Recursive Definitions. Part II^1

Artur Korniłowicz University of Białystok

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{RECDEF_2}.$

The papers [7], [4], [9], [8], [5], [6], [1], [10], [2], [11], and [3] provide the terminology and notation for this paper.

In this paper a, b, c, d, e, z, A, B, C, D, E are sets.

Let x be a set. Let us assume that there exist sets x_1 , x_2 , x_3 such that $x = \langle x_1, x_2, x_3 \rangle$. The functor $x_{1,3}$ is defined as follows:

- (Def. 1) For all sets y_1 , y_2 , y_3 such that $x = \langle y_1, y_2, y_3 \rangle$ holds $x_{1,3} = y_1$. The functor $x_{2,3}$ is defined by:
- (Def. 2) For all sets y_1 , y_2 , y_3 such that $x = \langle y_1, y_2, y_3 \rangle$ holds $x_{2,3} = y_2$. The functor $x_{3,3}$ is defined by:

(Def. 3) For all sets y_1 , y_2 , y_3 such that $x = \langle y_1, y_2, y_3 \rangle$ holds $x_{3,3} = y_3$. The following propositions are true:

- (1) If there exist a, b, c such that $z = \langle a, b, c \rangle$, then $z = \langle z_{1,3}, z_{2,3}, z_{3,3} \rangle$.
- (2) If $z \in [A, B, C]$, then $z_{1,3} \in A$ and $z_{2,3} \in B$ and $z_{3,3} \in C$.
- (3) If $z \in [A, B, C]$, then $z = \langle z_{1,3}, z_{2,3}, z_{3,3} \rangle$.

Let x be a set. Let us assume that there exist sets x_1, x_2, x_3, x_4 such that $x = \langle x_1, x_2, x_3, x_4 \rangle$. The functor $x_{1,4}$ is defined by:

- (Def. 4) For all sets y_1 , y_2 , y_3 , y_4 such that $x = \langle y_1, y_2, y_3, y_4 \rangle$ holds $x_{1,4} = y_1$. The functor $x_{2,4}$ is defined by:
- (Def. 5) For all sets y_1 , y_2 , y_3 , y_4 such that $x = \langle y_1, y_2, y_3, y_4 \rangle$ holds $x_{2,4} = y_2$. The functor $x_{3,4}$ is defined as follows:
- (Def. 6) For all sets y_1 , y_2 , y_3 , y_4 such that $x = \langle y_1, y_2, y_3, y_4 \rangle$ holds $x_{3,4} = y_3$. The functor $x_{4,4}$ is defined as follows:

C 2004 University of Białystok ISSN 1426-2630

¹The paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan.

- (Def. 7) For all sets y_1 , y_2 , y_3 , y_4 such that $x = \langle y_1, y_2, y_3, y_4 \rangle$ holds $x_{4,4} = y_4$. Next we state three propositions:
 - (4) If there exist a, b, c, d such that $z = \langle a, b, c, d \rangle$, then $z = \langle z_{1,4}, z_{2,4}, z_{3,4}, z_{4,4} \rangle$.
 - (5) If $z \in [A, B, C, D]$, then $z_{1,4} \in A$ and $z_{2,4} \in B$ and $z_{3,4} \in C$ and $z_{4,4} \in D$.
 - (6) If $z \in [A, B, C, D]$, then $z = \langle z_{1,4}, z_{2,4}, z_{3,4}, z_{4,4} \rangle$.

Let x be a set. Let us assume that there exist sets x_1 , x_2 , x_3 , x_4 , x_5 such that $x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$. The functor $x_{1,5}$ is defined by:

(Def. 8) For all sets y_1, y_2, y_3, y_4, y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $x_{1,5} = y_1$.

The functor $x_{2,5}$ is defined by:

(Def. 9) For all sets y_1, y_2, y_3, y_4, y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $x_{2,5} = y_2$.

The functor $x_{3,5}$ is defined as follows:

(Def. 10) For all sets y_1, y_2, y_3, y_4, y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $x_{3,5} = y_3$.

The functor $x_{4,5}$ is defined as follows:

(Def. 11) For all sets y_1, y_2, y_3, y_4, y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $x_{4,5} = y_4$.

The functor $x_{5,5}$ is defined by:

(Def. 12) For all sets y_1, y_2, y_3, y_4, y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $x_{5,5} = y_5$.

The following propositions are true:

- (7) If there exist a, b, c, d, e such that $z = \langle a, b, c, d, e \rangle$, then $z = \langle z_{1,5}, z_{2,5}, z_{3,5}, z_{4,5}, z_{5,5} \rangle$.
- (8) If $z \in [A, B, C, D, E]$, then $z_{1,5} \in A$ and $z_{2,5} \in B$ and $z_{3,5} \in C$ and $z_{4,5} \in D$ and $z_{5,5} \in E$.
- (9) If $z \in [A, B, C, D, E]$, then $z = \langle z_{1,5}, z_{2,5}, z_{3,5}, z_{4,5}, z_{5,5} \rangle$.

In this article we present several logical schemes. The scheme *ExFunc3Cond* deals with a set \mathcal{A} , three unary functors \mathcal{F} , \mathcal{G} , and \mathcal{H} yielding sets, and three unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and states that:

There exists a function f such that dom $f = \mathcal{A}$ and for every set c such that $c \in \mathcal{A}$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ and if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the parameters meet the following conditions:

- For every set c such that $c \in \mathcal{A}$ holds if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$ and if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ and if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$, and
- For every set c such that $c \in \mathcal{A}$ holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$.

168

The scheme *ExFunc4Cond* deals with a set \mathcal{A} , four unary functors \mathcal{F} , \mathcal{G} , \mathcal{H} , and \mathcal{I} yielding sets, and four unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , \mathcal{S} , and states that:

There exists a function f such that

- (i) dom $f = \mathcal{A}$, and
- (ii) for every set c such that $c \in \mathcal{A}$ holds if $\mathcal{P}[c]$, then f(c) =

 $\mathcal{F}(c)$ and if $\mathcal{Q}[c]$, then $f(c) = \mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$ and if $\mathcal{S}[c]$, then $f(c) = \mathcal{I}(c)$

provided the following conditions are satisfied:

- Let c be a set such that $c \in \mathcal{A}$. Then
 - (i) if $\mathcal{P}[c]$, then not $\mathcal{Q}[c]$,
 - (ii) if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$,
 - (iii) if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$,
 - (iv) if $\mathcal{Q}[c]$, then not $\mathcal{R}[c]$,
 - (v) if $\mathcal{Q}[c]$, then not $\mathcal{S}[c]$, and
 - (vi) if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$,

and

• For every set c such that $c \in \mathcal{A}$ holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$.

The scheme *DoubleChoiceRec* deals with non empty sets \mathcal{A} , \mathcal{B} , an element \mathcal{C} of \mathcal{A} , an element \mathcal{D} of \mathcal{B} , and a 5-ary predicate \mathcal{P} , and states that:

There exists a function f from \mathbb{N} into \mathcal{A} and there exists a function g from \mathbb{N} into \mathcal{B} such that $f(0) = \mathcal{C}$ and $g(0) = \mathcal{D}$ and for every

element n of N holds $\mathcal{P}[n, f(n), g(n), f(n+1), g(n+1)]$

provided the parameters satisfy the following condition:

• Let n be an element of \mathbb{N} , x be an element of \mathcal{A} , and y be an element of \mathcal{B} . Then there exists an element x_1 of \mathcal{A} and there exists an element y_1 of \mathcal{B} such that $\mathcal{P}[n, x, y, x_1, y_1]$.

The scheme LambdaRec2Ex deals with sets \mathcal{A} , \mathcal{B} and a ternary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and $f(1) = \mathcal{B}$ and for every natural number n holds $f(n+2) = \mathcal{F}(n, f(n), f(n+1))$

for all values of the parameters.

The scheme LambdaRec2ExD deals with a non empty set \mathcal{A} , elements \mathcal{B} , \mathcal{C} of \mathcal{A} , and a ternary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0) = \mathcal{B}$ and $f(1) = \mathcal{C}$ and for every natural number n holds $f(n+2) = \mathcal{F}(n, f(n), f(n+1))$

for all values of the parameters.

The scheme LambdaRec2Un deals with sets \mathcal{A} , \mathcal{B} , functions \mathcal{C} , \mathcal{D} , and a ternary functor \mathcal{C} yielding a set, and states that:

 $\mathcal{C}=\mathcal{D}$

provided the parameters meet the following requirements:

ARTUR KORNIŁOWICZ

- dom $\mathcal{C} = \mathbb{N}$,
- $\mathcal{C}(0) = \mathcal{A} \text{ and } \mathcal{C}(1) = \mathcal{B},$
- For every natural number n holds $\mathcal{C}(n+2) = \mathcal{C}(n, \mathcal{C}(n), \mathcal{C}(n+1)),$
- dom $\mathcal{D} = \mathbb{N}$,
- $\mathcal{D}(0) = \mathcal{A}$ and $\mathcal{D}(1) = \mathcal{B}$, and
- For every natural number n holds $\mathcal{D}(n+2) = \mathcal{C}(n, \mathcal{D}(n), \mathcal{D}(n+1)).$

The scheme LambdaRec2UnD deals with a non empty set \mathcal{A} , elements \mathcal{B} , \mathcal{C} of \mathcal{A} , functions \mathcal{D} , \mathcal{E} from \mathbb{N} into \mathcal{A} , and a ternary functor \mathcal{D} yielding an element of \mathcal{A} , and states that:

 $\mathcal{D}=\mathcal{E}$

provided the following requirements are met:

- $\mathcal{D}(0) = \mathcal{B} \text{ and } \mathcal{D}(1) = \mathcal{C},$
- For every natural number n holds $\mathcal{D}(n+2) = \mathcal{D}(n, \mathcal{D}(n), \mathcal{D}(n+1))$,
- $\mathcal{E}(0) = \mathcal{B}$ and $\mathcal{E}(1) = \mathcal{C}$, and
- For every natural number n holds $\mathcal{E}(n+2) = \mathcal{D}(n, \mathcal{E}(n), \mathcal{E}(n+1)).$

The scheme LambdaRec3Ex deals with sets \mathcal{A} , \mathcal{B} , \mathcal{C} and a 4-ary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and

 $f(1) = \mathcal{B}$ and $f(2) = \mathcal{C}$ and for every natural number n holds

$$f(n+3) = \mathcal{F}(n, f(n), f(n+1), f(n+2))$$

for all values of the parameters.

The scheme LambdaRec3ExD deals with a non empty set \mathcal{A} , elements \mathcal{B} , \mathcal{C} , \mathcal{D} of \mathcal{A} , and a 4-ary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

There exists a function f from N into A such that $f(0) = \mathcal{B}$ and

 $f(1) = \mathcal{C}$ and $f(2) = \mathcal{D}$ and for every natural number n holds

 $f(n+3) = \mathcal{F}(n, f(n), f(n+1), f(n+2))$

for all values of the parameters.

The scheme LambdaRec3Un deals with sets \mathcal{A} , \mathcal{B} , \mathcal{C} , functions \mathcal{D} , \mathcal{E} , and a 4-ary functor \mathcal{D} yielding a set, and states that:

 $\mathcal{D} = \mathcal{E}$

provided the parameters meet the following requirements:

- dom $\mathcal{D} = \mathbb{N}$,
- $\mathcal{D}(0) = \mathcal{A} \text{ and } \mathcal{D}(1) = \mathcal{B} \text{ and } \mathcal{D}(2) = \mathcal{C},$
- For every natural number n holds $\mathcal{D}(n+3) = \mathcal{D}(n, \mathcal{D}(n), \mathcal{D}(n+1), \mathcal{D}(n+2)),$
- dom $\mathcal{E} = \mathbb{N}$,
- $\mathcal{E}(0) = \mathcal{A}$ and $\mathcal{E}(1) = \mathcal{B}$ and $\mathcal{E}(2) = \mathcal{C}$, and
- For every natural number n holds $\mathcal{E}(n+3) = \mathcal{D}(n, \mathcal{E}(n), \mathcal{E}(n+1), \mathcal{E}(n+2)).$

The scheme LambdaRec3UnD deals with a non empty set \mathcal{A} , elements \mathcal{B} , \mathcal{C} , \mathcal{D} of \mathcal{A} , functions \mathcal{E} , \mathcal{F} from \mathbb{N} into \mathcal{A} , and a 4-ary functor \mathcal{E} yielding an element of \mathcal{A} , and states that:

170

 $\mathcal{E}=\mathcal{F}$

provided the parameters meet the following requirements:

- $\mathcal{E}(0) = \mathcal{B}$ and $\mathcal{E}(1) = \mathcal{C}$ and $\mathcal{E}(2) = \mathcal{D}$,
- For every natural number n holds $\mathcal{E}(n+3) = \mathcal{E}(n, \mathcal{E}(n), \mathcal{E}(n+1), \mathcal{E}(n+2)),$
- $\mathcal{F}(0) = \mathcal{B}$ and $\mathcal{F}(1) = \mathcal{C}$ and $\mathcal{F}(2) = \mathcal{D}$, and
- For every natural number n holds $\mathcal{F}(n+3) = \mathcal{E}(n, \mathcal{F}(n), \mathcal{F}(n+1), \mathcal{F}(n+2)).$

The scheme LambdaRec4Ex deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and a 5-ary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and $f(1) = \mathcal{B}$ and $f(2) = \mathcal{C}$ and $f(3) = \mathcal{D}$ and for every natural number n holds $f(n+4) = \mathcal{F}(n, f(n), f(n+1), f(n+2), f(n+3))$

for all values of the parameters.

The scheme LambdaRec4ExD deals with a non empty set \mathcal{A} , elements \mathcal{B} , \mathcal{C} , \mathcal{D} , \mathcal{E} of \mathcal{A} , and a 5-ary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0) = \mathcal{B}$ and $f(1) = \mathcal{C}$ and $f(2) = \mathcal{D}$ and $f(3) = \mathcal{E}$ and for every natural number n holds $f(n+4) = \mathcal{F}(n, f(n), f(n+1), f(n+2), f(n+3))$

for all values of the parameters.

The scheme LambdaRec4Un deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$, functions \mathcal{E}, \mathcal{F} , and a 5-ary functor \mathcal{E} yielding a set, and states that:

$$\mathcal{E} = \mathcal{F}$$

provided the parameters satisfy the following conditions:

- dom $\mathcal{E} = \mathbb{N}$,
- $\mathcal{E}(0) = \mathcal{A}$ and $\mathcal{E}(1) = \mathcal{B}$ and $\mathcal{E}(2) = \mathcal{C}$ and $\mathcal{E}(3) = \mathcal{D}$,
- For every natural number n holds $\mathcal{E}(n+4) = \mathcal{E}(n, \mathcal{E}(n), \mathcal{E}(n+1), \mathcal{E}(n+2), \mathcal{E}(n+3)),$
- dom $\mathcal{F} = \mathbb{N}$,
- $\mathcal{F}(0) = \mathcal{A}$ and $\mathcal{F}(1) = \mathcal{B}$ and $\mathcal{F}(2) = \mathcal{C}$ and $\mathcal{F}(3) = \mathcal{D}$, and
- For every natural number n holds $\mathcal{F}(n+4) = \mathcal{E}(n, \mathcal{F}(n), \mathcal{F}(n+1), \mathcal{F}(n+2), \mathcal{F}(n+3)).$

The scheme LambdaRec4UnD deals with a non empty set \mathcal{A} , elements \mathcal{B} , \mathcal{C} , \mathcal{D} , \mathcal{E} of \mathcal{A} , functions \mathcal{F} , \mathcal{G} from \mathbb{N} into \mathcal{A} , and a 5-ary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

 $\mathcal{F}=\mathcal{G}$

provided the parameters meet the following requirements:

- $\mathcal{F}(0) = \mathcal{B}$ and $\mathcal{F}(1) = \mathcal{C}$ and $\mathcal{F}(2) = \mathcal{D}$ and $\mathcal{F}(3) = \mathcal{E}$,
- For every natural number n holds $\mathcal{F}(n+4) = \mathcal{F}(n, \mathcal{F}(n), \mathcal{F}(n+1), \mathcal{F}(n+2), \mathcal{F}(n+3)),$
- $\mathcal{G}(0) = \mathcal{B}$ and $\mathcal{G}(1) = \mathcal{C}$ and $\mathcal{G}(2) = \mathcal{D}$ and $\mathcal{G}(3) = \mathcal{E}$, and

ARTUR KORNIŁOWICZ

• For every natural number n holds $\mathcal{G}(n+4) = \mathcal{F}(n, \mathcal{G}(n), \mathcal{G}(n+1), \mathcal{G}(n+2), \mathcal{G}(n+3)).$

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
 [4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
- [4] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
 [5] Michael Muzalewski and Waisingh Skaba, N tuples and Cartesian products for p=5. For
- [5] Michał Muzalewski and Wojciech Skaba. N-tuples and Cartesian products for n=5. Formalized Mathematics, 2(2):255-258, 1991.
- [6] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [8] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received February 10, 2004