Complex Valued Functions Space

Noboru Endou Gifu National College of Technology

Summary. This article is an extension of [9] to complex valued functions.

MML Identifier: CFUNCDOM.

The articles [14], [5], [16], [10], [17], [3], [4], [1], [12], [11], [15], [2], [8], [13], [9], [7], and [6] provide the notation and terminology for this paper.

1. Operation of Complex Functions

We adopt the following convention: x_1, x_2, z are sets, A is a non empty set, and f, g, h are elements of \mathbb{C}^A .

Let us consider A. The functor $+_{\mathbb{C}^A}$ yielding a binary operation on \mathbb{C}^A is defined by:

(Def. 1) For all elements f, g of \mathbb{C}^A holds $+_{\mathbb{C}^A}(f, g) = (+_{\mathbb{C}})^{\circ}(f, g)$.

Let us consider A. The functor $\cdot_{\mathbb{C}^A}$ yielding a binary operation on \mathbb{C}^A is defined as follows:

- (Def. 2) For all elements f, g of \mathbb{C}^A holds $\cdot_{\mathbb{C}^A}(f, g) = (\cdot_{\mathbb{C}})^{\circ}(f, g)$. Let us consider A. The functor $\cdot_{\mathbb{C}^A}^{\mathbb{C}}$ yielding a function from $[:\mathbb{C}, \mathbb{C}^A]$ into \mathbb{C}^A is defined by:
- (Def. 3) For every complex number z and for every element f of \mathbb{C}^A and for every element x of A holds $:_{\mathbb{C}^A}^{\mathbb{C}}(\langle z, f \rangle)(x) = z \cdot f(x).$

Let us consider A. The functor $\mathbf{0}_{\mathbb{C}^A}$ yielding an element of \mathbb{C}^A is defined by: (Def. 4) $\mathbf{0}_{\mathbb{C}^A} = A \mapsto \mathbf{0}_{\mathbb{C}}$.

Let us consider A. The functor $\mathbf{1}_{\mathbb{C}^A}$ yields an element of \mathbb{C}^A and is defined by:

(Def. 5) $\mathbf{1}_{\mathbb{C}^A} = A \longmapsto \mathbf{1}_{\mathbb{C}}.$

C 2004 University of Białystok ISSN 1426-2630 One can prove the following propositions:

- (1) $h = +_{\mathbb{C}^A}(f, g)$ iff for every element x of A holds h(x) = f(x) + g(x).
- (2) $h = \cdot_{\mathbb{C}^A}(f, g)$ iff for every element x of A holds $h(x) = f(x) \cdot g(x)$.
- (3) For every element x of A holds $\mathbf{1}_{\mathbb{C}^A}(x) = 1_{\mathbb{C}}$.
- (4) For every element x of A holds $\mathbf{0}_{\mathbb{C}^A}(x) = 0_{\mathbb{C}}$.
- (5) $\mathbf{0}_{\mathbb{C}^A} \neq \mathbf{1}_{\mathbb{C}^A}$.

In the sequel a, b denote complex numbers.

The following proposition is true

- (6) $h = \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle a, f \rangle)$ iff for every element x of A holds $h(x) = a \cdot f(x)$. In the sequel u, v, w are vectors of $\langle \mathbb{C}^A, \mathbf{0}_{\mathbb{C}^A}, +_{\mathbb{C}^A}, \cdot_{\mathbb{C}^A}^{\mathbb{C}} \rangle$. One can prove the following propositions:
- (7) $+_{\mathbb{C}^A}(f, g) = +_{\mathbb{C}^A}(g, f).$
- (8) $+_{\mathbb{C}^{A}}(f, +_{\mathbb{C}^{A}}(g, h)) = +_{\mathbb{C}^{A}}(+_{\mathbb{C}^{A}}(f, g), h).$
- (9) $\cdot_{\mathbb{C}^A}(f, g) = \cdot_{\mathbb{C}^A}(g, f).$
- (10) $\cdot_{\mathbb{C}^A}(f, \cdot_{\mathbb{C}^A}(g, h)) = \cdot_{\mathbb{C}^A}(\cdot_{\mathbb{C}^A}(f, g), h).$
- (11) $\cdot_{\mathbb{C}^A}(\mathbf{1}_{\mathbb{C}^A}, f) = f.$
- (12) $+_{\mathbb{C}^A}(\mathbf{0}_{\mathbb{C}^A}, f) = f.$
- (13) $+_{\mathbb{C}^A}(f, \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle -1_{\mathbb{C}}, f \rangle)) = \mathbf{0}_{\mathbb{C}^A}.$
- (14) $\cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle 1_{\mathbb{C}}, f \rangle) = f.$
- (15) $\overset{\mathbb{C}}{\underset{\mathbb{C}^{A}}{\subset}} (\langle a, \overset{\mathbb{C}}{\underset{\mathbb{C}^{A}}{\subset}} (\langle b, f \rangle) \rangle) = \overset{\mathbb{C}}{\underset{\mathbb{C}^{A}}{\subset}} (\langle a \cdot b, f \rangle).$
- (16) $+_{\mathbb{C}^A}(\cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle a, f \rangle), \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle b, f \rangle)) = \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle a+b, f \rangle).$
- (17) $\cdot_{\mathbb{C}^A}(f, +_{\mathbb{C}^A}(g, h)) = +_{\mathbb{C}^A}(\cdot_{\mathbb{C}^A}(f, g), \cdot_{\mathbb{C}^A}(f, h)).$
- (18) $\cdot_{\mathbb{C}^A}(\langle a, f \rangle), g) = \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle a, \cdot_{\mathbb{C}^A}(f, g) \rangle).$

2. Complex Linear Space of Complex Valued Functions

One can prove the following propositions:

- (19) There exist f, g such that
 - (i) for every z such that $z \in A$ holds if $z = x_1$, then $f(z) = 1_{\mathbb{C}}$ and if $z \neq x_1$, then $f(z) = 0_{\mathbb{C}}$, and
 - (ii) for every z such that $z \in A$ holds if $z = x_1$, then $g(z) = 0_{\mathbb{C}}$ and if $z \neq x_1$, then $g(z) = 1_{\mathbb{C}}$.
- (20) Suppose that
- (i) $x_1 \in A$,
- (ii) $x_2 \in A$,
- (iii) $x_1 \neq x_2$,
- (iv) for every z such that $z \in A$ holds if $z = x_1$, then $f(z) = 1_{\mathbb{C}}$ and if $z \neq x_1$, then $f(z) = 0_{\mathbb{C}}$, and

- (v) for every z such that $z \in A$ holds if $z = x_1$, then $g(z) = 0_{\mathbb{C}}$ and if $z \neq x_1$, then $g(z) = 1_{\mathbb{C}}$. Let given a, b. If $+_{\mathbb{C}^A}(\cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle a, f \rangle), \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle b, g \rangle)) = \mathbf{0}_{\mathbb{C}^A}$, then $a = 0_{\mathbb{C}}$ and $b = 0_{\mathbb{C}}$.
- (21) If $x_1 \in A$ and $x_2 \in A$ and $x_1 \neq x_2$, then there exist f, g such that for all a, b such that $+_{\mathbb{C}^A}(\cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle a, f \rangle), \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle b, g \rangle)) = \mathbf{0}_{\mathbb{C}^A}$ holds $a = 0_{\mathbb{C}}$ and $b = 0_{\mathbb{C}}$.
- (22) Suppose that
 - (i) $A = \{x_1, x_2\},\$
- (ii) $x_1 \neq x_2$,
- (iii) for every z such that $z \in A$ holds if $z = x_1$, then $f(z) = 1_{\mathbb{C}}$ and if $z \neq x_1$, then $f(z) = 0_{\mathbb{C}}$, and
- (iv) for every z such that $z \in A$ holds if $z = x_1$, then $g(z) = 0_{\mathbb{C}}$ and if $z \neq x_1$, then $g(z) = 1_{\mathbb{C}}$. Let given h. Then there exist a, b such that $h = +_{\mathbb{C}^A}(\cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle a, f \rangle), \cdot_{\mathbb{C}^A}^{\mathbb{C}}(\langle b, g \rangle)).$
- (23) If $A = \{x_1, x_2\}$ and $x_1 \neq x_2$, then there exist f, g such that for every h there exist a, b such that $h = +_{\mathbb{C}^A}(\mathbb{C}_A(\langle a, f \rangle), \mathbb{C}_A(\langle b, g \rangle)).$
- (24) Suppose $A = \{x_1, x_2\}$ and $x_1 \neq x_2$. Then there exist f, g such that for all a, b such that $+_{\mathbb{C}^A}(\stackrel{\mathbb{C}}{\underset{\mathbb{C}^A}}(\langle a, f \rangle), \stackrel{\mathbb{C}}{\underset{\mathbb{C}^A}}(\langle b, g \rangle)) = \mathbf{0}_{\mathbb{C}^A}$ holds $a = 0_{\mathbb{C}}$ and $b = 0_{\mathbb{C}}$ and for every h there exist a, b such that $h = +_{\mathbb{C}^A}(\stackrel{\mathbb{C}}{\underset{\mathbb{C}^A}}(\langle a, f \rangle), \stackrel{\mathbb{C}}{\underset{\mathbb{C}^A}}(\langle b, g \rangle))$.
- (25) $\langle \mathbb{C}^A, \mathbf{0}_{\mathbb{C}^A}, +_{\mathbb{C}^A}, \cdot_{\mathbb{C}^A}^{\mathbb{C}} \rangle$ is a complex linear space.

Let us consider A. The functor ComplexVectSpace(A) yields a strict complex linear space and is defined by:

(Def. 6) ComplexVectSpace(A) = $\langle \mathbb{C}^A, \mathbf{0}_{\mathbb{C}^A}, +_{\mathbb{C}^A}, \cdot_{\mathbb{C}^A}^{\mathbb{C}} \rangle$.

We now state the proposition

(26) There exists a strict complex linear space V and there exist vectors u, v of V such that for all a, b such that $a \cdot u + b \cdot v = 0_V$ holds $a = 0_{\mathbb{C}}$ and $b = 0_{\mathbb{C}}$ and for every vector w of V there exist a, b such that $w = a \cdot u + b \cdot v$. Let us consider A. The functor CRing(A) yielding a strict double loop structure is a final double loop.

ture is defined by:

(Def. 7) CRing(A) = $\langle \mathbb{C}^A, +_{\mathbb{C}^A}, \mathbf{1}_{\mathbb{C}^A}, \mathbf{0}_{\mathbb{C}^A} \rangle$.

Let us consider A. Observe that CRing(A) is non empty. We now state two propositions:

(27) Let x, y, z be elements of $\operatorname{CRing}(A)$. Then x+y = y+x and (x+y)+z = x+(y+z) and $x+0_{\operatorname{CRing}(A)} = x$ and there exists an element t of $\operatorname{CRing}(A)$ such that $x+t = 0_{\operatorname{CRing}(A)}$ and $x \cdot y = y \cdot x$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $x \cdot \mathbf{1}_{\operatorname{CRing}(A)} = x$ and $\mathbf{1}_{\operatorname{CRing}(A)} \cdot x = x$ and $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$.

(28) $\operatorname{CRing}(A)$ is a commutative ring.

We introduce complex algebra structures which are extensions of double loop structure and CLS structure and are systems

 \langle a carrier, a multiplication, an addition, an external multiplication, a unity, a zero $\rangle,$

where the carrier is a set, the multiplication and the addition are binary operations on the carrier, the external multiplication is a function from $[\mathbb{C}, \text{ the carrier}]$ into the carrier, and the unity and the zero are elements of the carrier.

Let us mention that there exists a complex algebra structure which is non empty.

Let us consider A. The functor CAlgebra(A) yielding a strict complex algebra structure is defined as follows:

(Def. 8) CAlgebra(A) = $\langle \mathbb{C}^A, \cdot_{\mathbb{C}^A}, +_{\mathbb{C}^A}, \cdot_{\mathbb{C}^A}^{\mathbb{C}}, \mathbf{1}_{\mathbb{C}^A}, \mathbf{0}_{\mathbb{C}^A} \rangle$.

Let us consider A. Observe that CAlgebra(A) is non empty. Next we state the proposition

(29) Let x, y, z be elements of CAlgebra(A) and given a, b. Then x+y = y+xand (x+y)+z = x + (y+z) and $x + 0_{\text{CAlgebra}(A)} = x$ and there exists an element t of CAlgebra(A) such that $x + t = 0_{\text{CAlgebra}(A)}$ and $x \cdot y = y \cdot x$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $x \cdot \mathbf{1}_{\text{CAlgebra}(A)} = x$ and $x \cdot (y+z) = x \cdot y + x \cdot z$ and $a \cdot (x \cdot y) = (a \cdot x) \cdot y$ and $a \cdot (x+y) = a \cdot x + a \cdot y$ and $(a+b) \cdot x = a \cdot x + b \cdot x$ and $(a \cdot b) \cdot x = a \cdot (b \cdot x)$.

Let I_1 be a non empty complex algebra structure. We say that I_1 is complex algebra-like if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x, y, z be elements of I_1 and given a, b. Then $x \cdot \mathbf{1}_{(I_1)} = x$ and $x \cdot (y+z) = x \cdot y + x \cdot z$ and $a \cdot (x \cdot y) = (a \cdot x) \cdot y$ and $a \cdot (x+y) = a \cdot x + a \cdot y$ and $(a+b) \cdot x = a \cdot x + b \cdot x$ and $(a \cdot b) \cdot x = a \cdot (b \cdot x)$.

Let us note that there exists a non empty complex algebra structure which is strict, Abelian, add-associative, right zeroed, right complementable, commutative, associative, and complex algebra-like.

A complex algebra is an Abelian add-associative right zeroed right complementable commutative associative complex algebra-like non empty complex algebra structure.

One can prove the following proposition

(30) CAlgebra(A) is a complex algebra.

References

- [1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.

234

- [5] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [6] Czesław Byliński and Andrzej Trybulec. Complex spaces. Formalized Mathematics, 2(1):151–158, 1991.
- [7] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.
- [10] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
- 1(2):329–334, 1990. [12] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*,
- [12] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [13] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
- [15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
 [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received March 18, 2004