathbb{C}_{\mathbb{C}^{A}}^{\mathbb{C}}(\langle a \cdot b, f\rangle)$.
(16) $+_{\mathbb{C}^{A}}\left(\cdot \mathbb{C}_{\mathbb{C}^{A}}(\langle a, f\rangle), \cdot \mathbb{C}^{A}(\langle b, f\rangle)\right)=\cdot \mathbb{C}_{\mathbb{C}^{A}}(\langle a+b, f\rangle)$.
(17) $\cdot \mathbb{C}^{A}\left(f,+_{\mathbb{C}^{A}}(g, h)\right)=+_{\mathbb{C}^{A}}\left(\cdot \mathbb{C}^{A}(f, g), \cdot \mathbb{C}^{A}(f, h)\right)$.
(18) $\cdot \mathbb{C}^{A}\left(\cdot \cdot_{\mathbb{C}^{A}}^{\mathbb{C}}(\langle a, f\rangle), g\right)=\cdot \mathbb{C}^{\mathbb{C}}\left(\left\langle a, \mathbb{C}^{A}(f, g)\right\rangle\right)$.

## 2. Complex Linear Space of Complex Valued Functions

One can prove the following propositions:
(19) There exist $f, g$ such that
(i) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1_{\mathbb{C}}$ and if $z \neq x_{1}$, then $f(z)=0_{\mathbb{C}}$, and
(ii) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $g(z)=0_{\mathbb{C}}$ and if $z \neq x_{1}$, then $g(z)=1_{\mathbb{C}}$.
(20) Suppose that
(i) $x_{1} \in A$,
(ii) $x_{2} \in A$,
(iii) $x_{1} \neq x_{2}$,
(iv) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1_{\mathbb{C}}$ and if $z \neq x_{1}$, then $f(z)=0_{\mathbb{C}}$, and
(v) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $g(z)=0_{\mathbb{C}}$ and if $z \neq x_{1}$, then $g(z)=1_{\mathbb{C}}$.
Let given $a, b$. If $+_{\mathbb{C}^{A}}\left(\cdot \mathbb{C}^{A}(\langle a, f\rangle), \cdot \mathbb{C}^{\mathbb{C}}(\langle b, g\rangle)\right)=\mathbf{0}_{\mathbb{C}^{A}}$, then $a=0_{\mathbb{C}}$ and $b=0_{\mathbb{C}}$.
(21) If $x_{1} \in A$ and $x_{2} \in A$ and $x_{1} \neq x_{2}$, then there exist $f, g$ such that for all $a, b$ such that $+_{\mathbb{C}^{A}}\left(\cdot \mathbb{C}_{\mathbb{C}^{A}}^{\mathbb{C}}(\langle a, f\rangle), \cdot \mathbb{C}^{A}(\langle b, g\rangle)\right)=\mathbf{0}_{\mathbb{C}^{A}}$ holds $a=0_{\mathbb{C}}$ and $b=0_{\mathbb{C}}$.
(22) Suppose that
(i) $A=\left\{x_{1}, x_{2}\right\}$,
(ii) $\quad x_{1} \neq x_{2}$,
(iii) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1_{\mathbb{C}}$ and if $z \neq x_{1}$, then $f(z)=0_{\mathbb{C}}$, and
(iv) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $g(z)=0_{\mathbb{C}}$ and if $z \neq x_{1}$, then $g(z)=1_{\mathbb{C}}$.
Let given $h$. Then there exist $a, b$ such that $h=+_{\mathbb{C}^{A}}(\cdot{\underset{C}{C}}^{\mathbb{C}}(\langle a, f\rangle), \overbrace{\mathbb{C}^{A}}^{\mathbb{C}}(\langle b$, $g\rangle)$ ).
(23) If $A=\left\{x_{1}, x_{2}\right\}$ and $x_{1} \neq x_{2}$, then there exist $f, g$ such that for every $h$ there exist $a, b$ such that $h=+_{\mathbb{C}^{A}}(\cdot \mathbb{C}_{\mathbb{C}^{A}}^{\mathbb{C}}(\langle a, f\rangle), \overbrace{\mathbb{C}^{A}}^{\mathbb{C}}(\langle b, g\rangle))$.
(24) Suppose $A=\left\{x_{1}, x_{2}\right\}$ and $x_{1} \neq x_{2}$. Then there exist $f, g$ such that for all $a, b$ such that $+_{\mathbb{C}^{A}}\left(\cdot \mathbb{C}_{\mathbb{C}^{A}}^{\mathbb{C}}(\langle a, f\rangle), \cdot \mathbb{C}_{\mathbb{C}^{A}}(\langle b, g\rangle)\right)=\mathbf{0}_{\mathbb{C}^{A}}$ holds $a=0_{\mathbb{C}}$ and $b=0_{\mathbb{C}}$ and for every $h$ there exist $a, b$ such that $h=+_{\mathbb{C}^{A}}\left(\cdot \mathbb{C}_{\mathbb{C}^{A}}^{\mathbb{C}}(\langle a, f\rangle)\right.$, $\left.\cdot{ }_{\mathbb{C}^{A}}^{\mathbb{C}}(\langle b, g\rangle)\right)$.
(25) $\left\langle\mathbb{C}^{A}, \mathbf{0}_{\mathbb{C}^{A}},+_{\mathbb{C}^{A}}, \cdot \mathbb{C}_{\mathbb{C}^{A}}\right\rangle$ is a complex linear space.

Let us consider $A$. The functor ComplexVectSpace $(A)$ yields a strict complex linear space and is defined by:
(Def. 6) ComplexVectSpace $(A)=\left\langle\mathbb{C}^{A}, \mathbf{0}_{\mathbb{C}^{A}},+_{\mathbb{C}^{A}},{\stackrel{C}{\mathbb{C}^{A}}}_{\mathbb{C}}\right\rangle$.
We now state the proposition
(26) There exists a strict complex linear space $V$ and there exist vectors $u$, $v$ of $V$ such that for all $a, b$ such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0_{\mathbb{C}}$ and $b=0_{\mathbb{C}}$ and for every vector $w$ of $V$ there exist $a, b$ such that $w=a \cdot u+b \cdot v$.
Let us consider $A$. The functor $\operatorname{CRing}(A)$ yielding a strict double loop structure is defined by:
(Def. 7) $\quad \operatorname{CRing}(A)=\left\langle\mathbb{C}^{A},+_{\mathbb{C}^{A}}, \cdot \mathbb{C}^{A}, \mathbf{1}_{\mathbb{C}^{A}}, \mathbf{0}_{\mathbb{C}^{A}}\right\rangle$.
Let us consider $A$. Observe that $\operatorname{CRing}(A)$ is non empty.
We now state two propositions:
(27) Let $x, y, z$ be elements of $\operatorname{CRing}(A)$. Then $x+y=y+x$ and $(x+y)+z=$ $x+(y+z)$ and $x+0_{\operatorname{CRing}(A)}=x$ and there exists an element $t$ of $\operatorname{CRing}(A)$ such that $x+t=0_{\mathrm{CRing}(A)}$ and $x \cdot y=y \cdot x$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ and $x \cdot \mathbf{1}_{\mathrm{CRing}(A)}=x$ and $\mathbf{1}_{\mathrm{CRing}(A)} \cdot x=x$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$.
(28) $\operatorname{CRing}(A)$ is a commutative ring.

We introduce complex algebra structures which are extensions of double loop structure and CLS structure and are systems
< a carrier, a multiplication, an addition, an external multiplication, a unity, a zero $\rangle$,
where the carrier is a set, the multiplication and the addition are binary operations on the carrier, the external multiplication is a function from $: \mathbb{C}$, the carrier: into the carrier, and the unity and the zero are elements of the carrier.

Let us mention that there exists a complex algebra structure which is non empty.

Let us consider $A$. The functor CAlgebra $(A)$ yielding a strict complex algebra structure is defined as follows:
(Def. 8) $\operatorname{CAlgebra}(A)=\langle\mathbb{C}^{A}, \cdot \mathbb{C}^{A},+_{\mathbb{C}^{A}}, \overbrace{\mathbb{C}^{A}}, \mathbf{1}_{\mathbb{C}^{A}}, \mathbf{0}_{\mathbb{C}^{A}}\rangle$.
Let us consider $A$. Observe that CAlgebra $(A)$ is non empty.
Next we state the proposition
(29) Let $x, y, z$ be elements of $\operatorname{CAlgebra}(A)$ and given $a, b$. Then $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{\mathrm{CAlgebra}(A)}=x$ and there exists an element $t$ of $\operatorname{CAlgebra}(A)$ such that $x+t=0_{\mathrm{CAlgebra}(A)}$ and $x \cdot y=y \cdot x$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ and $x \cdot \mathbf{1}_{\text {CAlgebra }(A)}=x$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $a \cdot(x \cdot y)=(a \cdot x) \cdot y$ and $a \cdot(x+y)=a \cdot x+a \cdot y$ and $(a+b) \cdot x=a \cdot x+b \cdot x$ and $(a \cdot b) \cdot x=a \cdot(b \cdot x)$.
Let $I_{1}$ be a non empty complex algebra structure. We say that $I_{1}$ is complex algebra-like if and only if the condition (Def. 9) is satisfied.
(Def. 9) Let $x, y, z$ be elements of $I_{1}$ and given $a, b$. Then $x \cdot \mathbf{1}_{\left(I_{1}\right)}=x$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $a \cdot(x \cdot y)=(a \cdot x) \cdot y$ and $a \cdot(x+y)=a \cdot x+a \cdot y$ and $(a+b) \cdot x=a \cdot x+b \cdot x$ and $(a \cdot b) \cdot x=a \cdot(b \cdot x)$.
Let us note that there exists a non empty complex algebra structure which is strict, Abelian, add-associative, right zeroed, right complementable, commutative, associative, and complex algebra-like.

A complex algebra is an Abelian add-associative right zeroed right complementable commutative associative complex algebra-like non empty complex algebra structure.

One can prove the following proposition
(30) $\operatorname{CAlgebra}(A)$ is a complex algebra.

## References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Czesław Byliński and Andrzej Trybulec. Complex spaces. Formalized Mathematics, 2(1):151-158, 1991.
[7] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[10] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[12] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[13] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 73-83,1990$.

