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Summary. In this article, the basic properties of Banach algebra are de-
scribed. This algebra is defined as the set of all bounded linear operators from

one normed space to another.

MML Identifier: LOPBAN 2.

The papers [21], [8], [23], [25], [24], [5], [7], [6], [19], [4], [1], [2], [18], [10], [22],

[13], [3], [20], [16], [15], [9], [12], [11], [14], and [17] provide the terminology and

notation for this paper.

Let X be a non empty set and let f , g be elements of XX . Then g · f is an

element of XX .

One can prove the following propositions:

(1) Let X, Y , Z be real linear spaces, f be a linear operator from X into Y ,

and g be a linear operator from Y into Z. Then g · f is a linear operator

from X into Z.

(2) Let X, Y , Z be real normed spaces, f be a bounded linear operator from

X into Y , and g be a bounded linear operator from Y into Z. Then

(i) g · f is a bounded linear operator from X into Z, and

(ii) for every vector x of X holds ‖(g ·f)(x)‖ ¬ (BdLinOpsNorm(Y, Z))(g) ·

(BdLinOpsNorm(X,Y ))(f) · ‖x‖ and (BdLinOpsNorm(X, Z))(g · f) ¬

(BdLinOpsNorm(Y, Z))(g) · (BdLinOpsNorm(X, Y ))(f).

Let X be a real normed space and let f , g be bounded linear operators from

X into X. Then g · f is a bounded linear operator from X into X.

Let X be a real normed space and let f , g be elements of BdLinOps(X,X).

The functor f+g yields an element of BdLinOps(X,X) and is defined as follows:

103
c© 2004 University of Białystok

ISSN 1426–2630



104 yasunari shidama

(Def. 1) f + g = (Add (BdLinOps(X,X),

RVectorSpaceOfLinearOperators(X, X)))(f, g).

Let X be a real normed space and let f , g be elements of BdLinOps(X,X).

The functor g · f yielding an element of BdLinOps(X, X) is defined as follows:

(Def. 2) g · f = modetrans(g, X,X) ·modetrans(f, X, X).

Let X be a real normed space, let f be an element of BdLinOps(X,X), and

let a be a real number. The functor a · f yields an element of BdLinOps(X,X)

and is defined by:

(Def. 3) a · f = (Mult (BdLinOps(X, X),

RVectorSpaceOfLinearOperators(X, X)))(a, f).

Let X be a real normed space. The functor FuncMult(X) yielding a binary

operation on BdLinOps(X, X) is defined as follows:

(Def. 4) For all elements f , g of BdLinOps(X, X) holds (FuncMult(X))(f, g) =

f · g.

The following proposition is true

(3) For every real normed space X holds idthe carrier of X is a bounded linear

operator from X into X.

Let X be a real normed space. The functor FuncUnit(X) yields an element

of BdLinOps(X, X) and is defined as follows:

(Def. 5) FuncUnit(X) = idthe carrier of X .

One can prove the following propositions:

(4) Let X be a real normed space and f , g, h be bounded linear operators

from X into X. Then h = f · g if and only if for every vector x of X holds

h(x) = f(g(x)).

(5) For every real normed space X and for all bounded linear operators f ,

g, h from X into X holds f · (g · h) = (f · g) · h.

(6) Let X be a real normed space and f be a bounded linear operator from

X into X. Then f · idthe carrier of X = f and idthe carrier of X · f = f.

(7) For every real normed space X and for all elements f , g, h of

BdLinOps(X,X) holds f · (g · h) = (f · g) · h.

(8) For every real normed space X and for every element f of

BdLinOps(X,X) holds f · FuncUnit(X) = f and FuncUnit(X) · f = f.

(9) For every real normed space X and for all elements f , g, h of

BdLinOps(X,X) holds f · (g + h) = f · g + f · h.

(10) For every real normed space X and for all elements f , g, h of

BdLinOps(X,X) holds (g + h) · f = g · f + h · f.

(11) Let X be a real normed space, f , g be elements of BdLinOps(X, X), and

a, b be real numbers. Then (a · b) · (f · g) = a · f · (b · g).
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(12) For every real normed space X and for all elements f , g of

BdLinOps(X, X) and for every real number a holds a · (f · g) = (a · f) · g.

LetX be a real normed space. The functor RingOfBoundedLinearOperators(X)

yielding a double loop structure is defined as follows:

(Def. 6) RingOfBoundedLinearOperators(X) = 〈BdLinOps(X, X),Add (BdLinOps

(X, X),RVectorSpaceOfLinearOperators(X, X)),FuncMult(X),FuncUnit(X),

Zero (BdLinOps(X,X),RVectorSpaceOfLinearOperators(X, X))〉.

LetX be a real normed space. Observe that RingOfBoundedLinearOperators(X)

is non empty and strict.

One can prove the following propositions:

(13) Let X be a real normed space and x, y, z be elements of

RingOfBoundedLinearOperators(X). Then x + y = y + x and (x +

y) + z = x + (y + z) and x + 0RingOfBoundedLinearOperators(X) = x and

there exists an element t of RingOfBoundedLinearOperators(X) such that

x + t = 0RingOfBoundedLinearOperators(X) and (x · y) · z = x · (y · z) and

x · 1RingOfBoundedLinearOperators(X) = x and 1RingOfBoundedLinearOperators(X) ·

x = x and x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x.

(14) For every real normed spaceX holds RingOfBoundedLinearOperators(X)

is a ring.

LetX be a real normed space. Note that RingOfBoundedLinearOperators(X)

is Abelian, add-associative, right zeroed, right complementable, associative, left

unital, right unital, and distributive.

Let X be a real normed space.

The functor RAlgebraOfBoundedLinearOperators(X) yielding an algebra

structure is defined as follows:

(Def. 7) RAlgebraOfBoundedLinearOperators(X) = 〈BdLinOps(X,X),

FuncMult(X),Add (BdLinOps(X, X),RVectorSpaceOfLinearOperators

(X, X)),Mult (BdLinOps(X, X),RVectorSpaceOfLinearOperators(X, X)),

FuncUnit(X),Zero (BdLinOps(X, X),RVectorSpaceOfLinearOperators

(X, X))〉.

Let X be a real normed space.

Observe that RAlgebraOfBoundedLinearOperators(X) is non empty and

strict.

Next we state the proposition

(15) Let X be a real normed space, x, y, z be elements of

RAlgebraOfBoundedLinearOperators(X), and a, b be real numbers.

Then x + y = y + x and (x + y) + z = x + (y + z)

and x + 0RAlgebraOfBoundedLinearOperators(X) = x and there exists

an element t of RAlgebraOfBoundedLinearOperators(X) such that

x + t = 0RAlgebraOfBoundedLinearOperators(X) and (x · y) · z =
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x · (y · z) and x · 1RAlgebraOfBoundedLinearOperators(X) = x and

1RAlgebraOfBoundedLinearOperators(X) · x = x and x · (y + z) = x · y + x · z and

(y+z)·x = y ·x+z ·x and a·(x·y) = (a·x)·y and a·(x+y) = a·x+a·y and

(a+b) ·x = a ·x+b ·x and (a ·b) ·x = a ·(b ·x) and (a ·b) ·(x ·y) = a ·x ·(b ·y).

A BL algebra is an Abelian add-associative right zeroed right complemen-

table associative algebra-like non empty algebra structure.

The following proposition is true

(16) For every real normed space X holds

RAlgebraOfBoundedLinearOperators(X) is a BL algebra.

One can check that l1-Space is complete.

Let us mention that l1-Space is non trivial.

One can verify that there exists a real Banach space which is non trivial.

One can prove the following propositions:

(17) For every non trivial real normed space X there exists a vector w of X

such that ‖w‖ = 1.

(18) For every non trivial real normed spaceX holds (BdLinOpsNorm(X, X))

(idthe carrier of X) = 1.

We introduce normed algebra structures which are extensions of algebra

structure and normed structure and are systems

〈 a carrier, a multiplication, an addition, an external multiplication, a unity,

a zero, a norm 〉,

where the carrier is a set, the multiplication and the addition are binary ope-

rations on the carrier, the external multiplication is a function from [: R, the

carrier :] into the carrier, the unity and the zero are elements of the carrier, and

the norm is a function from the carrier into R.

Let us mention that there exists a normed algebra structure which is non

empty.

Let X be a real normed space.

The functor RNormedAlgebraOfBoundedLinearOperators(X) yields a nor-

med algebra structure and is defined by:

(Def. 8) RNormedAlgebraOfBoundedLinearOperators(X) = 〈BdLinOps(X,X),

FuncMult(X),Add (BdLinOps(X, X),RVectorSpaceOfLinearOperators

(X, X)),Mult (BdLinOps(X, X),RVectorSpaceOfLinearOperators(X,X)),

FuncUnit(X),Zero (BdLinOps(X,X),RVectorSpaceOfLinearOperators

(X, X)),BdLinOpsNorm(X, X)〉.

Let X be a real normed space. One can verify that

RNormedAlgebraOfBoundedLinearOperators(X) is non empty and strict.

Next we state two propositions:

(19) Let X be a real normed space, x, y, z be elements of

RNormedAlgebraOfBoundedLinearOperators(X), and a, b be real num-
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bers. Then x + y = y + x and (x + y) + z = x + (y + z) and

x + 0RNormedAlgebraOfBoundedLinearOperators(X) = x and there exists an

element t of RNormedAlgebraOfBoundedLinearOperators(X) such that

x + t = 0RNormedAlgebraOfBoundedLinearOperators(X) and (x · y) · z =

x · (y · z) and x · 1RNormedAlgebraOfBoundedLinearOperators(X) = x and

1RNormedAlgebraOfBoundedLinearOperators(X) ·x = x and x · (y+z) = x ·y+x ·z

and (y+z)·x = y·x+z·x and a·(x·y) = (a·x)·y and (a·b)·(x·y) = a·x·(b·y)

and a ·(x+y) = a ·x+a ·y and (a+b) ·x = a ·x+b ·x and (a ·b) ·x = a ·(b ·x)

and 1 · x = x.

(20) Let X be a real normed space.

Then RNormedAlgebraOfBoundedLinearOperators(X) is real normed

space-like, Abelian, add-associative, right zeroed, right complementable,

associative, algebra-like, and real linear space-like.

Let us observe that there exists a non empty normed algebra structure which

is real normed space-like, Abelian, add-associative, right zeroed, right comple-

mentable, associative, algebra-like, real linear space-like, and strict.

A normed algebra is a real normed space-like Abelian add-associative right

zeroed right complementable associative algebra-like real linear space-like non

empty normed algebra structure.

Let X be a real normed space.

Observe that RNormedAlgebraOfBoundedLinearOperators(X) is real nor-

med space-like, Abelian, add-associative, right zeroed, right complementable,

associative, algebra-like, and real linear space-like.

Let X be a non empty normed algebra structure. We say that X is Banach

Algebra-like1 if and only if:

(Def. 9) For all elements x, y of X holds ‖x · y‖ ¬ ‖x‖ · ‖y‖.

We say that X is Banach Algebra-like2 if and only if:

(Def. 10) ‖1X‖ = 1.

We say that X is Banach Algebra-like3 if and only if:

(Def. 11) For every real number a and for all elements x, y of X holds a · (x · y) =

x · (a · y).

Let X be a normed algebra. We say that X is Banach Algebra-like if and

only if the condition (Def. 12) is satisfied.

(Def. 12) X is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3,

left unital, left distributive, and complete.

Let us mention that every normed algebra which is Banach Algebra-like

is also Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left

distributive, left unital, and complete and every normed algebra which is Banach

Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left distributive, left

unital, and complete is also Banach Algebra-like.
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Let X be a non trivial real Banach space.

Note that RNormedAlgebraOfBoundedLinearOperators(X) is Banach

Algebra-like.

One can verify that there exists a normed algebra which is Banach Algebra-

like.

A Banach algebra is a Banach Algebra-like normed algebra.
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