The Series on Banach Algebra

Yasunari Shidama
Shinshu University
Nagano

Abstract

Summary. In this article, the basic properties of the series on Banach algebra are described. The Neumann series is introduced in the last section.

MML Identifier: LOPBAN_3.

The notation and terminology used in this paper are introduced in the following articles: [19], [21], [22], [4], [5], [3], [2], [18], [6], [1], [20], [10], [11], [12], [17], [9], [7], [8], [14], [13], [15], and [16].

1. Basic Properties of Sequences of Norm Space

Let X be a non empty normed structure and let s_{1} be a sequence of X. The functor $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ yielding a sequence of X is defined as follows:
(Def. 1) $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(0)=s_{1}(0)$ and for every natural number n holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1)=\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)+s_{1}(n+1)$.
One can prove the following proposition
(1) Let X be an add-associative right zeroed right complementable non empty normed structure and s_{1} be a sequence of X. Suppose that for every natural number n holds $s_{1}(n)=0_{X}$. Let m be a natural number. Then $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)=0_{X}$.
Let X be a real normed space and let s_{1} be a sequence of X. We say that s_{1} is summable if and only if:
(Def. 2) $\quad\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent.
Let X be a real normed space. One can verify that there exists a sequence of X which is summable.

Let X be a real normed space and let s_{1} be a sequence of X. The functor $\sum s_{1}$ yields an element of X and is defined by:
(Def. 3) $\quad \sum s_{1}=\lim \left(\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\right)$.
Let X be a real normed space and let s_{1} be a sequence of X. We say that s_{1} is norm-summable if and only if:
(Def. 4) $\left\|s_{1}\right\|$ is summable.
Next we state several propositions:
(2) For every real normed space X and for every sequence s_{1} of X and for every natural number m holds $0 \leqslant\left\|s_{1}\right\|(m)$.
(3) For every real normed space X and for all elements x, y, z of X holds $\|x-y\|=\|(x-z)+(z-y)\|$.
(4) Let X be a real normed space and s_{1} be a sequence of X. Suppose s_{1} is convergent. Let s be a real number. Suppose $0<s$. Then there exists a natural number n such that for every natural number m if $n \leqslant m$, then $\left\|s_{1}(m)-s_{1}(n)\right\|<s$.
(5) Let X be a real normed space and s_{1} be a sequence of X. Then s_{1} is Cauchy sequence by norm if and only if for every real number p such that $p>0$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\left\|s_{1}(m)-s_{1}(n)\right\|<p$.
(6) Let X be a real normed space and s_{1} be a sequence of X. Suppose that for every natural number n holds $s_{1}(n)=0_{X}$. Let m be a natural number. Then $\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}(m)=0$.
Let X be a real normed space and let s_{1} be a sequence of X. Let us observe that s_{1} is constant if and only if:
(Def. 5) There exists an element r of X such that for every natural number n holds $s_{1}(n)=r$.
Let X be a real normed space, let s_{1} be a sequence of X, and let k be a natural number. The functor $s_{1} \uparrow k$ yielding a sequence of X is defined as follows:
(Def. 6) For every natural number n holds $\left(s_{1} \uparrow k\right)(n)=s_{1}(n+k)$.
Let X be a non empty 1 -sorted structure, let N_{1} be an increasing sequence of naturals, and let s_{1} be a sequence of X. Then $s_{1} \cdot N_{1}$ is a function from \mathbb{N} into the carrier of X.

Let X be a non empty 1 -sorted structure, let N_{1} be an increasing sequence of naturals, and let s_{1} be a sequence of X. Then $s_{1} \cdot N_{1}$ is a sequence of X.

Let X be a real normed space and let s_{1}, s_{2} be sequences of X. We say that s_{1} is a subsequence of s_{2} if and only if:
(Def. 7) There exists an increasing sequence N_{1} of naturals such that $s_{1}=s_{2} \cdot N_{1}$. Next we state a number of propositions:
(7) Let X be a non empty 1 -sorted structure, s_{1} be a sequence of X, N_{1} be an increasing sequence of naturals, and n be a natural number. Then $\left(s_{1} \cdot N_{1}\right)(n)=s_{1}\left(N_{1}(n)\right)$.
(8) For every real normed space X and for every sequence s_{1} of X holds $s_{1} \uparrow 0=s_{1}$.
(9) For every real normed space X and for every sequence s_{1} of X and for all natural numbers k, m holds $s_{1} \uparrow k \uparrow m=s_{1} \uparrow m \uparrow k$.
(10) For every real normed space X and for every sequence s_{1} of X and for all natural numbers k, m holds $s_{1} \uparrow k \uparrow m=s_{1} \uparrow(k+m)$.
(11) Let X be a real normed space and s_{1}, s_{2} be sequences of X. If s_{2} is a subsequence of s_{1} and s_{1} is convergent, then s_{2} is convergent.
(12) Let X be a real normed space and s_{1}, s_{2} be sequences of X. If s_{2} is a subsequence of s_{1} and s_{1} is convergent, then $\lim s_{2}=\lim s_{1}$.
(13) Let X be a real normed space, s_{1} be a sequence of X, and k be a natural number. Then $s_{1} \uparrow k$ is a subsequence of s_{1}.
(14) Let X be a real normed space, s_{1}, s_{2} be sequences of X, and k be a natural number. If s_{1} is convergent, then $s_{1} \uparrow k$ is convergent and $\lim \left(s_{1} \uparrow\right.$ $k)=\lim s_{1}$.
(15) Let X be a real normed space and s_{1}, s_{2} be sequences of X. Suppose s_{1} is convergent and there exists a natural number k such that $s_{1}=s_{2} \uparrow k$. Then s_{2} is convergent.
(16) Let X be a real normed space and s_{1}, s_{2} be sequences of X. Suppose s_{1} is convergent and there exists a natural number k such that $s_{1}=s_{2} \uparrow k$. Then $\lim s_{2}=\lim s_{1}$.
(17) For every real normed space X and for every sequence s_{1} of X such that s_{1} is constant holds s_{1} is convergent.
(18) Let X be a real normed space and s_{1} be a sequence of X. If for every natural number n holds $s_{1}(n)=0_{X}$, then s_{1} is norm-summable.
Let X be a real normed space. Observe that there exists a sequence of X which is norm-summable.

Next we state three propositions:
(19) Let X be a real normed space and s be a sequence of X. If s is summable, then s is convergent and $\lim s=0_{X}$.
(20) For every real normed space X and for all sequences s_{3}, s_{4} of X holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}+\left(\sum_{\alpha=0}^{\kappa}\left(s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}+s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(21) For every real normed space X and for all sequences s_{3}, s_{4} of X holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa}\left(s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}-s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
Let X be a real normed space and let s_{1} be a norm-summable sequence of X. Observe that $\left\|s_{1}\right\|$ is summable.

Let X be a real normed space. One can check that every sequence of X which is summable is also convergent.

The following propositions are true:
(22) Let X be a real normed space and s_{2}, s_{5} be sequences of X. If s_{2} is summable and s_{5} is summable, then $s_{2}+s_{5}$ is summable and $\sum\left(s_{2}+s_{5}\right)=$ $\sum s_{2}+\sum s_{5}$.
(23) Let X be a real normed space and s_{2}, s_{5} be sequences of X. If s_{2} is summable and s_{5} is summable, then $s_{2}-s_{5}$ is summable and $\sum\left(s_{2}-s_{5}\right)=$ $\sum s_{2}-\sum s_{5}$.
Let X be a real normed space and let s_{2}, s_{5} be summable sequences of X. One can verify that $s_{2}+s_{5}$ is summable and $s_{2}-s_{5}$ is summable.

We now state two propositions:
(24) For every real normed space X and for every sequence s_{1} of X and for every real number z holds $\left(\sum_{\alpha=0}^{\kappa}\left(z \cdot s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=z \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$.
(25) Let X be a real normed space, s_{1} be a summable sequence of X, and z be a real number. Then $z \cdot s_{1}$ is summable and $\sum\left(z \cdot s_{1}\right)=z \cdot \sum s_{1}$.
Let X be a real normed space, let z be a real number, and let s_{1} be a summable sequence of X. Observe that $z \cdot s_{1}$ is summable.

One can prove the following two propositions:
(26) Let X be a real normed space and s, s_{3} be sequences of X. If for every natural number n holds $s_{3}(n)=s(0)$, then $\left(\sum_{\alpha=0}^{\kappa}(s \uparrow 1)(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}} \uparrow 1-s_{3}$.
(27) Let X be a real normed space and s be a sequence of X. If s is summable, then for every natural number n holds $s \uparrow n$ is summable.
Let X be a real normed space, let s_{1} be a summable sequence of X, and let n be a natural number. Observe that $s_{1} \uparrow n$ is summable.

Next we state the proposition
(28) Let X be a real normed space and s_{1} be a sequence of X. Then $\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}$ is upper bounded if and only if s_{1} is norm-summable.
Let X be a real normed space and let s_{1} be a norm-summable sequence of
X. One can check that $\left(\sum_{\alpha=0}^{\kappa}\left\|s_{1}\right\|(\alpha)\right)_{\kappa \in \mathbb{N}}$ is upper bounded.
One can prove the following propositions:
(29) Let X be a real Banach space and s_{1} be a sequence of X. Then s_{1} is summable if and only if for every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\left\|\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right\|<p$.
(30) Let X be a real normed space, s be a sequence of X, and n, m be natural numbers. If $n \leqslant m$, then $\left\|\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right\| \leqslant$ $\left|\left(\sum_{\alpha=0}^{\kappa}\|s\|(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}\|s\|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|$.
(31) For every real Banach space X and for every sequence s_{1} of X such that s_{1} is norm-summable holds s_{1} is summable.
(32) Let X be a real normed space, r_{1} be a sequence of real numbers, and s_{5} be a sequence of X. Suppose r_{1} is summable and there exists a natural
number m such that for every natural number n such that $m \leqslant n$ holds $\left\|s_{5}(n)\right\| \leqslant r_{1}(n)$. Then s_{5} is norm-summable.
(33) Let X be a real normed space and s_{2}, s_{5} be sequences of X. Suppose for every natural number n holds $0 \leqslant\left\|s_{2}\right\|(n)$ and $\left\|s_{2}\right\|(n) \leqslant\left\|s_{5}\right\|(n)$ and s_{5} is norm-summable. Then s_{2} is norm-summable and $\sum\left\|s_{2}\right\| \leqslant \sum\left\|s_{5}\right\|$.
(34) Let X be a real normed space and s_{1} be a sequence of X. Suppose that
(i) for every natural number n holds $\left\|s_{1}\right\|(n)>0$, and
(ii) there exists a natural number m such that for every natural number n such that $n \geqslant m$ holds $\frac{\left\|s_{1}\right\|(n+1)}{\left\|s_{1}\right\|(n)} \geqslant 1$.
Then s_{1} is not norm-summable.
(35) Let X be a real normed space, s_{1} be a sequence of X, and r_{1} be a sequence of real numbers. Suppose for every natural number n holds $r_{1}(n)=\sqrt[n]{\left\|s_{1}\right\|(n)}$ and r_{1} is convergent and $\lim r_{1}<1$. Then s_{1} is normsummable.
(36) Let X be a real normed space, s_{1} be a sequence of X, and r_{1} be a sequence of real numbers. Suppose that
(i) for every natural number n holds $r_{1}(n)=\sqrt[n]{\left\|s_{1}\right\|(n)}$, and
(ii) there exists a natural number m such that for every natural number n such that $m \leqslant n$ holds $r_{1}(n) \geqslant 1$.
Then $\left\|s_{1}\right\|$ is not summable.
(37) Let X be a real normed space, s_{1} be a sequence of X, and r_{1} be a sequence of real numbers. Suppose for every natural number n holds $r_{1}(n)=\sqrt[n]{\left\|s_{1}\right\|(n)}$ and r_{1} is convergent and $\lim r_{1}>1$. Then s_{1} is not norm-summable.
(38) Let X be a real normed space, s_{1} be a sequence of X, and r_{1} be a sequence of real numbers. Suppose $\left\|s_{1}\right\|$ is non-increasing and for every natural number n holds $r_{1}(n)=2^{n} \cdot\left\|s_{1}\right\|\left(2^{n}\right)$. Then s_{1} is norm-summable if and only if r_{1} is summable.
(39) Let X be a real normed space, s_{1} be a sequence of X, and p be a real number. Suppose $p>1$ and for every natural number n such that $n \geqslant 1$ holds $\left\|s_{1}\right\|(n)=\frac{1}{n^{p}}$. Then s_{1} is norm-summable.
(40) Let X be a real normed space, s_{1} be a sequence of X, and p be a real number. Suppose $p \leqslant 1$ and for every natural number n such that $n \geqslant 1$ holds $\left\|s_{1}\right\|(n)=\frac{1}{n^{p}}$. Then s_{1} is not norm-summable.
(41) Let X be a real normed space, s_{1} be a sequence of X, and r_{1} be a sequence of real numbers. Suppose for every natural number n holds $s_{1}(n) \neq 0_{X}$ and $r_{1}(n)=\frac{\left\|s_{1}\right\|(n+1)}{\left\|s_{1}\right\|(n)}$ and r_{1} is convergent and $\lim r_{1}<1$. Then s_{1} is norm-summable.
(42) Let X be a real normed space and s_{1} be a sequence of X. Suppose that
(i) for every natural number n holds $s_{1}(n) \neq 0_{X}$, and
(ii) there exists a natural number m such that for every natural number n such that $n \geqslant m$ holds $\frac{\left\|s_{1}\right\|(n+1)}{\left\|s_{1}\right\|(n)} \geqslant 1$.
Then s_{1} is not norm-summable.
Let X be a real Banach space. Observe that every sequence of X which is norm-summable is also summable.

2. Basic Properties of Sequences of Banach Algebra

The scheme ExNCBASeq deals with a non empty normed algebra structure \mathcal{A} and a unary functor \mathcal{F} yielding a point of \mathcal{A}, and states that:

There exists a sequence S of \mathcal{A} such that for every natural number n holds $S(n)=\mathcal{F}(n)$
for all values of the parameters.
The following proposition is true
(43) Let X be a Banach algebra, x, y, z be elements of X, and a, b be real numbers. Then $x+y=y+x$ and $(x+y)+z=x+(y+z)$ and $x+0_{X}=x$ and there exists an element t of X such that $x+t=0_{X}$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ and $1 \cdot x=x$ and $0 \cdot x=0_{X}$ and $a \cdot 0_{X}=0_{X}$ and $(-1) \cdot x=-x$ and $x \cdot \mathbf{1}_{X}=x$ and $\mathbf{1}_{X} \cdot x=x$ and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$ and $a \cdot(x \cdot y)=(a \cdot x) \cdot y$ and $a \cdot(x+y)=a \cdot x+a \cdot y$ and $(a+b) \cdot x=a \cdot x+b \cdot x$ and $(a \cdot b) \cdot x=a \cdot(b \cdot x)$ and $(a \cdot b) \cdot(x \cdot y)=a \cdot x \cdot(b \cdot y)$ and $a \cdot(x \cdot y)=x \cdot(a \cdot y)$ and $0_{X} \cdot x=0_{X}$ and $x \cdot 0_{X}=0_{X}$ and $x \cdot(y-z)=x \cdot y-x \cdot z$ and $(y-z) \cdot x=y \cdot x-z \cdot x$ and $(x+y)-z=x+(y-z)$ and $(x-y)+z=$ $x-(y-z)$ and $x-y-z=x-(y+z)$ and $x+y=(x-z)+(z+y)$ and $x-y=(x-z)+(z-y)$ and $x=(x-y)+y$ and $x=y-(y-x)$ and $\|x\|=0$ iff $x=0_{X}$ and $\|a \cdot x\|=|a| \cdot\|x\|$ and $\|x+y\| \leqslant\|x\|+\|y\|$ and $\|x \cdot y\| \leqslant\|x\| \cdot\|y\|$ and $\left\|\mathbf{1}_{X}\right\|=1$ and X is complete.
Let X be a non empty multiplicative loop structure and let v be an element of X. We say that v is invertible if and only if:
(Def. 8) There exists an element w of X such that $v \cdot w=\mathbf{1}_{X}$ and $w \cdot v=\mathbf{1}_{X}$.
Let X be a non empty normed algebra structure, let S be a sequence of X, and let a be an element of X. The functor $a \cdot S$ yielding a sequence of X is defined by:
(Def. 9) For every natural number n holds $(a \cdot S)(n)=a \cdot S(n)$.
Let X be a non empty normed algebra structure, let S be a sequence of X, and let a be an element of X. The functor $S \cdot a$ yields a sequence of X and is defined by:
(Def. 10) For every natural number n holds $(S \cdot a)(n)=S(n) \cdot a$.
Let X be a non empty normed algebra structure and let s_{2}, s_{5} be sequences of X. The functor $s_{2} \cdot s_{5}$ yielding a sequence of X is defined as follows:
(Def. 11) For every natural number n holds $\left(s_{2} \cdot s_{5}\right)(n)=s_{2}(n) \cdot s_{5}(n)$.
Let X be a Banach algebra and let x be an element of X. Let us assume that x is invertible. The functor x^{-1} yielding an element of X is defined as follows:
(Def. 12) $x \cdot x^{-1}=\mathbf{1}_{X}$ and $x^{-1} \cdot x=\mathbf{1}_{X}$.
Let X be a Banach algebra and let z be an element of X. The functor $\left(z^{\kappa}\right)_{\kappa \in \mathbb{N}}$ yielding a sequence of X is defined as follows:
(Def. 13) $\quad\left(z^{\kappa}\right)_{\kappa \in \mathbb{N}}(0)=\mathbf{1}_{X}$ and for every natural number n holds $\left(z^{\kappa}\right)_{\kappa \in \mathbb{N}}(n+1)=$ $\left(z^{\kappa}\right)_{\kappa \in \mathbb{N}}(n) \cdot z$.
Let X be a Banach algebra, let z be an element of X, and let n be a natural number. The functor $z_{\mathbb{N}}^{n}$ yields an element of X and is defined by:
(Def. 14) $z_{\mathbb{N}}^{n}=\left(z^{\kappa}\right)_{\kappa \in \mathbb{N}}(n)$.
One can prove the following four propositions:
(44) For every Banach algebra X and for every element z of X holds $z_{\mathbb{N}}^{0}=\mathbf{1}_{X}$.
(45) For every Banach algebra X and for every element z of X such that $\|z\|<1$ holds $\left(z^{\kappa}\right)_{\kappa \in \mathbb{N}}$ is summable and norm-summable.
(46) Let X be a Banach algebra and x be a point of X. If $\left\|\mathbf{1}_{X}-x\right\|<1$, then $\left(\left(\mathbf{1}_{X}-x\right)^{\kappa}\right)_{\kappa \in \mathbb{N}}$ is summable and $\left(\left(\mathbf{1}_{X}-x\right)^{\kappa}\right)_{\kappa \in \mathbb{N}}$ is norm-summable.
(47) For every Banach algebra X and for every point x of X such that $\| \mathbf{1}_{X}-$ $x \|<1$ holds x is invertible and $x^{-1}=\sum\left(\left(\left(\mathbf{1}_{X}-x\right)^{\kappa}\right)_{\kappa \in \mathbb{N}}\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[12] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[13] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[14] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2003.
[16] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.
[17] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. Formalized Mathematics, 11(4):377-380, 2003.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 3, 2004

