The Taylor Expansions

Yasunari Shidama Shinshu University Nagano

Summary. In this article, some classic theorems of calculus are described. The Taylor expansions and the logarithmic differentiation, etc. are included here.

 ${\rm MML} \ {\rm Identifier:} \ {\tt TAYLOR_1}.$

The terminology and notation used in this paper have been introduced in the following articles: [22], [24], [25], [4], [6], [9], [5], [11], [20], [18], [3], [8], [2], [21], [7], [1], [23], [14], [12], [10], [17], [19], [13], [15], [16], and [26].

1. The Logarithmic Differentiation Method

For simplicity, we use the following convention: n denotes a natural number, i denotes an integer, p, x, x_0 , y denote real numbers, q denotes a rational number, and f denotes a partial function from \mathbb{R} to \mathbb{R} .

Let q be an integer. The functor $\frac{q}{\mathbb{Z}}$ yields a function from \mathbb{R} into \mathbb{R} and is defined as follows:

(Def. 1) For every real number x holds $\binom{q}{\mathbb{Z}}(x) = x_{\mathbb{Z}}^{q}$.

Next we state a number of propositions:

- (1) For all natural numbers m, n holds $x_{\mathbb{Z}}^{n+m} = (x_{\mathbb{Z}}^n) \cdot x_{\mathbb{Z}}^m$.
- (2) $_{\mathbb{Z}}^{n}$ is differentiable in x and $\binom{n}{\mathbb{Z}}'(x) = n \cdot x_{\mathbb{Z}}^{n-1}$.
- (3) If f is differentiable in x_0 , then $\binom{n}{\mathbb{Z}} \cdot f$ is differentiable in x_0 and $\binom{n}{\mathbb{Z}} \cdot f'(x_0) = n \cdot f(x_0)_{\mathbb{Z}}^{n-1} \cdot f'(x_0)$.
- (4) $\exp(-x) = \frac{1}{\exp x}$.
- (5) $(\exp x)_{\mathbb{R}}^{\frac{1}{i}} = \exp(\frac{x}{i}).$

(6) For all integers m, n holds $(\exp x)_{\mathbb{R}}^{\frac{m}{n}} = \exp(\frac{m}{n} \cdot x).$

C 2004 University of Białystok ISSN 1426-2630

YASUNARI SHIDAMA

- (7) $(\exp x)^q_{\mathbb{O}} = \exp(q \cdot x).$
- (8) $(\exp x)_{\mathbb{R}}^p = \exp(p \cdot x).$
- (9) $(\exp 1)^x_{\mathbb{R}} = \exp x$ and $(\exp 1)^x = \exp x$ and $e^x = \exp x$ and $e^x_{\mathbb{R}} = \exp x$.
- (10) $\exp(1)_{\mathbb{R}}^x = \exp(x)$ and $\exp(1)^x = \exp(x)$ and $e^x = \exp(x)$ and $e^x_{\mathbb{R}} = \exp(x)$.
- (11) $e \ge 2.$
- (12) $\log_e \exp x = x.$
- (13) $\log_e \exp(x) = x.$
- (14) If y > 0, then $\exp \log_e y = y$.
- (15) If y > 0, then $\exp(\log_e y) = y$.
- (16) exp is one-to-one and exp is differentiable on \mathbb{R} and exp is differentiable on $\Omega_{\mathbb{R}}$ and for every real number x holds $\exp'(x) = \exp(x)$ and for every real number x holds $0 < \exp'(x)$ and dom $\exp = \mathbb{R}$ and dom $\exp = \Omega_{\mathbb{R}}$ and $\operatorname{rng} \exp =]0, +\infty[$.

Let us note that exp is one-to-one.

We now state the proposition

(17) \exp^{-1} is differentiable on dom (\exp^{-1}) and for every real number x such that $x \in \operatorname{dom}(\exp^{-1})$ holds $(\exp^{-1})'(x) = \frac{1}{x}$.

Let us mention that $]0, +\infty[$ is non empty.

Let a be a real number. The functor $\log_{-}(a)$ yields a partial function from \mathbb{R} to \mathbb{R} and is defined by:

(Def. 2) dom $\log_{-}(a) =]0, +\infty[$ and for every element d of $]0, +\infty[$ holds $(\log_{-}(a))(d) = \log_{a} d.$

One can prove the following three propositions:

- (18) $\log_{-}(e) = \exp^{-1}$ and $\log_{-}(e)$ is one-to-one and $\dim \log_{-}(e) =]0, +\infty[$ and $\operatorname{rng} \log_{-}(e) = \mathbb{R}$ and $\log_{-}(e)$ is differentiable on $]0, +\infty[$ and for every real number x such that x > 0 holds $\log_{-}(e)$ is differentiable in x and for every element x of $]0, +\infty[$ holds $(\log_{-}(e))'(x) = \frac{1}{x}$ and for every element x of $]0, +\infty[$ holds $0 < (\log_{-}(e))'(x)$.
- (19) If f is differentiable in x_0 , then $\exp \cdot f$ is differentiable in x_0 and $(\exp \cdot f)'(x_0) = \exp(f(x_0)) \cdot f'(x_0)$.
- (20) If f is differentiable in x_0 and $f(x_0) > 0$, then $\log_{-}(e) \cdot f$ is differentiable in x_0 and $(\log_{-}(e) \cdot f)'(x_0) = \frac{f'(x_0)}{f(x_0)}$.

Let p be a real number. The functor $p^p_{\mathbb{R}}$ yielding a partial function from \mathbb{R} to \mathbb{R} is defined as follows:

- (Def. 3) dom $\binom{p}{\mathbb{R}} =]0, +\infty[$ and for every element d of $]0, +\infty[$ holds $\binom{p}{\mathbb{R}}(d) = d_{\mathbb{R}}^{p}$. We now state two propositions:
 - (21) If x > 0, then ${\mathbb{R}}^p$ is differentiable in x and ${\binom{p}{\mathbb{R}}}'(x) = p \cdot x_{\mathbb{R}}^{p-1}$.

196

(22) If f is differentiable in x_0 and $f(x_0) > 0$, then $\binom{p}{\mathbb{R}} \cdot f$ is differentiable in x_0 and $(\binom{p}{\mathbb{R}} \cdot f)'(x_0) = p \cdot f(x_0)_{\mathbb{R}}^{p-1} \cdot f'(x_0)$.

2. The Taylor Expansions

Let f be a partial function from \mathbb{R} to \mathbb{R} and let Z be a subset of \mathbb{R} . The functor f'(Z) yields a sequence of partial functions from \mathbb{R} into \mathbb{R} and is defined by:

(Def. 4) $f'(Z)(0) = f \upharpoonright Z$ and for every natural number *i* holds $f'(Z)(i+1) = f'(Z)(i)_{\upharpoonright Z}^{\prime}$.

Let f be a partial function from \mathbb{R} to \mathbb{R} , let n be a natural number, and let Z be a subset of \mathbb{R} . We say that f is differentiable n times on Z if and only if:

(Def. 5) For every natural number i such that $i \leq n-1$ holds f'(Z)(i) is differentiable on Z.

The following proposition is true

(23) Let f be a partial function from \mathbb{R} to \mathbb{R} , Z be a subset of \mathbb{R} , and n be a natural number. Suppose f is differentiable n times on Z. Let m be a natural number. If $m \leq n$, then f is differentiable m times on Z.

Let f be a partial function from \mathbb{R} to \mathbb{R} , let Z be a subset of \mathbb{R} , and let a, b be real numbers. The functor Taylor(f, Z, a, b) yields a sequence of real numbers and is defined as follows:

- (Def. 6) For every natural number n holds $(\text{Taylor}(f, Z, a, b))(n) = \frac{f'(Z)(n)(a) \cdot (b-a)^n}{n!}$. The following propositions are true:
 - (24) Let f be a partial function from \mathbb{R} to \mathbb{R} , Z be a subset of \mathbb{R} , and n be a natural number. Suppose f is differentiable n times on Z. Let a, b be real numbers. If a < b and $[a, b] \subseteq Z$, then f'(Z)(n) []a, b[= f'([a, b])(n).
 - (25) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , and *Z* be a subset of \mathbb{R} . Suppose *f* is differentiable *n* times on *Z*. Let *a*, *b* be real numbers. Suppose a < b and $[a, b] \subseteq Z$ and f'(Z)(n) is continuous on [a, b] and *f* is differentiable n + 1 times on]a, b[. Let *l* be a real number and *g* be a partial function from \mathbb{R} to \mathbb{R} . Suppose dom $g = \mathbb{R}$ and for every real number *x* holds $g(x) = f(b) (\sum_{\alpha=0}^{\kappa} (\text{Taylor}(f, Z, x, b))(\alpha))_{\kappa \in \mathbb{N}}(n) \frac{l \cdot (b-x)^{n+1}}{(n+1)!}$ and $f(b) (\sum_{\alpha=0}^{\kappa} (\text{Taylor}(f, Z, a, b))(\alpha))_{\kappa \in \mathbb{N}}(n) \frac{l \cdot (b-a)^{n+1}}{(n+1)!} = 0$. Then
 - (i) g is differentiable on]a, b[,
 - (ii) g(a) = 0,
 - (iii) g(b) = 0,
 - (iv) g is continuous on [a, b], and
 - (v) for every real number x such that $x \in]a, b[$ holds $g'(x) = -\frac{f'(]a, b[)(n+1)(x) \cdot (b-x)^n}{n!} + \frac{l \cdot (b-x)^n}{n!}.$

YASUNARI SHIDAMA

- (26) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , *Z* be a subset of \mathbb{R} , and *b*, *l* be real numbers. Then there exists a function *g* from \mathbb{R} into \mathbb{R} such that for every real number *x* holds $g(x) = f(b) (\sum_{\alpha=0}^{\kappa} (\text{Taylor}(f, Z, x, b))(\alpha))_{\kappa \in \mathbb{N}}(n) \frac{l \cdot (b-x)^{n+1}}{(n+1)!}$.
- (27) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , and *Z* be a subset of \mathbb{R} . Suppose *f* is differentiable *n* times on *Z*. Let *a*, *b* be real numbers. Suppose a < b and $[a, b] \subseteq Z$ and f'(Z)(n) is continuous on [a, b] and *f* is differentiable n+1 times on]a, b[. Then there exists a real number *c* such that $c \in]a, b[$ and $f(b) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Taylor}(f, Z, a, b))(\alpha))_{\kappa \in \mathbb{N}}(n) + \frac{f'(]a, b])(n+1)(c) \cdot (b-a)^{n+1}}{(n+1)!}$.
- (28) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , and *Z* be a subset of \mathbb{R} . Suppose *f* is differentiable *n* times on *Z*. Let *a*, *b* be real numbers. Suppose a < b and $[a,b] \subseteq Z$ and f'(Z)(n) is continuous on [a,b] and *f* is differentiable n+1 times on]a,b[. Let *l* be a real number and *g* be a partial function from \mathbb{R} to \mathbb{R} . Suppose dom $g = \mathbb{R}$ and for every real number *x* holds $g(x) = f(a) (\sum_{\alpha=0}^{\kappa} (\operatorname{Taylor}(f, Z, x, a))(\alpha))_{\kappa \in \mathbb{N}}(n) \frac{l\cdot(a-x)^{n+1}}{(n+1)!}$ and $f(a) (\sum_{\alpha=0}^{\kappa} (\operatorname{Taylor}(f, Z, b, a))(\alpha))_{\kappa \in \mathbb{N}}(n) \frac{l\cdot(a-b)^{n+1}}{(n+1)!} = 0$. Then
 - (i) g is differentiable on]a, b[,
 - (ii) g(b) = 0,
- (iii) g(a) = 0,
- (iv) g is continuous on [a, b], and
- (v) for every real number x such that $x \in]a, b[$ holds $g'(x) = -\frac{f'(]a, b[)(n+1)(x) \cdot (a-x)^n}{n!} + \frac{l \cdot (a-x)^n}{n!}.$
- (29) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , and *Z* be a subset of \mathbb{R} . Suppose *f* is differentiable *n* times on *Z*. Let *a*, *b* be real numbers. Suppose a < b and $[a, b] \subseteq Z$ and f'(Z)(n) is continuous on [a, b] and *f* is differentiable n+1 times on [a, b]. Then there exists a real number *c* such that $c \in [a, b[$ and $f(a) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Taylor}(f, Z, b, a))(\alpha))_{\kappa \in \mathbb{N}}(n) + \frac{f'([a,b])(n+1)(c)\cdot(a-b)^{n+1}}{(n+1)!}$.
- (30) Let f be a partial function from \mathbb{R} to \mathbb{R} , Z be a subset of \mathbb{R} , and Z_1 be an open subset of \mathbb{R} . Suppose $Z_1 \subseteq Z$. Let n be a natural number. If f is differentiable n times on Z, then $f'(Z)(n) \upharpoonright Z_1 = f'(Z_1)(n)$.
- (31) Let f be a partial function from \mathbb{R} to \mathbb{R} , Z be a subset of \mathbb{R} , and Z_1 be an open subset of \mathbb{R} . Suppose $Z_1 \subseteq Z$. Let n be a natural number. Suppose f is differentiable n + 1 times on Z. Then f is differentiable n + 1 times on Z_1 .
- (32) Let f be a partial function from \mathbb{R} to \mathbb{R} , Z be a subset of \mathbb{R} , and x be a real number. If $x \in Z$, then for every natural number n holds $f(x) = (\sum_{\alpha=0}^{\kappa} (\text{Taylor}(f, Z, x, x))(\alpha))_{\kappa \in \mathbb{N}}(n).$

198

(33) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , and x_0 , *r* be real numbers. Suppose 0 < r and *f* is differentiable n+1 times on $]x_0 - r, x_0 + r[$. Let *x* be a real number. Suppose $x \in$ $]x_0 - r, x_0 + r[$. Then there exists a real number *s* such that 0 < s and s < 1 and $f(x) = (\sum_{\alpha=0}^{\kappa} (\text{Taylor}(f,]x_0 - r, x_0 + r[, x_0, x))(\alpha))_{\kappa \in \mathbb{N}}(n) + \frac{f'(]x_0 - r, x_0 + r[)(n+1)(x_0 + s \cdot (x - x_0)) \cdot (x - x_0)^{n+1}}{(n+1)!}$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281– 290, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
 [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
- 1(1):35-40, 1990.
 [8] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
- [9] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [11] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [12] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887–890, 1990.
- [13] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17–21, 1992.
- [14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [15] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- [16] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [17] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449– 452, 1991.
- [18] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [19] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [21] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

YASUNARI SHIDAMA

[26] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received February 24, 2004

200