FORMALIZED MATHEMATICS

Volume 12, Number 2, 2004
University of Bialystok

Solving Roots of Polynomial Equation
of Degree 2 and 3 with Complex Coefficients

Yuzhong Ding Xiquan Liang
QingDao University of Science QingDao University of Science
and Technology and Technology

Summary. In the article, solving complex roots of polynomial equation of
degree 2 and 3 with real coefficients and complex roots of polynomial equation
of degree 2 and 3 with complex coefficients is discussed.

MML Identifier: POLYEQ_3.

The terminology and notation used here are introduced in the following articles:

[20], [15], [2], [5], [3], [8], [17], [16], [14], [10], [12], [7], [18], [1], [13], [21], [9], [19],
[11], 6], and [4].

1. SoLviNgG COMPLEX R0oOTS OF POLYNOMIAL EQUATION OF DEGREE 2
AND 3 WITH REAL COEFFICIENTS

We follow the rules: a, b, ¢, d, o', V/, ¢, d', x, y, 1, u, v are real numbers
and s, t, h, z, 21, 22, 23, 24, S1, S2, S3, P, q are elements of C.

Let a be a real number and let us consider z. Then a - 2z is an element of C
and it can be characterized by the condition:

(Def. 1) a-z=(a+0i)-z.
Then a + z is an element of C and it can be characterized by the condition:
(Def. 2) a+z=2z+ (a+00).

Let us consider z. Then 22 is an element of C and it can be characterized
by the condition:

(Def. 3) 22 = (R(2)2 — 3(2)2) + (2 (R(2) - 3(2)))s.

Let us consider a, b, ¢, z. Then Poly2(a, b, c, z) is an element of C.
The following propositions are true:
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(1) (a+ci)-(b+di)=(a-b—c-d)+ (a-d+b-c)i.
(2) If 2 = x + yi, then 22 = (22 — y?) + (2- 2 - y)i.
(3) For all a, b holds (a + 0¢) - (b+ 0i) = a - b+ 0i.
—b++/A(a,b,c)
(4) Ifa # 0and A(a,b,c) > 0and Poly2(a, b, c,z) = 0, then z = ——5——""—=
—b—+/A(a,b,c) b
or z=—Y—"""0r z=—5-.
(5) If a # 0 and A(a,b,c) < 0 and Poly2(a,b,c, z) = Oc, then z = —% +
Yoo _g_f’b’c)i or z = —% +(—¥Y—= _ﬁ.gl’b’c))z'.

(6) If b# 0 and for every z holds Poly2(0,b,¢, z) = Oc, then z = —.
(7) Let a, b, ¢ be real numbers and z, z1, 2o be elements of C. Suppose
a # 0. Suppose that for every element z of C holds Poly2(a,b,c,z) =
Quard(a, 21, 22, z). Then 2 + 0i = —(21 + 22) and £ + 0i = 21 - 2.
Let z be an element of C. The functor 22 yielding an element of C is defined
by:
(Def. 4) 23 =222
Let a, b, ¢, d be real numbers and let z be an element of C. The functor
Poly;(a, b, c,d, z) yielding an element of C is defined as follows:

(Def. 5) Polys(a,b,e,d,2) =a-23+b-22+c-z+d.

We now state a number of propositions:

(8) (0c)® = 0c.

(9) (1c)® =1c.
(10) (—1¢)3 = —1¢.
(11) R(=3) =R(2)? -3 - R(2) - I(2)? and F(23) = —S(2)? + 3 - R(2)2 - S(2).
(12) 1If for every z holds Polys(a,b,c,d, z) = Polys(a’, ¥/, ,d', 2), then a = d

and b=0 and c=c and d =d'.

(13) (z+h)3=23+3-h-22+3-h%.2+h3

(14) (z-h)® =23-h3.

(15) If b # 0 and Poly3(0,b,¢,d,2) = Oc and A(b,c,d) > 0, then z =
—ety/Abed) —c—/A(b,c,d) or x— €

(16) If bz;z 0 and Poly;(0, b, i,bd, z) = Oc and 2Ab(b7 c,d) <0, then z = —55 +
7_3_(;’6’[1)1' or z = —55 + (—7_2_(5’0’@)1'.

(17) If a # 0 and Polys(a,0,¢,0,2) =0 and 4-a- ¢ < 0, then z = ‘/T or
z= _\/F or z = 0.

(18) If @ # 0 and Polys(a,b,c,0,2) = 0 and A(a,b,c) > 0, then z =
“biyalabe) Worz:_b_gfi(a’b’c)orz:—% or z =0.

(19) If a # 0 and Poly;(a,b,c,0,z) = 0c and A(a,b,c) <0, then z = _Tba +

\/mi or z = _L + (_ V 7A(a>b7c))
2-a 2-a 2-a

1 or z=0c.
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(20) If a >0 and 32 = a, then y = v/a or y = —/a.
(21) Suppose a # 0 and Polys(a,0,¢,d, z) = 0c and I(z) = 0. Let given u, v.
Suppose f(z) =u+v and 3-v-u+ £ =0. Then

(22) Suppose a # 0 and Polys(a,0,¢,d, z) = 0c and I(z) # 0. Let given u, v.
£ > 0. Then

(23) Suppose a # 0 and Polys(a, b, c,d, z) = Oc and J(z) = 0. Let given u, v,
x1. Suppose r1 = §R(z)+3% and R(z) = (u—i—v)—&% and 3-u-v+% =0.
Then
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3<a»d7b»c)2

M = = d (—(gha)? — B3t + \/ Gl D | (et 4
i’/—(g.ba)‘g — dadobe \/(2'(3’1‘)“)3:%)2 + (B )3y — L) 404, or
() = <<§’/ ()0 — g [ ST | ey

VGﬂ&P—3%$“y+%m“m”fﬁ;”2+ﬁggwﬁ>—gg+oam
(iii) z = ((i/_(?"b“)?) _ 3-aéfia—2b-c B \/(2-(&)323'“;3”)2 " (3%;,,2)3 .

3 3.q-d—b-c (2:(55)°+24057)2 e ,
\/_(3.1)(1)3_3 6f1a2b _\/ 3 . 3.2 +(3 9.a2b2)3)_%)+02'
(24) If 21 # 0 and Polyl(21, 22,2) = 0, then z = —22.
(25) If 29 # 0, then it is not true that there exists z such that Poly1(0, 22, 2) =
0.

2. CoMPLEX ROOTS OF POLYNOMIAL EQUATION OF DEGREE 2 AND 3 WITH
CoMPLEX COEFFICIENTS

Let us consider zi, 22, z3, 2. The functor CPoly2(z1, 22, 23, z) yields an ele-
ment of C and is defined by:
(Def. 6) CPoly2(z1, 22, 23,2) = 21 - 22 + 22+ 2 + 23.

We now state a number of propositions:

(26) If for every z holds CPoly2(z1, 22, 23, 2) = CPoly2(s1, s2, s3, ), then z; =

s1 and z9 = $9 and z3 = s3.
(27) =atVZEb? 5 () anq VeI 5 ()
(28) If 22 = s and S(s) > 0, then 2 =

\/§R(s)+s /R(5)2+3(5)2 \/—?R(s)—i— R(s)2+3(s)2 .
2 + 2

10r z =

R(s)+/R(s)2+3(s)2 —R(s8)++/R(5)2+S(s)2\ .
_\fROVROTISER | ([ ROHREPESER);

(29) If 22 = s and S(s) = 0 and R(s) > 0, then z = \/R(s) or z = —/R(s).

(30) If 22 = s and S(s) = 0 and R(s) < 0, then z = 0+ /—R(s)i or
2 =0+ (—y/—R(s))i.

(31) If 22 = s and 3(s) < 0, then z =

R(s)++/R(s)2+S(s)2 —R(s R(s)24+S(s)2 .
\ ROHVREPISGR | ([ RO REP ISR o

_\/§R(s)+\/§)?(s)2+%(s)2 +\/—§R(s)+s/§R(s)2+%(s)2.
2 2

1.
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(32) Suppose 22 = s. Then

(i) z:\/ (1 VROEHSEE | \/ CEEN D=
(iii)) =z = \/ (s)+ s)2+ 4 (- \/ R(s)+ ()2+g(s)2)z o
(v) ==—y" *“ﬁg;gﬁ+¢ O /RESOE

( ) CPOly2(0C7OC7OCv ) =0.

(34) 1If 21 # 0 and CPoly2(z1,0¢,0c, z) = 0, then z = 0.

(35) 1If z; # 0 and CPoly2(z1, 22,0¢, 2) = 0, then z = —j—j or z = 0.
(36)

Suppose z1 # Oc and CPoly2(z1,0c, 23,2) = Oc. Let given s. Suppose
s = —2, Then

L \/ s)—i-\/?R(s )2+3(5)2 +\/ R(s)+/R 5)2+J( 2,

, Or

)

)=y Amf;“‘g%_¢ SH¢————3
(iii) z:\/%)ﬂ/w e \/ W) /R

) Z:_\/ER()-F R(s) )2+\/ S)+\/7

(37) Su ppose 21 #0 and CPoly2(21,22,23, z) = Oc. Let given h, t. Suppose
=(2)2 - B andt= 52 Then

21

R(h)+/R(7)2+3(h)2 —R(h)+/R(h) 2+ (h)2 .

() 2= (RO EE | [ RO REZSE o

(i) 2= (_\/§R(h)+\/§)‘t(h)2+%(h)2 (_\/f%(h)+ §R(h)2+9r(h)2)i) tor
)

7, Or

5)2+S3(s)2
R(s) ())

1, Or

2

(i _(\/S‘t(h )+ R(1)2+S(h b= \/ (h)+ 8‘62(11)2—%%(}1)2)1.)775
(iv) Z:(_\/ h)+\/ 2 +\/ R(h)+ §R2(h)2+8(h)2i)_t.

Let us consider z1, 29, 23, 24, z. The functor CPoly2(z1, 22, 23, 24, 2) yields
an element of C and is defined as follows:

, or

(Def. 7) CPoly2(21, 22, 23, 24, 2) = 21 - 22 + 29 - 22 + 23 - 2 + 24.
One can prove the following propositions:

If 22=1,then z=1or z = —1.
2

3

0.0]
~—

3 _ .3
<z and 2y = 2°.

(
(
(40) If z; # 0 and CPoly2(z1, 22,0¢, Oc, 2) = Oc, then z = —i—f or z =0.
(41) Suppose z; # Oc and CPoly2(z1, Oc, 23, 0c, z) = Oc. Let given s. Suppose
s = —2%. Then
1
(i) z=0c,or

(i) z= \/ () VR +\/ Y 2+g(s)2i or
(i) Z:_\/m( s)+ éRé PSR \/ s)+\/ 9,

39) zi=z-z-zand 2} =2

1, Or
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) oo T [T

(42) Suppose z; ;é 0 and CPoly2(z1, 22, 23, 0c, ) = ()(C Let given s, h, t.

Suppose s = —2 and h = (5% 21)2 — 2 and t = 5Z. Then
(i) z=0,o0r
(il _ (\/%(h)-&- + \/ h)2+\s( )2 . ) tor

_\/ére(h)+,/§n(2h +(_\/ §R(h+ RZLS(h)2 ))—t .

\/§R(h)+ ER(2h)2+$(h)2 n (_\/ R(h)+ 2(h)2+\s( )2)1-) —t, or

2=
2=
2=

v _\/éR(h)—l—\/?R(h)z—i—%(h)? n \/—m(h)+ §R(h)2+3(h)2i) Ly
2 2 :
(43) If z2=5—(3+0i) 2, then 22 = s+ (—=(3 +0i)) - 21 - s+ (§ +0i) - 21 2.

)
(44) Ifz = s—(5+0i)-21, then 23 = ((s3—21-5%)+(3+0i)-212-5)— (5 +0i)- 213
) Suppose CPoly2(1¢, 21, 22, 23,2) = Oc. Let given p, ¢, s. Suppose z =
—(340i)-zandp=—(5+0i) - 212+ 20 and ¢ = (£ +0i) - .3 — (3 +
0i) - 21 - 22) + 2z3. Then CPoly2(1¢,Oc,p, q,s) = Oc.
(46) For every element z of C holds |z| - cos Argz + (|z] - sin Arg 2)i = (|2| +
0i) - (cos Arg z + sin Arg zi).

(47) For every element z of C and for every natural number n holds 2ttt =

(2x) - 2.
(48)
(49)
(50) For every natural number n such that n > 0 holds 0 = 0.
(51)

For every element z of C holds zI{I =z.

For every element z of C holds z% =z 2z

For all elements x, y of C and for every natural number n holds (z-y)f =
() - y&-
(52) For every real number x such that = > 0 and for every natural number
n holds (z + 09)f = 2™ + 0i.
(53) For every real number x and for every natural number n holds (cosx +
sinzi)§ = cos(n - x) + sin(n - x)i.
(54) For every element z of C and for every natural number n such that
2z # Oc or n > 0 holds 2z = |2]" - cos(n - Argz) + (|z|" - sin(n - Arg 2))i.
(55) For all natural numbers n, k and for every real number z such that n # 0
holds (cos(ZH2TE) 4 gin(ZE2TE )i\ — cosz + sin zi.
(56) Let z be an element of C and n, k be natural numbers. If n # 0, then
7= (W . COS(W) + ( W . sin(%))i)ﬁ.
Let z be an element of C and let n be a non empty natural number. An
element of C is called a complex root of n, z if:

(Def. 8) Ity = .
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Next we state several propositions:

(57) Let z be an element of C, n be a non empty natural number, and k be
a natural number. Then {/[z[ - cos(2EZEZTE) 1 (0[] . sin(AB2t2TRY);
is a complex root of n, z.

(58) For every element z of C and for every complex root v of 1, z holds
v =z,

(59) For every non empty natural number n and for every complex root v of
n, O(C holds v = 0(;.

(60) Let n be a non empty natural number, z be an element of C, and v be
a complex root of n, z. If v = O¢, then z = O¢.

(61) Let n be a non empty natural number and k be a natural number. Then
cos(%) + sin(%)i is a complex root of n, 1c.
(62) For every natural number & holds cos(y) + sin(y)i is a complex

root of 3, 1¢.

(63) For all elements z, s of C and for every natural number n such that s # 0
and z # 0 and n > 1 and sf; = 2§ holds |s| = |2|.
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