The Series on Banach Algebra

Yasunari Shidama Shinshu University Nagano

Summary. In this article, the basic properties of the series on Banach algebra are described. The Neumann series is introduced in the last section.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{LOPBAN_3}.$

The notation and terminology used in this paper are introduced in the following articles: [19], [21], [22], [4], [5], [3], [2], [18], [6], [1], [20], [10], [11], [12], [17], [9], [7], [8], [14], [13], [15], and [16].

1. BASIC PROPERTIES OF SEQUENCES OF NORM SPACE

Let X be a non empty normed structure and let s_1 be a sequence of X. The functor $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}$ yielding a sequence of X is defined as follows:

(Def. 1) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(0) = s_1(0)$ and for every natural number n holds $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(n) + s_1(n+1).$

One can prove the following proposition

(1) Let X be an add-associative right zeroed right complementable non empty normed structure and s_1 be a sequence of X. Suppose that for every natural number n holds $s_1(n) = 0_X$. Let m be a natural number. Then $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(m) = 0_X$.

Let X be a real normed space and let s_1 be a sequence of X. We say that s_1 is summable if and only if:

(Def. 2) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent.

Let X be a real normed space. One can verify that there exists a sequence of X which is summable.

Let X be a real normed space and let s_1 be a sequence of X. The functor $\sum s_1$ yields an element of X and is defined by:

C 2004 University of Białystok ISSN 1426-2630 (Def. 3) $\sum s_1 = \lim((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}).$

Let X be a real normed space and let s_1 be a sequence of X. We say that s_1 is norm-summable if and only if:

(Def. 4) $||s_1||$ is summable.

Next we state several propositions:

- (2) For every real normed space X and for every sequence s_1 of X and for every natural number m holds $0 \leq ||s_1||(m)$.
- (3) For every real normed space X and for all elements x, y, z of X holds ||x y|| = ||(x z) + (z y)||.
- (4) Let X be a real normed space and s_1 be a sequence of X. Suppose s_1 is convergent. Let s be a real number. Suppose 0 < s. Then there exists a natural number n such that for every natural number m if $n \leq m$, then $||s_1(m) s_1(n)|| < s$.
- (5) Let X be a real normed space and s_1 be a sequence of X. Then s_1 is Cauchy sequence by norm if and only if for every real number p such that p > 0 there exists a natural number n such that for every natural number m such that $n \leq m$ holds $||s_1(m) - s_1(n)|| < p$.
- (6) Let X be a real normed space and s_1 be a sequence of X. Suppose that for every natural number n holds $s_1(n) = 0_X$. Let m be a natural number. Then $(\sum_{\alpha=0}^{\kappa} ||s_1||(\alpha))_{\kappa \in \mathbb{N}}(m) = 0$.

Let X be a real normed space and let s_1 be a sequence of X. Let us observe that s_1 is constant if and only if:

(Def. 5) There exists an element r of X such that for every natural number n holds $s_1(n) = r$.

Let X be a real normed space, let s_1 be a sequence of X, and let k be a natural number. The functor $s_1 \uparrow k$ yielding a sequence of X is defined as follows:

(Def. 6) For every natural number n holds $(s_1 \uparrow k)(n) = s_1(n+k)$.

Let X be a non empty 1-sorted structure, let N_1 be an increasing sequence of naturals, and let s_1 be a sequence of X. Then $s_1 \cdot N_1$ is a function from \mathbb{N} into the carrier of X.

Let X be a non empty 1-sorted structure, let N_1 be an increasing sequence of naturals, and let s_1 be a sequence of X. Then $s_1 \cdot N_1$ is a sequence of X.

Let X be a real normed space and let s_1 , s_2 be sequences of X. We say that s_1 is a subsequence of s_2 if and only if:

(Def. 7) There exists an increasing sequence N_1 of naturals such that $s_1 = s_2 \cdot N_1$. Next we state a number of propositions:

(7) Let X be a non empty 1-sorted structure, s_1 be a sequence of X, N_1 be an increasing sequence of naturals, and n be a natural number. Then $(s_1 \cdot N_1)(n) = s_1(N_1(n)).$

- (8) For every real normed space X and for every sequence s_1 of X holds $s_1 \uparrow 0 = s_1$.
- (9) For every real normed space X and for every sequence s_1 of X and for all natural numbers k, m holds $s_1 \uparrow k \uparrow m = s_1 \uparrow m \uparrow k$.
- (10) For every real normed space X and for every sequence s_1 of X and for all natural numbers k, m holds $s_1 \uparrow k \uparrow m = s_1 \uparrow (k+m)$.
- (11) Let X be a real normed space and s_1 , s_2 be sequences of X. If s_2 is a subsequence of s_1 and s_1 is convergent, then s_2 is convergent.
- (12) Let X be a real normed space and s_1 , s_2 be sequences of X. If s_2 is a subsequence of s_1 and s_1 is convergent, then $\lim s_2 = \lim s_1$.
- (13) Let X be a real normed space, s_1 be a sequence of X, and k be a natural number. Then $s_1 \uparrow k$ is a subsequence of s_1 .
- (14) Let X be a real normed space, s_1 , s_2 be sequences of X, and k be a natural number. If s_1 is convergent, then $s_1 \uparrow k$ is convergent and $\lim(s_1 \uparrow k) = \lim s_1$.
- (15) Let X be a real normed space and s_1 , s_2 be sequences of X. Suppose s_1 is convergent and there exists a natural number k such that $s_1 = s_2 \uparrow k$. Then s_2 is convergent.
- (16) Let X be a real normed space and s_1 , s_2 be sequences of X. Suppose s_1 is convergent and there exists a natural number k such that $s_1 = s_2 \uparrow k$. Then $\lim s_2 = \lim s_1$.
- (17) For every real normed space X and for every sequence s_1 of X such that s_1 is constant holds s_1 is convergent.
- (18) Let X be a real normed space and s_1 be a sequence of X. If for every natural number n holds $s_1(n) = 0_X$, then s_1 is norm-summable.

Let X be a real normed space. Observe that there exists a sequence of X which is norm-summable.

Next we state three propositions:

- (19) Let X be a real normed space and s be a sequence of X. If s is summable, then s is convergent and $\lim s = 0_X$.
- (20) For every real normed space X and for all sequences s_3 , s_4 of X holds $(\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa\in\mathbb{N}} + (\sum_{\alpha=0}^{\kappa} (s_4)(\alpha))_{\kappa\in\mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_3+s_4)(\alpha))_{\kappa\in\mathbb{N}}$.
- (21) For every real normed space X and for all sequences s_3 , s_4 of X holds $(\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa\in\mathbb{N}} (\sum_{\alpha=0}^{\kappa} (s_4)(\alpha))_{\kappa\in\mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_3 s_4)(\alpha))_{\kappa\in\mathbb{N}}$.

Let X be a real normed space and let s_1 be a norm-summable sequence of X. Observe that $||s_1||$ is summable.

Let X be a real normed space. One can check that every sequence of X which is summable is also convergent.

The following propositions are true:

YASUNARI SHIDAMA

- (22) Let X be a real normed space and s_2 , s_5 be sequences of X. If s_2 is summable and s_5 is summable, then s_2+s_5 is summable and $\sum(s_2+s_5) = \sum s_2 + \sum s_5$.
- (23) Let X be a real normed space and s_2 , s_5 be sequences of X. If s_2 is summable and s_5 is summable, then $s_2 s_5$ is summable and $\sum (s_2 s_5) = \sum s_2 \sum s_5$.

Let X be a real normed space and let s_2 , s_5 be summable sequences of X. One can verify that $s_2 + s_5$ is summable and $s_2 - s_5$ is summable.

We now state two propositions:

- (24) For every real normed space X and for every sequence s_1 of X and for every real number z holds $(\sum_{\alpha=0}^{\kappa} (z \cdot s_1)(\alpha))_{\kappa \in \mathbb{N}} = z \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$.
- (25) Let X be a real normed space, s_1 be a summable sequence of X, and z be a real number. Then $z \cdot s_1$ is summable and $\sum (z \cdot s_1) = z \cdot \sum s_1$.

Let X be a real normed space, let z be a real number, and let s_1 be a summable sequence of X. Observe that $z \cdot s_1$ is summable.

One can prove the following two propositions:

- (26) Let X be a real normed space and s, s_3 be sequences of X. If for every natural number n holds $s_3(n) = s(0)$, then $(\sum_{\alpha=0}^{\kappa} (s \uparrow 1)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} \uparrow 1 - s_3$.
- (27) Let X be a real normed space and s be a sequence of X. If s is summable, then for every natural number n holds $s \uparrow n$ is summable.

Let X be a real normed space, let s_1 be a summable sequence of X, and let n be a natural number. Observe that $s_1 \uparrow n$ is summable.

Next we state the proposition

- (28) Let X be a real normed space and s_1 be a sequence of X. Then $(\sum_{\alpha=0}^{\kappa} ||s_1||(\alpha))_{\kappa\in\mathbb{N}}$ is upper bounded if and only if s_1 is norm-summable. Let X be a real normed space and let s_1 be a norm-summable sequence of
- X. One can check that $(\sum_{\alpha=0}^{\kappa} ||s_1||(\alpha))_{\kappa \in \mathbb{N}}$ is upper bounded.

One can prove the following propositions:

- (29) Let X be a real Banach space and s_1 be a sequence of X. Then s_1 is summable if and only if for every real number p such that 0 < p there exists a natural number n such that for every natural number m such that $n \leq m$ holds $\|(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(m) - (\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(n)\| < p$.
- (30) Let X be a real normed space, s be a sequence of X, and n, m be natural numbers. If $n \leq m$, then $\|(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n)\| \leq \|(\sum_{\alpha=0}^{\kappa} \|s\|(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} \|s\|(\alpha))_{\kappa \in \mathbb{N}}(n)\|.$
- (31) For every real Banach space X and for every sequence s_1 of X such that s_1 is norm-summable holds s_1 is summable.
- (32) Let X be a real normed space, r_1 be a sequence of real numbers, and s_5 be a sequence of X. Suppose r_1 is summable and there exists a natural

number m such that for every natural number n such that $m \leq n$ holds $||s_5(n)|| \leq r_1(n)$. Then s_5 is norm-summable.

- (33) Let X be a real normed space and s_2 , s_5 be sequences of X. Suppose for every natural number n holds $0 \leq ||s_2||(n)$ and $||s_2||(n) \leq ||s_5||(n)$ and s_5 is norm-summable. Then s_2 is norm-summable and $\sum ||s_2|| \leq \sum ||s_5||$.
- (34) Let X be a real normed space and s_1 be a sequence of X. Suppose that
- (i) for every natural number n holds $||s_1||(n) > 0$, and
- (ii) there exists a natural number m such that for every natural number n such that $n \ge m$ holds $\frac{\|s_1\|(n+1)}{\|s_1\|(n)} \ge 1$. Then s_1 is not norm-summable.
- (35) Let X be a real normed space, s_1 be a sequence of X, and r_1 be a sequence of real numbers. Suppose for every natural number n holds $r_1(n) = \sqrt[n]{\|s_1\|(n)}$ and r_1 is convergent and $\lim r_1 < 1$. Then s_1 is norm-summable.
- (36) Let X be a real normed space, s_1 be a sequence of X, and r_1 be a sequence of real numbers. Suppose that
 - (i) for every natural number n holds $r_1(n) = \sqrt[n]{\|s_1\|(n)}$, and
- (ii) there exists a natural number m such that for every natural number n such that $m \leq n$ holds $r_1(n) \geq 1$. Then $\|e\|$ is not supposed.

Then $||s_1||$ is not summable.

- (37) Let X be a real normed space, s_1 be a sequence of X, and r_1 be a sequence of real numbers. Suppose for every natural number n holds $r_1(n) = \sqrt[n]{\|s_1\|(n)}$ and r_1 is convergent and $\lim r_1 > 1$. Then s_1 is not norm-summable.
- (38) Let X be a real normed space, s_1 be a sequence of X, and r_1 be a sequence of real numbers. Suppose $||s_1||$ is non-increasing and for every natural number n holds $r_1(n) = 2^n \cdot ||s_1|| (2^n)$. Then s_1 is norm-summable if and only if r_1 is summable.
- (39) Let X be a real normed space, s_1 be a sequence of X, and p be a real number. Suppose p > 1 and for every natural number n such that $n \ge 1$ holds $||s_1||(n) = \frac{1}{n^p}$. Then s_1 is norm-summable.
- (40) Let X be a real normed space, s_1 be a sequence of X, and p be a real number. Suppose $p \leq 1$ and for every natural number n such that $n \geq 1$ holds $||s_1||(n) = \frac{1}{n^p}$. Then s_1 is not norm-summable.
- (41) Let X be a real normed space, s_1 be a sequence of X, and r_1 be a sequence of real numbers. Suppose for every natural number n holds $s_1(n) \neq 0_X$ and $r_1(n) = \frac{\|s_1\|(n+1)}{\|s_1\|(n)}$ and r_1 is convergent and $\lim r_1 < 1$. Then s_1 is norm-summable.
- (42) Let X be a real normed space and s_1 be a sequence of X. Suppose that (i) for every natural number n holds $s_1(n) \neq 0_X$, and

YASUNARI SHIDAMA

(ii) there exists a natural number m such that for every natural number n such that $n \ge m$ holds $\frac{\|s_1\|(n+1)}{\|s_1\|(n)} \ge 1$. Then s_1 is not norm-summable.

Let X be a real Banach space. Observe that every sequence of X which is norm-summable is also summable.

2. BASIC PROPERTIES OF SEQUENCES OF BANACH ALGEBRA

The scheme ExNCBASeq deals with a non empty normed algebra structure \mathcal{A} and a unary functor \mathcal{F} yielding a point of \mathcal{A} , and states that:

There exists a sequence S of \mathcal{A} such that for every natural number

 $n \text{ holds } S(n) = \mathcal{F}(n)$

for all values of the parameters.

The following proposition is true

(43) Let X be a Banach algebra, x, y, z be elements of X, and a, b be real numbers. Then x+y = y+x and (x+y)+z = x+(y+z) and $x+0_X = x$ and there exists an element t of X such that $x+t = 0_X$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $1 \cdot x = x$ and $0 \cdot x = 0_X$ and $a \cdot 0_X = 0_X$ and $(-1) \cdot x = -x$ and $x \cdot 1_X = x$ and $1_X \cdot x = x$ and $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$ and $a \cdot (x \cdot y) = (a \cdot x) \cdot y$ and $a \cdot (x+y) = a \cdot x + a \cdot y$ and $(a+b) \cdot x = a \cdot x + b \cdot x$ and $(a \cdot b) \cdot (x \cdot y) = a \cdot x \cdot (b \cdot y)$ and $a \cdot (x \cdot y) = x \cdot (a \cdot y)$ and $0_X \cdot x = 0_X$ and $x \cdot 0_X = 0_X$ and $x \cdot (y-z) = x \cdot y - x \cdot z$ and $(y-z) \cdot x = y \cdot x - z \cdot x$ and (x+y) - z = x + (y-z) and (x-y) + z = x - (y-z) and x - y - z = x - (y+z) and x + y = (x-z) + (z+y) and x - y = (x-z) + (z-y) and x = (x-y) + y and x = y - (y-x) and $\|x\| = 0$ iff $x = 0_X$ and $\|a \cdot x\| = |a| \cdot \|x\|$ and $\|x + y\| \le \|x\| + \|y\|$ and $\|x \cdot y\| \le \|x\| \cdot \|y\|$ and $\|1_X\| = 1$ and X is complete.

Let X be a non empty multiplicative loop structure and let v be an element of X. We say that v is invertible if and only if:

(Def. 8) There exists an element w of X such that $v \cdot w = \mathbf{1}_X$ and $w \cdot v = \mathbf{1}_X$.

Let X be a non empty normed algebra structure, let S be a sequence of X, and let a be an element of X. The functor $a \cdot S$ yielding a sequence of X is defined by:

(Def. 9) For every natural number n holds $(a \cdot S)(n) = a \cdot S(n)$.

Let X be a non empty normed algebra structure, let S be a sequence of X, and let a be an element of X. The functor $S \cdot a$ yields a sequence of X and is defined by:

(Def. 10) For every natural number n holds $(S \cdot a)(n) = S(n) \cdot a$.

Let X be a non empty normed algebra structure and let s_2 , s_5 be sequences of X. The functor $s_2 \cdot s_5$ yielding a sequence of X is defined as follows:

(Def. 11) For every natural number n holds $(s_2 \cdot s_5)(n) = s_2(n) \cdot s_5(n)$.

Let X be a Banach algebra and let x be an element of X. Let us assume that x is invertible. The functor x^{-1} yielding an element of X is defined as follows:

x is invertible. The functor x yielding an element of A is defined as follows

(Def. 12) $x \cdot x^{-1} = \mathbf{1}_X$ and $x^{-1} \cdot x = \mathbf{1}_X$.

Let X be a Banach algebra and let z be an element of X. The functor $(z^{\kappa})_{\kappa \in \mathbb{N}}$ yielding a sequence of X is defined as follows:

(Def. 13) $(z^{\kappa})_{\kappa \in \mathbb{N}}(0) = \mathbf{1}_X$ and for every natural number n holds $(z^{\kappa})_{\kappa \in \mathbb{N}}(n+1) = (z^{\kappa})_{\kappa \in \mathbb{N}}(n) \cdot z$.

Let X be a Banach algebra, let z be an element of X, and let n be a natural number. The functor $z_{\mathbb{N}}^n$ yields an element of X and is defined by:

(Def. 14)
$$z_{\mathbb{N}}^n = (z^{\kappa})_{\kappa \in \mathbb{N}}(n).$$

One can prove the following four propositions:

- (44) For every Banach algebra X and for every element z of X holds $z_{\mathbb{N}}^0 = \mathbf{1}_X$.
- (45) For every Banach algebra X and for every element z of X such that ||z|| < 1 holds $(z^{\kappa})_{\kappa \in \mathbb{N}}$ is summable and norm-summable.
- (46) Let X be a Banach algebra and x be a point of X. If $||\mathbf{1}_X x|| < 1$, then $((\mathbf{1}_X x)^{\kappa})_{\kappa \in \mathbb{N}}$ is summable and $((\mathbf{1}_X x)^{\kappa})_{\kappa \in \mathbb{N}}$ is norm-summable.
- (47) For every Banach algebra X and for every point x of X such that $||\mathbf{1}_X x|| < 1$ holds x is invertible and $x^{-1} = \sum (((\mathbf{1}_X x)^{\kappa})_{\kappa \in \mathbb{N}}).$

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
 [5] Czesław Byliński. Functiona from a get to a get. Formalized Mathematica, 1(1):152–164.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
 [6] Kenetter Hamiltonia Darie and antical mathematical Mathematical Kenetter Mathematical Science and Science and Science Science Science and Science Scien
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [12] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [13] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [14] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449– 452, 1991.
- [15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2003.

YASUNARI SHIDAMA

- [16] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103–108, 2004.
- [17] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. Formalized Mathematics, 11(4):377-380, 2003.
- [18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, [23] Wijstein R. Ly Schemen and Scheme and Sch
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 3, 2004