Recursive Definitions. Part II ${ }^{1}$

Artur Korniłowicz
University of Białystok

MML Identifier: RECDEF_2.

The papers $[7],[4],[9],[8],[5],[6],[1],[10],[2],[11]$, and [3] provide the terminology and notation for this paper.

In this paper $a, b, c, d, e, z, A, B, C, D, E$ are sets.
Let x be a set. Let us assume that there exist sets x_{1}, x_{2}, x_{3} such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$. The functor $x_{1,3}$ is defined as follows:
(Def. 1) For all sets y_{1}, y_{2}, y_{3} such that $x=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ holds $x_{1,3}=y_{1}$.
The functor $x_{2,3}$ is defined by:
(Def. 2) For all sets y_{1}, y_{2}, y_{3} such that $x=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ holds $x_{2,3}=y_{2}$.
The functor $x_{3,3}$ is defined by:
(Def. 3) For all sets y_{1}, y_{2}, y_{3} such that $x=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ holds $x_{3,3}=y_{3}$.
The following propositions are true:
(1) If there exist a, b, c such that $z=\langle a, b, c\rangle$, then $z=\left\langle z_{\mathbf{1}, 3}, z_{\mathbf{2}, 3}, z_{\mathbf{3}, 3}\right\rangle$.
(2) If $z \in\left[: A, B, C:\right.$, then $z_{\mathbf{1}, 3} \in A$ and $z_{\mathbf{2}, 3} \in B$ and $z_{\mathbf{3}, 3} \in C$.
(3) If $z \in: A, B, C:$, then $z=\left\langle z_{\mathbf{1}, 3}, z_{\mathbf{2}, 3}, z_{\mathbf{3}, 3}\right\rangle$.

Let x be a set. Let us assume that there exist sets $x_{1}, x_{2}, x_{3}, x_{4}$ such that $x=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$. The functor $x_{1,4}$ is defined by:
(Def. 4) For all sets $y_{1}, y_{2}, y_{3}, y_{4}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$ holds $x_{1,4}=y_{1}$. The functor $x_{2,4}$ is defined by:
(Def. 5) For all sets $y_{1}, y_{2}, y_{3}, y_{4}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$ holds $x_{\mathbf{2}, 4}=y_{2}$.
The functor $x_{3,4}$ is defined as follows:
(Def. 6) For all sets $y_{1}, y_{2}, y_{3}, y_{4}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$ holds $x_{\mathbf{3}, 4}=y_{3}$.
The functor $x_{4,4}$ is defined as follows:

[^0](Def. 7) For all sets $y_{1}, y_{2}, y_{3}, y_{4}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$ holds $x_{\mathbf{4}, 4}=y_{4}$. Next we state three propositions:
(4) If there exist a, b, c, d such that $z=\langle a, b, c, d\rangle$, then $z=$ $\left\langle z_{1,4}, z_{2,4}, z_{3,4}, z_{4,4}\right\rangle$.
(5) If $z \in[: A, B, C, D:]$, then $z_{\mathbf{1}, 4} \in A$ and $z_{\mathbf{2}, 4} \in B$ and $z_{\mathbf{3}, 4} \in C$ and $z_{4,4} \in D$.
(6) If $z \in: A, B, C, D:$, then $z=\left\langle z_{\mathbf{1}, 4}, z_{\mathbf{2}, 4}, z_{\mathbf{3}, 4}, z_{\mathbf{4}, 4}\right\rangle$.

Let x be a set. Let us assume that there exist sets $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ such that $x=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\rangle$. The functor $x_{1,5}$ is defined by:
(Def. 8) For all sets $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\rangle$ holds $x_{1,5}=$ y_{1}.
The functor $x_{2,5}$ is defined by:
(Def. 9) For all sets $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\rangle$ holds $x_{\mathbf{2}, 5}=$ y_{2}.
The functor $x_{3,5}$ is defined as follows:
(Def. 10) For all sets $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\rangle$ holds $x_{\mathbf{3}, 5}=$ y_{3}.
The functor $x_{4,5}$ is defined as follows:
(Def. 11) For all sets $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\rangle$ holds $x_{4,5}=$ y_{4}.
The functor $x_{5,5}$ is defined by:
(Def. 12) For all sets $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ such that $x=\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\rangle$ holds $x_{\mathbf{5 , 5}}=$ y_{5}.
The following propositions are true:
(7) If there exist a, b, c, d, e such that $z=\langle a, b, c, d, e\rangle$, then $z=$ $\left\langle z_{\mathbf{1 , 5}}, z_{\mathbf{2}, 5}, z_{\mathbf{3}, 5}, z_{\mathbf{4}, 5}, z_{\mathbf{5}, 5}\right\rangle$.
(8) If $z \in[: A, B, C, D, E:]$, then $z_{1,5} \in A$ and $z_{2,5} \in B$ and $z_{\mathbf{3}, 5} \in C$ and $z_{\mathbf{4}, 5} \in D$ and $z_{5,5} \in E$.
(9) If $z \in: A, B, C, D, E:]$, then $z=\left\langle z_{\mathbf{1}, 5}, z_{\mathbf{2}, 5}, z_{\mathbf{3}, 5}, z_{\mathbf{4}, 5}, z_{\mathbf{5}, 5}\right\rangle$.

In this article we present several logical schemes. The scheme ExFunc3Cond deals with a set \mathcal{A}, three unary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding sets, and three unary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and states that:

There exists a function f such that $\operatorname{dom} f=\mathcal{A}$ and for every set c such that $c \in \mathcal{A}$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ and if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$
provided the parameters meet the following conditions:

- For every set c such that $c \in \mathcal{A}$ holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ and if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ and if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$, and
- For every set c such that $c \in \mathcal{A}$ holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$.

The scheme ExFunc4Cond deals with a set \mathcal{A}, four unary functors $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and \mathcal{I} yielding sets, and four unary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}$, and states that:

There exists a function f such that
(i) $\operatorname{dom} f=\mathcal{A}$, and
(ii) for every set c such that $c \in \mathcal{A}$ holds if $\mathcal{P}[c]$, then $f(c)=$ $\mathcal{F}(c)$ and if $\mathcal{Q}[c]$, then $f(c)=\mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$ and if $\mathcal{S}[c]$, then $f(c)=\mathcal{I}(c)$
provided the following conditions are satisfied:

- Let c be a set such that $c \in \mathcal{A}$. Then
(i) if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$,
(ii) if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$,
(iii) if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$,
(iv) if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$,
(v) if $\mathcal{Q}[c]$, then not $\mathcal{S}[c]$, and
(vi) if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$, and
- For every set c such that $c \in \mathcal{A}$ holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$.

The scheme DoubleChoiceRec deals with non empty sets \mathcal{A}, \mathcal{B}, an element \mathcal{C} of \mathcal{A}, an element \mathcal{D} of \mathcal{B}, and a 5 -ary predicate \mathcal{P}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} and there exists a function g from \mathbb{N} into \mathcal{B} such that $f(0)=\mathcal{C}$ and $g(0)=\mathcal{D}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), g(n), f(n+1), g(n+1)]$ provided the parameters satisfy the following condition:

- Let n be an element of \mathbb{N}, x be an element of \mathcal{A}, and y be an element of \mathcal{B}. Then there exists an element x_{1} of \mathcal{A} and there exists an element y_{1} of \mathcal{B} such that $\mathcal{P}\left[n, x, y, x_{1}, y_{1}\right]$.
The scheme LambdaRec2Ex deals with sets \mathcal{A}, \mathcal{B} and a ternary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and $f(1)=\mathcal{B}$ and for every natural number n holds $f(n+2)=$ $\mathcal{F}(n, f(n), f(n+1))$
for all values of the parameters.
The scheme LambdaRec2ExD deals with a non empty set \mathcal{A}, elements \mathcal{B}, \mathcal{C} of \mathcal{A}, and a ternary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and $f(1)=\mathcal{C}$ and for every natural number n holds $f(n+2)=$ $\mathcal{F}(n, f(n), f(n+1))$
for all values of the parameters.
The scheme LambdaRec2Un deals with sets \mathcal{A}, \mathcal{B}, functions \mathcal{C}, \mathcal{D}, and a ternary functor \mathcal{C} yielding a set, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters meet the following requirements:

- $\operatorname{dom} \mathcal{C}=\mathbb{N}$,
- $\mathcal{C}(0)=\mathcal{A}$ and $\mathcal{C}(1)=\mathcal{B}$,
- For every natural number n holds $\mathcal{C}(n+2)=\mathcal{C}(n, \mathcal{C}(n), \mathcal{C}(n+1))$,
- $\operatorname{dom} \mathcal{D}=\mathbb{N}$,
- $\mathcal{D}(0)=\mathcal{A}$ and $\mathcal{D}(1)=\mathcal{B}$, and
- For every natural number n holds $\mathcal{D}(n+2)=\mathcal{C}(n, \mathcal{D}(n), \mathcal{D}(n+1))$.

The scheme LambdaRec2UnD deals with a non empty set \mathcal{A}, elements \mathcal{B}, \mathcal{C} of \mathcal{A}, functions \mathcal{D}, \mathcal{E} from \mathbb{N} into \mathcal{A}, and a ternary functor \mathcal{D} yielding an element of \mathcal{A}, and states that:

$$
\mathcal{D}=\mathcal{E}
$$

provided the following requirements are met:

- $\mathcal{D}(0)=\mathcal{B}$ and $\mathcal{D}(1)=\mathcal{C}$,
- For every natural number n holds $\mathcal{D}(n+2)=\mathcal{D}(n, \mathcal{D}(n), \mathcal{D}(n+1))$,
- $\mathcal{E}(0)=\mathcal{B}$ and $\mathcal{E}(1)=\mathcal{C}$, and
- For every natural number n holds $\mathcal{E}(n+2)=\mathcal{D}(n, \mathcal{E}(n), \mathcal{E}(n+1))$.

The scheme LambdaRec3Ex deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a 4-ary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and $f(1)=\mathcal{B}$ and $f(2)=\mathcal{C}$ and for every natural number n holds $f(n+3)=\mathcal{F}(n, f(n), f(n+1), f(n+2))$
for all values of the parameters.
The scheme $L a m b d a R e c 3 E x D$ deals with a non empty set \mathcal{A}, elements \mathcal{B}, \mathcal{C}, \mathcal{D} of \mathcal{A}, and a 4 -ary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and $f(1)=\mathcal{C}$ and $f(2)=\mathcal{D}$ and for every natural number n holds $f(n+3)=\mathcal{F}(n, f(n), f(n+1), f(n+2))$
for all values of the parameters.
The scheme LambdaRec3Un deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, functions \mathcal{D}, \mathcal{E}, and a 4 -ary functor \mathcal{D} yielding a set, and states that:

$$
\mathcal{D}=\mathcal{E}
$$

provided the parameters meet the following requirements:

- $\operatorname{dom} \mathcal{D}=\mathbb{N}$,
- $\mathcal{D}(0)=\mathcal{A}$ and $\mathcal{D}(1)=\mathcal{B}$ and $\mathcal{D}(2)=\mathcal{C}$,
- For every natural number n holds $\mathcal{D}(n+3)=\mathcal{D}(n, \mathcal{D}(n), \mathcal{D}(n+$ 1), $\mathcal{D}(n+2))$,
- $\operatorname{dom} \mathcal{E}=\mathbb{N}$,
- $\mathcal{E}(0)=\mathcal{A}$ and $\mathcal{E}(1)=\mathcal{B}$ and $\mathcal{E}(2)=\mathcal{C}$, and
- For every natural number n holds $\mathcal{E}(n+3)=\mathcal{D}(n, \mathcal{E}(n), \mathcal{E}(n+$ 1), $\mathcal{E}(n+2))$.

The scheme $L a m b d a R e c 3 U n D$ deals with a non empty set \mathcal{A}, elements \mathcal{B}, \mathcal{C}, \mathcal{D} of \mathcal{A}, functions \mathcal{E}, \mathcal{F} from \mathbb{N} into \mathcal{A}, and a 4 -ary functor \mathcal{E} yielding an element of \mathcal{A}, and states that:

$$
\mathcal{E}=\mathcal{F}
$$

provided the parameters meet the following requirements:

- $\mathcal{E}(0)=\mathcal{B}$ and $\mathcal{E}(1)=\mathcal{C}$ and $\mathcal{E}(2)=\mathcal{D}$,
- For every natural number n holds $\mathcal{E}(n+3)=\mathcal{E}(n, \mathcal{E}(n), \mathcal{E}(n+$ 1), $\mathcal{E}(n+2))$,
- $\mathcal{F}(0)=\mathcal{B}$ and $\mathcal{F}(1)=\mathcal{C}$ and $\mathcal{F}(2)=\mathcal{D}$, and
- For every natural number n holds $\mathcal{F}(n+3)=\mathcal{E}(n, \mathcal{F}(n), \mathcal{F}(n+$ 1), $\mathcal{F}(n+2))$.

The scheme LambdaRec4Ex deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and a 5 -ary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=\mathcal{A}$ and $f(1)=\mathcal{B}$ and $f(2)=\mathcal{C}$ and $f(3)=\mathcal{D}$ and for every natural number n holds $f(n+4)=\mathcal{F}(n, f(n), f(n+1), f(n+2), f(n+3))$ for all values of the parameters.

The scheme LambdaRec $4 E x D$ deals with a non empty set \mathcal{A}, elements \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E} of \mathcal{A}, and a 5 -ary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and $f(1)=\mathcal{C}$ and $f(2)=\mathcal{D}$ and $f(3)=\mathcal{E}$ and for every natural number n holds $f(n+4)=\mathcal{F}(n, f(n), f(n+1), f(n+2), f(n+3))$ for all values of the parameters.

The scheme $L a m b d a R e c \nleftarrow U n$ deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$, functions \mathcal{E}, \mathcal{F}, and a 5 -ary functor \mathcal{E} yielding a set, and states that:

$$
\mathcal{E}=\mathcal{F}
$$

provided the parameters satisfy the following conditions:

- $\operatorname{dom} \mathcal{E}=\mathbb{N}$,
- $\mathcal{E}(0)=\mathcal{A}$ and $\mathcal{E}(1)=\mathcal{B}$ and $\mathcal{E}(2)=\mathcal{C}$ and $\mathcal{E}(3)=\mathcal{D}$,
- For every natural number n holds $\mathcal{E}(n+4)=\mathcal{E}(n, \mathcal{E}(n), \mathcal{E}(n+$ 1), $\mathcal{E}(n+2), \mathcal{E}(n+3))$,
- $\operatorname{dom} \mathcal{F}=\mathbb{N}$,
- $\mathcal{F}(0)=\mathcal{A}$ and $\mathcal{F}(1)=\mathcal{B}$ and $\mathcal{F}(2)=\mathcal{C}$ and $\mathcal{F}(3)=\mathcal{D}$, and
- For every natural number n holds $\mathcal{F}(n+4)=\mathcal{E}(n, \mathcal{F}(n), \mathcal{F}(n+$ 1), $\mathcal{F}(n+2), \mathcal{F}(n+3))$.

The scheme LambdaRec $4 U n D$ deals with a non empty set \mathcal{A}, elements \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E} of \mathcal{A}, functions \mathcal{F}, \mathcal{G} from \mathbb{N} into \mathcal{A}, and a 5 -ary functor \mathcal{F} yielding an element of \mathcal{A}, and states that:

$$
\mathcal{F}=\mathcal{G}
$$

provided the parameters meet the following requirements:

- $\mathcal{F}(0)=\mathcal{B}$ and $\mathcal{F}(1)=\mathcal{C}$ and $\mathcal{F}(2)=\mathcal{D}$ and $\mathcal{F}(3)=\mathcal{E}$,
- For every natural number n holds $\mathcal{F}(n+4)=\mathcal{F}(n, \mathcal{F}(n), \mathcal{F}(n+$ 1), $\mathcal{F}(n+2), \mathcal{F}(n+3))$,
- $\mathcal{G}(0)=\mathcal{B}$ and $\mathcal{G}(1)=\mathcal{C}$ and $\mathcal{G}(2)=\mathcal{D}$ and $\mathcal{G}(3)=\mathcal{E}$, and
- For every natural number n holds $\mathcal{G}(n+4)=\mathcal{F}(n, \mathcal{G}(n), \mathcal{G}(n+$ 1), $\mathcal{G}(n+2), \mathcal{G}(n+3))$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Michał Muzalewski and Wojciech Skaba. N-tuples and Cartesian products for n=5. Formalized Mathematics, 2(2):255-258, 1991.
[6] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ The paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan.

