The Banach Algebra of Bounded Linear Operators

Yasunari Shidama Shinshu University Nagano

Summary. In this article, the basic properties of Banach algebra are described. This algebra is defined as the set of all bounded linear operators from one normed space to another.

MML Identifier: LOPBAN_2.

The papers [21], [8], [23], [25], [24], [5], [7], [6], [19], [4], [1], [2], [18], [10], [22], [13], [3], [20], [16], [15], [9], [12], [11], [14], and [17] provide the terminology and notation for this paper.

Let X be a non empty set and let f, g be elements of X^X . Then $g \cdot f$ is an element of X^X .

One can prove the following propositions:

- (1) Let X, Y, Z be real linear spaces, f be a linear operator from X into Y, and g be a linear operator from Y into Z. Then $g \cdot f$ is a linear operator from X into Z.
- (2) Let X, Y, Z be real normed spaces, f be a bounded linear operator from X into Y, and g be a bounded linear operator from Y into Z. Then
- (i) $g \cdot f$ is a bounded linear operator from X into Z, and
- (ii) for every vector x of X holds $||(g \cdot f)(x)|| \leq (BdLinOpsNorm(Y, Z))(g) \cdot (BdLinOpsNorm(X, Y))(f) \cdot ||x||$ and $(BdLinOpsNorm(X, Z))(g \cdot f) \leq (BdLinOpsNorm(Y, Z))(g) \cdot (BdLinOpsNorm(X, Y))(f).$

Let X be a real normed space and let f, g be bounded linear operators from X into X. Then $g \cdot f$ is a bounded linear operator from X into X.

Let X be a real normed space and let f, g be elements of BdLinOps(X, X). The functor f+g yields an element of BdLinOps(X, X) and is defined as follows:

> C 2004 University of Białystok ISSN 1426-2630

(Def. 1) $f + g = (Add_BdLinOps(X, X)),$

 $\operatorname{RVectorSpaceOfLinearOperators}(X, X)))(f, g).$

Let X be a real normed space and let f, g be elements of BdLinOps(X, X). The functor $g \cdot f$ yielding an element of BdLinOps(X, X) is defined as follows:

(Def. 2) $g \cdot f = \text{modetrans}(g, X, X) \cdot \text{modetrans}(f, X, X).$

Let X be a real normed space, let f be an element of BdLinOps(X, X), and let a be a real number. The functor $a \cdot f$ yields an element of BdLinOps(X, X)and is defined by:

(Def. 3)
$$a \cdot f = (\text{Mult}_{-}(\text{BdLinOps}(X, X)),$$

 $\operatorname{RVectorSpaceOfLinearOperators}(X, X)))(a, f).$

Let X be a real normed space. The functor $\operatorname{FuncMult}(X)$ yielding a binary operation on $\operatorname{BdLinOps}(X, X)$ is defined as follows:

(Def. 4) For all elements f, g of BdLinOps(X, X) holds $(FuncMult(X))(f, g) = f \cdot g$.

The following proposition is true

(3) For every real normed space X holds $id_{the \ carrier \ of \ X}$ is a bounded linear operator from X into X.

Let X be a real normed space. The functor $\operatorname{FuncUnit}(X)$ yields an element of $\operatorname{BdLinOps}(X, X)$ and is defined as follows:

(Def. 5) FuncUnit $(X) = id_{the carrier of X}$.

One can prove the following propositions:

- (4) Let X be a real normed space and f, g, h be bounded linear operators from X into X. Then h = f · g if and only if for every vector x of X holds h(x) = f(g(x)).
- (5) For every real normed space X and for all bounded linear operators f, g, h from X into X holds $f \cdot (g \cdot h) = (f \cdot g) \cdot h$.
- (6) Let X be a real normed space and f be a bounded linear operator from X into X. Then $f \cdot id_{\text{the carrier of } X} = f$ and $id_{\text{the carrier of } X} \cdot f = f$.
- (7) For every real normed space X and for all elements f, g, h of BdLinOps(X, X) holds $f \cdot (g \cdot h) = (f \cdot g) \cdot h$.
- (8) For every real normed space X and for every element f of BdLinOps(X, X) holds $f \cdot FuncUnit(X) = f$ and $FuncUnit(X) \cdot f = f$.
- (9) For every real normed space X and for all elements f, g, h of BdLinOps(X, X) holds $f \cdot (g + h) = f \cdot g + f \cdot h$.
- (10) For every real normed space X and for all elements f, g, h of BdLinOps(X, X) holds $(g+h) \cdot f = g \cdot f + h \cdot f$.
- (11) Let X be a real normed space, f, g be elements of BdLinOps(X, X), and a, b be real numbers. Then $(a \cdot b) \cdot (f \cdot g) = a \cdot f \cdot (b \cdot g)$.

104

(12) For every real normed space X and for all elements f, g of BdLinOps(X, X) and for every real number a holds $a \cdot (f \cdot g) = (a \cdot f) \cdot g$.

Let X be a real normed space. The functor RingOfBoundedLinearOperators(X) yielding a double loop structure is defined as follows:

 $\begin{array}{ll} (\text{Def. 6}) & \text{RingOfBoundedLinearOperators}(X) = \langle \text{BdLinOps}(X,X), \text{Add}_{-}(\text{BdLinOps}(X,X), \text{RVectorSpaceOfLinearOperators}(X,X)), \text{FuncMult}(X), \text{FuncUnit}(X), \\ & \text{Zero}_{-}(\text{BdLinOps}(X,X), \text{RVectorSpaceOfLinearOperators}(X,X)) \rangle. \end{array}$

Let X be a real normed space. Observe that RingOfBoundedLinearOperators(X) is non empty and strict.

One can prove the following propositions:

- (13) Let X be a real normed space and x, y, z be elements of RingOfBoundedLinearOperators(X). Then x + y = y + x and (x + y) + z = x + (y + z) and $x + 0_{\text{RingOfBoundedLinearOperators}(X) = x$ and there exists an element t of RingOfBoundedLinearOperators(X) such that $x + t = 0_{\text{RingOfBoundedLinearOperators}(X)$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $x \cdot \mathbf{1}_{\text{RingOfBoundedLinearOperators}(X) = x$ and $\mathbf{1}_{\text{RingOfBoundedLinearOperators}(X) \cdot x = x$ and $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(y + z) \cdot x = y \cdot x + z \cdot x$.
- (14) For every real normed space X holds RingOfBoundedLinearOperators(X) is a ring.

Let X be a real normed space. Note that RingOfBoundedLinearOperators(X) is Abelian, add-associative, right zeroed, right complementable, associative, left unital, right unital, and distributive.

Let X be a real normed space.

The functor RAlgebraOfBoundedLinearOperators(X) yielding an algebra structure is defined as follows:

(Def. 7) RAlgebraOfBoundedLinearOperators $(X) = \langle BdLinOps(X, X), \rangle$

FuncMult(X), Add_(BdLinOps(X, X), RVectorSpaceOfLinearOperators (X, X)), Mult_(BdLinOps(X, X), RVectorSpaceOfLinearOperators(X, X)), FuncUnit(X), Zero_(BdLinOps(X, X), RVectorSpaceOfLinearOperators (X, X))).

Let X be a real normed space.

Observe that RAlgebraOfBoundedLinearOperators(X) is non empty and strict.

Next we state the proposition

(15) Let X be a real normed space, x, y, z be elements of RAlgebraOfBoundedLinearOperators(X), and a, b be real numbers. Then x + y = y + x and (x + y) + z = x + (y + z)and $x + 0_{\text{RAlgebraOfBoundedLinearOperators}(X) = x$ and there exists an element t of RAlgebraOfBoundedLinearOperators(X) such that $x + t = 0_{\text{RAlgebraOfBoundedLinearOperators}(X)$ and $(x \cdot y) \cdot z =$

YASUNARI SHIDAMA

 $\begin{array}{ll} x \cdot (y \cdot z) & \text{and} & x \cdot \mathbf{1}_{\text{RAlgebraOfBoundedLinearOperators}(X) = x \text{ and} \\ \mathbf{1}_{\text{RAlgebraOfBoundedLinearOperators}(X) \cdot x = x \text{ and } x \cdot (y+z) = x \cdot y + x \cdot z \text{ and} \\ (y+z) \cdot x = y \cdot x + z \cdot x \text{ and } a \cdot (x \cdot y) = (a \cdot x) \cdot y \text{ and } a \cdot (x+y) = a \cdot x + a \cdot y \text{ and} \\ (a+b) \cdot x = a \cdot x + b \cdot x \text{ and } (a \cdot b) \cdot x = a \cdot (b \cdot x) \text{ and } (a \cdot b) \cdot (x \cdot y) = a \cdot x \cdot (b \cdot y). \end{array}$

A BL algebra is an Abelian add-associative right zeroed right complementable associative algebra-like non empty algebra structure.

The following proposition is true

(16) For every real normed space X holds

RAlgebraOfBoundedLinearOperators(X) is a BL algebra.

One can check that 11-Space is complete.

Let us mention that l1-Space is non trivial.

One can verify that there exists a real Banach space which is non trivial. One can prove the following propositions:

- (17) For every non trivial real normed space X there exists a vector w of X such that ||w|| = 1.
- (18) For every non trivial real normed space X holds (BdLinOpsNorm(X, X)) (id_{the carrier of X}) = 1.

We introduce normed algebra structures which are extensions of algebra structure and normed structure and are systems

 \langle a carrier, a multiplication, an addition, an external multiplication, a unity, a zero, a norm \rangle ,

where the carrier is a set, the multiplication and the addition are binary operations on the carrier, the external multiplication is a function from $[\mathbb{R}, \text{ the carrier}]$ into the carrier, the unity and the zero are elements of the carrier, and the norm is a function from the carrier into \mathbb{R} .

Let us mention that there exists a normed algebra structure which is non empty.

Let X be a real normed space.

The functor RNormedAlgebraOfBoundedLinearOperators(X) yields a normed algebra structure and is defined by:

 $\begin{array}{ll} (\mathrm{Def.}\ 8) & \operatorname{RNormedAlgebraOfBoundedLinearOperators}(X) = \langle \mathrm{BdLinOps}(X,X), \\ & \operatorname{FuncMult}(X), \mathrm{Add}_{-}(\mathrm{BdLinOps}(X,X), \mathrm{RVectorSpaceOfLinearOperators} \\ & (X,X)), \mathrm{Mult}_{-}(\mathrm{BdLinOps}(X,X), \mathrm{RVectorSpaceOfLinearOperators} \\ & (X,X)), \mathrm{Mult}_{-}(\mathrm{BdLinOps}(X,X), \mathrm{RVectorSpaceOfLinearOperators} \\ & (X,X)), \mathrm{BdLinOpsNorm}(X,X) \rangle. \end{array}$

Let X be a real normed space. One can verify that RNormedAlgebraOfBoundedLinearOperators(X) is non empty and strict. Next we state two propositions:

(19) Let X be a real normed space, x, y, z be elements of RNormedAlgebraOfBoundedLinearOperators(X), and a, b be real num-

bers. Then x + y = y + x and (x + y) + z = x + (y + z) and $x + 0_{\text{RNormedAlgebraOfBoundedLinearOperators}(X) = x$ and there exists an element t of RNormedAlgebraOfBoundedLinearOperators(X) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $x \cdot \mathbf{1}_{\text{RNormedAlgebraOfBoundedLinearOperators}(X)$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $x \cdot \mathbf{1}_{\text{RNormedAlgebraOfBoundedLinearOperators}(X) = x$ and $\mathbf{1}_{\text{RNormedAlgebraOfBoundedLinearOperators}(X) = x$ and $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$ and $a \cdot (x \cdot y) = (a \cdot x) \cdot y$ and $(a \cdot b) \cdot (x \cdot y) = a \cdot x \cdot (b \cdot y)$ and $a \cdot (x + y) = a \cdot x + a \cdot y$ and $(a + b) \cdot x = a \cdot x + b \cdot x$ and $(a \cdot b) \cdot x = a \cdot (b \cdot x)$ and $1 \cdot x = x$.

(20) Let X be a real normed space.

Then RNormedAlgebraOfBoundedLinearOperators(X) is real normed space-like, Abelian, add-associative, right zeroed, right complementable, associative, algebra-like, and real linear space-like.

Let us observe that there exists a non empty normed algebra structure which is real normed space-like, Abelian, add-associative, right zeroed, right complementable, associative, algebra-like, real linear space-like, and strict.

A normed algebra is a real normed space-like Abelian add-associative right zeroed right complementable associative algebra-like real linear space-like non empty normed algebra structure.

Let X be a real normed space.

Observe that RNormedAlgebraOfBoundedLinearOperators(X) is real normed space-like, Abelian, add-associative, right zeroed, right complementable, associative, algebra-like, and real linear space-like.

Let X be a non empty normed algebra structure. We say that X is Banach Algebra-like1 if and only if:

(Def. 9) For all elements x, y of X holds $||x \cdot y|| \le ||x|| \cdot ||y||$.

We say that X is Banach Algebra-like2 if and only if:

(Def. 10) $\|\mathbf{1}_X\| = 1.$

We say that X is Banach Algebra-like3 if and only if:

(Def. 11) For every real number a and for all elements x, y of X holds $a \cdot (x \cdot y) = x \cdot (a \cdot y)$.

Let X be a normed algebra. We say that X is Banach Algebra-like if and only if the condition (Def. 12) is satisfied.

(Def. 12) X is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left unital, left distributive, and complete.

Let us mention that every normed algebra which is Banach Algebra-like is also Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left distributive, left unital, and complete and every normed algebra which is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left distributive, left unital, and complete is also Banach Algebra-like. Let X be a non trivial real Banach space.

Note that RNormedAlgebraOfBoundedLinearOperators(X) is Banach Algebra-like.

One can verify that there exists a normed algebra which is Banach Algebralike.

A Banach algebra is a Banach Algebra-like normed algebra.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281– 290, 1990.
- [3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.

[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.

- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Čzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama. Real linear space of real sequences. Formalized Mathematics, 11(3):249–253, 2003.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [14] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.
- [15] Jan Popiołek. Introduction to Banach and Hilbert spaces part I. Formalized Mathematics, 2(4):511–516, 1991.
- [16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [17] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2003.
- [18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [20] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received January 26, 2004