The Exponential Function on Banach Algebra

Yasunari Shidama
Shinshu University
Nagano

Summary. In this article, the basic properties of the exponential function on Banach algebra are described.

MML Identifier: LOPBAN_4.

The notation and terminology used here are introduced in the following papers: [17], [19], [20], [3], [4], [2], [16], [5], [1], [18], [9], [11], [12], [8], [6], [7], [13], [10], [21], [14], and [15].

For simplicity, we use the following convention: X denotes a Banach algebra, p denotes a real number, w, z, z_{1}, z_{2} denote elements of X, k, l, m, n denote natural numbers, $s_{1}, s_{2}, s_{3}, s, s^{\prime}$ denote sequences of X, and r_{1} denotes a sequence of real numbers.

Let X be a non empty normed algebra structure and let x, y be elements of X. We say that x, y are commutative if and only if:
(Def. 1) $x \cdot y=y \cdot x$.
Let us note that the predicate x, y are commutative is symmetric.
Next we state a number of propositions:
(1) If s_{2} is convergent and s_{3} is convergent and $\lim \left(s_{2}-s_{3}\right)=0_{X}$, then $\lim s_{2}=\lim s_{3}$.
(2) For every z such that for every natural number n holds $s(n)=z$ holds $\lim s=z$.
(3) If s is convergent and s^{\prime} is convergent, then $s \cdot s^{\prime}$ is convergent.
(4) If s is convergent, then $z \cdot s$ is convergent.
(5) If s is convergent, then $s \cdot z$ is convergent.
(6) If s is convergent, then $\lim (z \cdot s)=z \cdot \lim s$.
(7) If s is convergent, then $\lim (s \cdot z)=\lim s \cdot z$.
(8) If s is convergent and s^{\prime} is convergent, then $\lim \left(s \cdot s^{\prime}\right)=\lim s \cdot \lim s^{\prime}$.
(9) $\quad\left(\sum_{\alpha=0}^{\kappa}\left(z \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=z \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ and $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1} \cdot z\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}} \cdot z$.
(10) $\left\|\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right\| \leqslant\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(11) If for every n such that $n \leqslant m$ holds $s_{2}(n)=s_{3}(n)$, then $\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)=\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(12) If for every n holds $\left\|s_{1}(n)\right\| \leqslant r_{1}(n)$ and r_{1} is convergent and $\lim r_{1}=0$, then s_{1} is convergent and $\lim s_{1}=0_{X}$.
Let us consider X and let z be an element of X. The functor $z \operatorname{ExpSeq}$ yielding a sequence of X is defined as follows:
(Def. 2) For every n holds $z \operatorname{ExpSeq}(n)=\frac{1}{n!} \cdot z_{\mathrm{N}}^{n}$.
The scheme ExNormSpace CASE deals with a non empty Banach algebra \mathcal{A} and a binary functor \mathcal{F} yielding a point of \mathcal{A}, and states that:

For every k there exists a sequence s_{1} of \mathcal{A} such that for every n
holds if $n \leqslant k$, then $s_{1}(n)=\mathcal{F}(k, n)$ and if $n>k$, then $s_{1}(n)=0_{\mathcal{A}}$
for all values of the parameters.
Next we state the proposition
(13) For every k such that $0<k$ holds $\left(k-^{\prime} 1\right)!\cdot k=k$! and for all m, k such that $k \leqslant m$ holds $\left(m-^{\prime} k\right)!\cdot((m+1)-k)=\left((m+1)-^{\prime} k\right)!$.
Let n be a natural number. The functor Coef n yields a sequence of real numbers and is defined by:
(Def. 3) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Coef} n)(k)=\frac{n!}{k!\cdot(n-k)!}$ and if $k>n$, then $(\operatorname{Coef} n)(k)=0$.
Let n be a natural number. The functor Coef_e n yielding a sequence of real numbers is defined by:
(Def. 4) For every natural number k holds if $k \leqslant n$, then (Coef_e $n)(k)=\frac{1}{k!\cdot\left(n-^{\prime} k\right)!}$ and if $k>n$, then $($ Coef_e $n)(k)=0$.
Let us consider X, s_{1}. The functor Shift s_{1} yielding a sequence of X is defined as follows:
(Def. 5) $\left(\right.$ Shift $\left.s_{1}\right)(0)=0_{X}$ and for every natural number k holds (Shift $\left.s_{1}\right)(k+$ $1)=s_{1}(k)$.
Let us consider n, let us consider X, and let z, w be elements of X. The functor $\operatorname{Expan}(n, z, w)$ yields a sequence of X and is defined by:
(Def. 6) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Expan}(n, z, w))(k)=$ $(\operatorname{Coef} n)(k) \cdot z_{\mathbb{N}}^{k} \cdot w_{\mathbb{N}}^{n-{ }^{\prime} k}$ and if $n<k$, then $(\operatorname{Expan}(n, z, w))(k)=0_{X}$.
Let us consider n, let us consider X, and let z, w be elements of X. The functor Expan_e (n, z, w) yields a sequence of X and is defined as follows:
(Def. 7) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Expan} \mathrm{e}(n, z, w))(k)=$ $($ Coef_e $n)(k) \cdot z_{\mathbb{N}}^{k} \cdot w_{\mathbb{N}}^{n \prime^{\prime} k}$ and if $n<k$, then $\left(\operatorname{Expan} _\mathrm{e}(n, z, w)\right)(k)=0_{X}$.
Let us consider n, let us consider X, and let z, w be elements of X. The functor $\operatorname{Alfa}(n, z, w)$ yields a sequence of X and is defined as follows:
(Def. 8) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Alfa}(n, z, w))(k)=$ $z \operatorname{ExpSeq}(k) \cdot\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}\left(n-^{\prime} k\right)$ and if $n<k$, then $(\operatorname{Alfa}(n, z, w))(k)=0_{X}$.
Let us consider X, let z, w be elements of X, and let n be a natural number. The functor $\operatorname{Conj}(n, z, w)$ yields a sequence of X and is defined by:
(Def. 9) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Conj}(n, z, w))(k)=$ $z \operatorname{ExpSeq}(k) \cdot\left(\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}\left(n-^{\prime}\right.\right.$ $k)$) and if $n<k$, then $(\operatorname{Conj}(n, z, w))(k)=0_{X}$.
One can prove the following propositions:
(14) $z \operatorname{ExpSeq}(n+1)=\frac{1}{n+1} \cdot z \cdot z \operatorname{ExpSeq}(n)$ and $z \operatorname{ExpSeq}(0)=\mathbf{1}_{X}$ and $\|z \operatorname{ExpSeq}(n)\| \leqslant\|z\| \operatorname{ExpSeq}(n)$.
(15) If $0<k$, then $\left(\operatorname{Shift} s_{1}\right)(k)=s_{1}\left(k-^{\prime} 1\right)$.

$$
\begin{equation*}
\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}\left(\text { Shift } s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)+s_{1}(k) . \tag{16}
\end{equation*}
$$

(17) For all z, w such that z, w are commutative holds $(z+w)_{\mathbb{N}}^{n}=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Expan}(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(18) Expan_e $(n, z, w)=\frac{1}{n!} \cdot \operatorname{Expan}(n, z, w)$.
(19) For all z, w such that z, w are commutative holds $\frac{1}{n!} \cdot(z+w)_{\mathbb{N}}^{n}=$ $\left(\sum_{\alpha=0}^{\kappa}(\text { Expan_e }(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(20) $\quad 0_{X}$ ExpSeq is norm-summable and $\sum\left(0_{X} \operatorname{ExpSeq}\right)=\mathbf{1}_{X}$.

Let us consider X and let z be an element of X. Observe that z ExpSeq is norm-summable.

Next we state a number of propositions:
(21) $z \operatorname{ExpSeq}(0)=\mathbf{1}_{X}$ and $(\operatorname{Expan}(0, z, w))(0)=\mathbf{1}_{X}$.
(22) If $l \leqslant k$, then $(\operatorname{Alfa}(k+1, z, w))(l)=(\operatorname{Alfa}(k, z, w))(l)+(\operatorname{Expan}-\mathrm{e}(k+$ $1, z, w)(l)$.
(23) $\quad\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(k+1, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)+$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Expan} \mathrm{e}(k+1, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(24) $z \operatorname{ExpSeq}(k)=(\operatorname{Expan} \mathrm{e}(k, z, w))(k)$.
(25) For all z, w such that z, w are commutative holds $\left(\sum_{\alpha=0}^{\kappa} z+\right.$ $w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(26) For all z, w such that z, w are commutative holds
$\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k) \cdot\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-\left(\sum_{\alpha=0}^{\kappa} z+\right.$ $w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Conj}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(27) $0 \leqslant\|z\| \operatorname{ExpSeq}(n)$.
(28) $\left\|\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right\| \leqslant\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k) \quad$ and $\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k) \leqslant \sum(\|z\| \operatorname{ExpSeq})$ and $\left\|\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right\| \leqslant \sum(\|z\| \operatorname{ExpSeq})$.
(29) $1 \leqslant \sum(\|z\| \operatorname{ExpSeq})$.
(30) $\left|\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$ and if $n \leqslant m$, then $\left|\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|$ $=\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\|z\| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(31) $\left|\left(\sum_{\alpha=0}^{\kappa}\|\operatorname{Conj}(k, z, w)\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=\left(\sum_{\alpha=0}^{\kappa}\|\operatorname{Conj}(k, z, w)\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(32) For every real number p such that $p>0$ there exists n such that for every k such that $n \leqslant k$ holds $\left|\left(\sum_{\alpha=0}^{\kappa}\|\operatorname{Conj}(k, z, w)\|(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right|<p$.
(33) For every s_{1} such that for every k holds $s_{1}(k)=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Conj}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$ holds s_{1} is convergent and $\lim s_{1}=0_{X}$.
Let X be a Banach algebra. The functor $\exp X$ yielding a function from the carrier of X into the carrier of X is defined by:
(Def. 10) For every element z of the carrier of X holds $(\exp X)(z)=\sum(z \operatorname{ExpSeq})$.
Let us consider X, z. The functor $\exp z$ yields an element of X and is defined by:
(Def. 11) $\exp z=(\exp X)(z)$.
One can prove the following propositions:
(34) For every z holds $\exp z=\sum(z \operatorname{ExpSeq})$.
(35) Let given z_{1}, z_{2}. Suppose z_{1}, z_{2} are commutative. Then $\exp \left(z_{1}+z_{2}\right)=$ $\exp z_{1} \cdot \exp z_{2}$ and $\exp \left(z_{2}+z_{1}\right)=\exp z_{2} \cdot \exp z_{1}$ and $\exp \left(z_{1}+z_{2}\right)=\exp \left(z_{2}+\right.$ $\left.z_{1}\right)$ and $\exp z_{1}, \exp z_{2}$ are commutative.
(36) For all z_{1}, z_{2} such that z_{1}, z_{2} are commutative holds $z_{1} \cdot \exp z_{2}=\exp z_{2} \cdot z_{1}$. $\exp \left(0_{X}\right)=\mathbf{1}_{X}$.
(38) $\exp z \cdot \exp (-z)=\mathbf{1}_{X}$ and $\exp (-z) \cdot \exp z=\mathbf{1}_{X}$.
(39) $\exp z$ is invertible and $(\exp z)^{-1}=\exp (-z)$ and $\exp (-z)$ is invertible and $(\exp (-z))^{-1}=\exp z$.
(40) For every z and for all real numbers s, t holds $s \cdot z, t \cdot z$ are commutative.
(41) Let given z and s, t be real numbers. Then $\exp (s \cdot z) \cdot \exp (t \cdot z)=$ $\exp ((s+t) \cdot z)$ and $\exp (t \cdot z) \cdot \exp (s \cdot z)=\exp ((t+s) \cdot z)$ and $\exp ((s+t) \cdot z)=$ $\exp ((t+s) \cdot z)$ and $\exp (s \cdot z), \exp (t \cdot z)$ are commutative.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[12] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[13] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[14] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.
[15] Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131138, 2004.
[16] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

