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Summary. We introduce the arithmetic addition and multiplication in
the set of bounded real sequences and also introduce the norm. This set has the

structure of the Banach space.

MML Identifier: RSSPACE4.

The articles [23], [6], [27], [29], [28], [15], [21], [3], [1], [2], [20], [24], [9], [4], [5],

[7], [26], [22], [16], [17], [14], [11], [12], [10], [25], [13], [8], [19], and [18] provide

the notation and terminology for this paper.

1. The Banach Space of Bounded Real Sequences

The subset the set of bounded real sequences of the linear space of real

sequences is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ the set of bounded real sequences if and only

if x ∈ the set of real sequences and idseq(x) is bounded.

Let us note that the set of bounded real sequences is non empty and the set

of bounded real sequences is linearly closed.

One can prove the following proposition

(1) 〈the set of bounded real sequences,Zero (the set of bounded real

sequences, the linear space of real sequences),Add (the set of bounded

real sequences, the linear space of real sequences),Mult (the set of boun-

ded real sequences, the linear space of real sequences)〉 is a subspace of the

linear space of real sequences.

One can verify that 〈the set of bounded real sequences,Zero (the set of boun-

ded real sequences, the linear space of real sequences),Add (the set of bounded
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real sequences, the linear space of real sequences),Mult (the set of bounded real

sequences, the linear space of real sequences)〉 is Abelian, add-associative, right

zeroed, right complementable, and real linear space-like.

The function linfty-norm from the set of bounded real sequences into R is

defined by:

(Def. 2) For every set x such that x ∈ the set of bounded real sequences holds

linfty-norm(x) = sup rng|idseq(x)|.

The following proposition is true

(2) Let r1 be a sequence of real numbers. Then r1 is bounded and

sup rng|r1| = 0 if and only if for every natural number n holds r1(n) = 0.

Let us mention that 〈the set of bounded real sequences,Zero (the set of

bounded real sequences, the linear space of real sequences),Add (the set of bo-

unded real sequences, the linear space of real sequences),Mult (the set of boun-

ded real sequences, the linear space of real sequences), linfty-norm〉 is Abelian,

add-associative, right zeroed, right complementable, and real linear space-like.

The non empty normed structure linfty-Space is defined by the condition

(Def. 3).

(Def. 3) linfty-Space = 〈the set of bounded real sequences,Zero (the set of bo-

unded real sequences, the linear space of real sequences),Add (the set of

bounded real sequences, the linear space of real sequences),Mult (the set

of bounded real sequences, the linear space of real sequences), linfty-norm〉.

We now state two propositions:

(3) The carrier of linfty-Space = the set of bounded real sequences and for

every set x holds x is a vector of linfty-Space iff x is a sequence of real

numbers and idseq(x) is bounded and 0linfty-Space = Zeroseq and for every

vector u of linfty-Space holds u = idseq(u) and for all vectors u, v of

linfty-Space holds u + v = idseq(u) + idseq(v) and for every real number r

and for every vector u of linfty-Space holds r ·u = r idseq(u) and for every

vector u of linfty-Space holds −u = −idseq(u) and idseq(−u) = −idseq(u)

and for all vectors u, v of linfty-Space holds u−v = idseq(u)− idseq(v) and

for every vector v of linfty-Space holds idseq(v) is bounded and for every

vector v of linfty-Space holds ‖v‖ = sup rng|idseq(v)|.

(4) Let x, y be points of linfty-Space and a be a real number. Then ‖x‖ = 0 iff

x = 0linfty-Space and 0 ¬ ‖x‖ and ‖x+y‖ ¬ ‖x‖+‖y‖ and ‖a·x‖ = |a|·‖x‖.

Let us observe that linfty-Space is real normed space-like, real linear space-

like, Abelian, add-associative, right zeroed, and right complementable.

Next we state the proposition

(5) For every sequence v1 of linfty-Space such that v1 is Cauchy sequence

by norm holds v1 is convergent.
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2. The Banach Space of Bounded Functions

Let X be a non empty set, let Y be a real normed space, and let I1 be a

function from X into the carrier of Y . We say that I1 is bounded if and only if:

(Def. 4) There exists a real number K such that 0 ¬ K and for every element x

of X holds ‖I1(x)‖ ¬ K.

The following proposition is true

(6) Let X be a non empty set, Y be a real normed space, and f be a function

from X into the carrier of Y . If for every element x of X holds f(x) = 0Y ,

then f is bounded.

Let X be a non empty set and let Y be a real normed space. Note that there

exists a function from X into the carrier of Y which is bounded.

Let X be a non empty set and let Y be a real normed space. The functor

BdFuncs(X,Y ) yields a subset of RealVectSpace(X,Y ) and is defined by:

(Def. 5) For every set x holds x ∈ BdFuncs(X,Y ) iff x is a bounded function

from X into the carrier of Y .

Let X be a non empty set and let Y be a real normed space. Observe that

BdFuncs(X,Y ) is non empty.

The following propositions are true:

(7) For every non empty set X and for every real normed space Y holds

BdFuncs(X, Y ) is linearly closed.

(8) For every non empty set X and for every real normed space Y holds

〈BdFuncs(X, Y ),Zero (BdFuncs(X,Y ),RealVectSpace(X, Y )),

Add (BdFuncs(X,Y ),RealVectSpace(X, Y )),Mult (BdFuncs(X, Y ),

RealVectSpace(X, Y ))〉 is a subspace of RealVectSpace(X,Y ).

Let X be a non empty set and let Y be a real normed space. One can verify

that 〈BdFuncs(X, Y ),Zero (BdFuncs(X, Y ),RealVectSpace(X,Y )),

Add (BdFuncs(X,Y ),RealVectSpace(X, Y )),Mult (BdFuncs(X,Y ),

RealVectSpace(X,Y ))〉 is Abelian, add-associative, right zeroed, right com-

plementable, and real linear space-like.

One can prove the following proposition

(9) For every non empty set X and for every real normed space Y holds

〈BdFuncs(X, Y ),Zero (BdFuncs(X,Y ),RealVectSpace(X, Y )),

Add (BdFuncs(X,Y ),RealVectSpace(X, Y )),Mult (BdFuncs(X, Y ),

RealVectSpace(X, Y ))〉 is a real linear space.

Let X be a non empty set and let Y be a real normed space. The set of

bounded real sequences from X into Y yields a real linear space and is defined

as follows:

(Def. 6) The set of bounded real sequences from X into Y = 〈BdFuncs(X,Y ),

Zero (BdFuncs(X,Y ),RealVectSpace(X, Y )),Add (BdFuncs(X, Y ),
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RealVectSpace(X, Y )),Mult (BdFuncs(X,Y ),RealVectSpace(X, Y ))〉.

Let X be a non empty set and let Y be a real normed space. Observe that

the set of bounded real sequences from X into Y is strict.

One can prove the following three propositions:

(10) Let X be a non empty set, Y be a real normed space, f , g, h be vectors of

the set of bounded real sequences from X into Y , and f ′, g′, h′ be bounded

functions from X into the carrier of Y . Suppose f ′ = f and g′ = g and

h′ = h. Then h = f + g if and only if for every element x of X holds

h′(x) = f ′(x) + g′(x).

(11) Let X be a non empty set, Y be a real normed space, f , h be vectors of

the set of bounded real sequences from X into Y , and f ′, h′ be bounded

functions from X into the carrier of Y . Suppose f ′ = f and h′ = h. Let a

be a real number. Then h = a · f if and only if for every element x of X

holds h′(x) = a · f ′(x).

(12) Let X be a non empty set and Y be a real normed space. Then

0the set of bounded real sequences from X into Y = X 7−→ 0Y .

Let X be a non empty set, let Y be a real normed space, and let f be a set.

Let us assume that f ∈ BdFuncs(X, Y ). The functor modetrans(f,X, Y ) yields

a bounded function from X into the carrier of Y and is defined as follows:

(Def. 7) modetrans(f, X, Y ) = f.

Let X be a non empty set, let Y be a real normed space, and let u be a

function from X into the carrier of Y . The functor PreNorms(u) yielding a non

empty subset of R is defined as follows:

(Def. 8) PreNorms(u) = {‖u(t)‖ : t ranges over elements of X}.

Next we state three propositions:

(13) Let X be a non empty set, Y be a real normed space, and g be a bounded

function from X into the carrier of Y . Then PreNorms(g) is non empty

and upper bounded.

(14) Let X be a non empty set, Y be a real normed space, and g be a function

from X into the carrier of Y . Then g is bounded if and only if PreNorms(g)

is upper bounded.

(15) Let X be a non empty set and Y be a real normed space. Then there

exists a function N1 from BdFuncs(X,Y ) into R such that for every set f

if f ∈ BdFuncs(X,Y ), then N1(f) = supPreNorms(modetrans(f,X, Y )).

Let X be a non empty set and let Y be a real normed space. The functor

BdFuncsNorm(X, Y ) yielding a function from BdFuncs(X, Y ) into R is defined

by:

(Def. 9) For every set x such that x ∈ BdFuncs(X, Y ) holds

BdFuncsNorm(X,Y )(x) = supPreNorms(modetrans(x,X, Y )).

One can prove the following two propositions:
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(16) LetX be a non empty set, Y be a real normed space, and f be a bounded

function from X into the carrier of Y . Then modetrans(f,X, Y ) = f.

(17) LetX be a non empty set, Y be a real normed space, and f be a bounded

function from X into the carrier of Y . Then BdFuncsNorm(X, Y )(f) =

supPreNorms(f).

Let X be a non empty set and let Y be a real normed space. The real

normed space of bounded functions from X into Y yielding a non empty normed

structure is defined as follows:

(Def. 10) The real normed space of bounded functions from X into Y =

〈BdFuncs(X, Y ),Zero (BdFuncs(X,Y ),RealVectSpace(X, Y )),

Add (BdFuncs(X,Y ),RealVectSpace(X, Y )),Mult (BdFuncs(X, Y ),

RealVectSpace(X, Y )),BdFuncsNorm(X, Y )〉.

We now state several propositions:

(18) Let X be a non empty set and Y be a real normed space. Then X 7−→

0Y = 0the real normed space of bounded functions from X into Y .

(19) Let X be a non empty set, Y be a real normed space, f be a point of

the real normed space of bounded functions from X into Y , and g be a

bounded function from X into the carrier of Y . If g = f, then for every

element t of X holds ‖g(t)‖ ¬ ‖f‖.

(20) Let X be a non empty set, Y be a real normed space, and f be a point of

the real normed space of bounded functions from X into Y . Then 0 ¬ ‖f‖.

(21) Let X be a non empty set, Y be a real normed space, and f be a point

of the real normed space of bounded functions from X into Y . Suppose

f = 0the real normed space of bounded functions from X into Y . Then 0 = ‖f‖.

(22) Let X be a non empty set, Y be a real normed space, f , g, h be points

of the real normed space of bounded functions from X into Y , and f ′, g′,

h′ be bounded functions from X into the carrier of Y . Suppose f ′ = f and

g′ = g and h′ = h. Then h = f + g if and only if for every element x of X

holds h′(x) = f ′(x) + g′(x).

(23) Let X be a non empty set, Y be a real normed space, f , h be points

of the real normed space of bounded functions from X into Y , and f ′, h′

be bounded functions from X into the carrier of Y . Suppose f ′ = f and

h′ = h. Let a be a real number. Then h = a · f if and only if for every

element x of X holds h′(x) = a · f ′(x).

(24) Let X be a non empty set, Y be a real normed space, f , g be points of

the real normed space of bounded functions from X into Y , and a be a

real number. Then

(i) ‖f‖ = 0 iff f = 0the real normed space of bounded functions from X into Y ,

(ii) ‖a · f‖ = |a| · ‖f‖, and

(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.
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(25) Let X be a non empty set and Y be a real normed space. Then the

real normed space of bounded functions from X into Y is real normed

space-like.

(26) Let X be a non empty set and Y be a real normed space. Then the real

normed space of bounded functions from X into Y is a real normed space.

Let X be a non empty set and let Y be a real normed space. Observe

that the real normed space of bounded functions from X into Y is real normed

space-like, real linear space-like, Abelian, add-associative, right zeroed, and right

complementable.

We now state three propositions:

(27) Let X be a non empty set, Y be a real normed space, f , g, h be points

of the real normed space of bounded functions from X into Y , and f ′, g′,

h′ be bounded functions from X into the carrier of Y . Suppose f ′ = f and

g′ = g and h′ = h. Then h = f − g if and only if for every element x of X

holds h′(x) = f ′(x)− g′(x).

(28) Let X be a non empty set and Y be a real normed space. Suppose Y

is complete. Let s1 be a sequence of the real normed space of bounded

functions from X into Y . If s1 is Cauchy sequence by norm, then s1 is

convergent.

(29) Let X be a non empty set and Y be a real Banach space. Then the real

normed space of bounded functions from X into Y is a real Banach space.

Let X be a non empty set and let Y be a real Banach space. One can verify

that the real normed space of bounded functions from X into Y is complete.
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