# Behaviour of an Arc Crossing a Line 

Yatsuka Nakamura<br>Shinshu University<br>Nagano

Summary. In two-dimensional Euclidean space, we examine behaviour of an arc when it crosses a vertical line. There are three types when an arc enters into a line, which are: "Left-In", "Right-In" and "Oscillating-In". Also, there are three types when an arc goes out from a line, which are: "Left-Out", "Right-Out" and "Oscillating-Out". If an arc is a special polygonal arc, there are only two types for each case, entering in and going out. They are "Left-In" and "Right-In" for entering in, and "Left-Out" and "Right-Out" for going out.

MML Identifier: JORDAN2O.

The articles [23], [26], [27], [7], [20], [16], [5], [15], [19], [24], [11], [6], [12], [9], [21], [10], [22], [2], [3], [14], [17], [18], [25], [4], [13], [1], and [8] provide the terminology and notation for this paper.

The following propositions are true:
(1) For every subset $P$ of $\mathcal{E}_{\mathrm{T}}^{2}$ and for all points $p_{1}, p_{2}, p$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P$ is an arc from $p_{1}$ to $p_{2}$ and $p \in P$ holds $\operatorname{Segment}\left(P, p_{1}, p_{2}, p, p\right)=\{p\}$.
(2) For all points $p_{1}, p_{2}, p$ of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every real number $a$ such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ and $\left(p_{1}\right)_{\mathbf{1}} \leqslant a$ and $\left(p_{2}\right)_{\mathbf{1}} \leqslant a$ holds $p_{\mathbf{1}} \leqslant a$.
(3) For all points $p_{1}, p_{2}, p$ of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every real number $a$ such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ and $\left(p_{1}\right)_{1} \geqslant a$ and $\left(p_{2}\right)_{1} \geqslant a$ holds $p_{1} \geqslant a$.
(4) For all points $p_{1}, p_{2}, p$ of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every real number $a$ such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ and $\left(p_{1}\right)_{\mathbf{1}}<a$ and $\left(p_{2}\right)_{\mathbf{1}}<a$ holds $p_{\mathbf{1}}<a$.
(5) For all points $p_{1}, p_{2}, p$ of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every real number $a$ such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ and $\left(p_{1}\right)_{\mathbf{1}}>a$ and $\left(p_{2}\right)_{\mathbf{1}}>a$ holds $p_{\mathbf{1}}>a$.
In the sequel $j$ is a natural number.
Next we state two propositions:
(6) Let $f$ be a S-sequence in $\mathbb{R}^{2}$ and $p, q$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $1 \leqslant j$ and $j<\operatorname{len} f$ and $p \in \mathcal{L}(f, j)$ and $q \in \mathcal{L}(f, j)$ and $\left(f_{j}\right)_{\mathbf{2}}=\left(f_{j+1}\right)_{\mathbf{2}}$ and $\left(f_{j}\right)_{\mathbf{1}}>\left(f_{j+1}\right)_{\mathbf{1}}$ and LE $p, q, \widetilde{\mathcal{L}}(f), f_{1}, f_{\text {len } f}$. Then $p_{\mathbf{1}} \geqslant q_{\mathbf{1}}$.
(7) Let $f$ be a S-sequence in $\mathbb{R}^{2}$ and $p, q$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $1 \leqslant j$ and $j<\operatorname{len} f$ and $p \in \mathcal{L}(f, j)$ and $q \in \mathcal{L}(f, j)$ and $\left(f_{j}\right)_{2}=\left(f_{j+1}\right)_{2}$ and $\left(f_{j}\right)_{\mathbf{1}}<\left(f_{j+1}\right)_{\mathbf{1}}$ and LE $p, q, \widetilde{\mathcal{L}}(f), f_{1}, f_{\text {len } f}$. Then $p_{\mathbf{1}} \leqslant q_{\mathbf{1}}$.
Let $P$ be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$, let $p_{1}, p_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and let $e$ be a real number. We say that $p$ is LIn of $P, p_{1}, p_{2}, e$ if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) $\quad P$ is an arc from $p_{1}$ to $p_{2}$,
(ii) $p \in P$,
(iii) $p_{\mathbf{1}}=e$, and
(iv) there exists a point $p_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\left(p_{4}\right)_{\mathbf{1}}<e$ and LE $p_{4}, p, P, p_{1}$, $p_{2}$ and for every point $p_{5}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{4}, p_{5}, P, p_{1}, p_{2}$ and LE $p_{5}$, $p, P, p_{1}, p_{2}$ holds $\left(p_{5}\right)_{1} \leqslant e$.
We say that $p$ is RIn of $P, p_{1}, p_{2}, e$ if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) $\quad P$ is an arc from $p_{1}$ to $p_{2}$,
(ii) $p \in P$,
(iii) $\quad p_{1}=e$, and
(iv) there exists a point $p_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\left(p_{4}\right)_{\mathbf{1}}>e$ and LE $p_{4}, p, P, p_{1}$, $p_{2}$ and for every point $p_{5}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{4}, p_{5}, P, p_{1}, p_{2}$ and LE $p_{5}$, $p, P, p_{1}, p_{2}$ holds $\left(p_{5}\right)_{\mathbf{1}} \geqslant e$.
We say that $p$ is LOut of $P, p_{1}, p_{2}, e$ if and only if the conditions (Def. 3) are satisfied.
(Def. 3)(i) $\quad P$ is an arc from $p_{1}$ to $p_{2}$,
(ii) $p \in P$,
(iii) $p_{\mathbf{1}}=e$, and
(iv) there exists a point $p_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\left(p_{4}\right)_{\mathbf{1}}<e$ and LE $p, p_{4}, P, p_{1}$, $p_{2}$ and for every point $p_{5}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{5}, p_{4}, P, p_{1}, p_{2}$ and LE $p$, $p_{5}, P, p_{1}, p_{2}$ holds $\left(p_{5}\right)_{1} \leqslant e$.
We say that $p$ is ROut of $P, p_{1}, p_{2}, e$ if and only if the conditions (Def. 4) are satisfied.
(Def. 4)(i) $\quad P$ is an arc from $p_{1}$ to $p_{2}$,
(ii) $p \in P$,
(iii) $\quad p_{\mathbf{1}}=e$, and
(iv) there exists a point $p_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\left(p_{4}\right)_{\mathbf{1}}>e$ and LE $p, p_{4}, P, p_{1}$, $p_{2}$ and for every point $p_{5}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{5}, p_{4}, P, p_{1}, p_{2}$ and LE $p$, $p_{5}, P, p_{1}, p_{2}$ holds $\left(p_{5}\right)_{1} \geqslant e$.

We say that $p$ is OsIn of $P, p_{1}, p_{2}, e$ if and only if the conditions (Def. 5) are satisfied.
(Def. 5)(i) $\quad P$ is an arc from $p_{1}$ to $p_{2}$,
(ii) $p \in P$,
(iii) $p_{\mathbf{1}}=e$, and
(iv) there exists a point $p_{7}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{7}, p, P, p_{1}, p_{2}$ and for every point $p_{8}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{7}, p_{8}, P, p_{1}, p_{2}$ and LE $p_{8}, p, P, p_{1}, p_{2}$ holds $\left(p_{8}\right)_{1}=e$ and for every point $p_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{4}, p_{7}, P, p_{1}, p_{2}$ and $p_{4} \neq p_{7}$ holds there exists a point $p_{5}$ of $\mathcal{E}_{\text {T }}^{2}$ such that LE $p_{4}, p_{5}, P, p_{1}, p_{2}$ and LE $p_{5}, p_{7}, P, p_{1}, p_{2}$ and $\left(p_{5}\right)_{1}>e$ and there exists a point $p_{6}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{4}, p_{6}, P, p_{1}, p_{2}$ and LE $p_{6}, p_{7}, P, p_{1}, p_{2}$ and $\left(p_{6}\right)_{1}<e$.
We say that $p$ is OsOut of $P, p_{1}, p_{2}, e$ if and only if the conditions (Def. 6) are satisfied.
(Def. 6)(i) $\quad P$ is an arc from $p_{1}$ to $p_{2}$,
(ii) $p \in P$,
(iii) $p_{1}=e$, and
(iv) there exists a point $p_{7}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p, p_{7}, P, p_{1}, p_{2}$ and for every point $p_{8}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{8}, p_{7}, P, p_{1}, p_{2}$ and LE $p, p_{8}, P, p_{1}, p_{2}$ holds $\left(p_{8}\right)_{1}=e$ and for every point $p_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that LE $p_{7}, p_{4}, P, p_{1}, p_{2}$ and $p_{4} \neq p_{7}$ holds there exists a point $p_{5}$ of $\mathcal{E}_{\text {T }}^{2}$ such that LE $p_{5}, p_{4}, P, p_{1}, p_{2}$ and LE $p_{7}, p_{5}, P, p_{1}, p_{2}$ and $\left(p_{5}\right)_{1}>e$ and there exists a point $p_{6}$ of $\mathcal{E}_{\text {T }}^{2}$ such that LE $p_{6}, p_{4}, P, p_{1}, p_{2}$ and LE $p_{7}, p_{6}, P, p_{1}, p_{2}$ and $\left(p_{6}\right)_{1}<e$.
We now state a number of propositions:
(8) Let $P$ be a subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $\left(p_{1}\right)_{1} \leqslant e$ and $\left(p_{2}\right)_{1} \geqslant e$. Then there exists a point $p_{3}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p_{3} \in P$ and $\left(p_{3}\right)_{\mathbf{1}}=e$.
(9) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $\left(p_{1}\right)_{\mathbf{1}}<e$ and $\left(p_{2}\right)_{\mathbf{1}}>e$ and $p \in P$ and $p_{\mathbf{1}}=e$. Then $p$ is LIn of $P, p_{1}, p_{2}, e, \operatorname{RIn}$ of $P$, $p_{1}, p_{2}, e$, and OsIn of $P, p_{1}, p_{2}, e$.
(10) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $\left(p_{1}\right)_{1}<e$ and $\left(p_{2}\right)_{\mathbf{1}}>e$ and $p \in P$ and $p_{\mathbf{1}}=e$. Then $p$ is LOut of $P, p_{1}, p_{2}, e$, ROut of $P, p_{1}, p_{2}, e$, and OsOut of $P, p_{1}, p_{2}, e$.
(11) For every subset $P$ of $\mathbb{I}$ and for every real number $s$ such that $P=[0, s[$ holds $P$ is open.
(12) For every subset $P$ of $\mathbb{I}$ and for every real number $s$ such that $P=] s, 1]$ holds $P$ is open.
(13) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, P_{1}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P, Q$ be a subset of $\mathbb{I}, f$ be a map from $\mathbb{I}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$, and $s$ be a real number. Suppose
$s \leqslant 1$ and $P_{1}=\left\{q_{0} ; q_{0}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: \bigvee_{s_{1}: \text { real number }}(0 \leqslant$ $\left.\left.s_{1} \wedge s_{1}<s \wedge q_{0}=f\left(s_{1}\right)\right)\right\}$ and $Q=\left[0, s\left[\right.\right.$. Then $f^{\circ} Q=P_{1}$.
(14) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, P_{1}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P, Q$ be a subset of $\mathbb{I}, f$ be a map from $\mathbb{I}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$, and $s$ be a real number. Suppose $s \geqslant 0$ and $P_{1}=\left\{q_{0} ; q_{0}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: \bigvee_{s_{1}: \text { real number }}(s<$ $\left.\left.s_{1} \wedge s_{1} \leqslant 1 \wedge q_{0}=f\left(s_{1}\right)\right)\right\}$ and $\left.\left.Q=\right] s, 1\right]$. Then $f^{\circ} Q=P_{1}$.
(15) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, P_{1}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P, f$ be a map from $\mathbb{I}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$, and $s$ be a real number. Suppose $s \leqslant 1$ and $f$ is a homeomorphism and $P_{1}=\left\{q_{0} ; q_{0}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$ : $\left.\bigvee_{s_{1} \text { : real number }}\left(0 \leqslant s_{1} \wedge s_{1}<s \wedge q_{0}=f\left(s_{1}\right)\right)\right\}$. Then $P_{1}$ is open.
(16) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, P_{1}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P, f$ be a map from $\mathbb{I}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$, and $s$ be a real number. Suppose $s \geqslant 0$ and $f$ is a homeomorphism and $P_{1}=\left\{q_{0} ; q_{0}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$ : $\left.\bigvee_{s_{1} \text { : real number }}\left(s<s_{1} \wedge s_{1} \leqslant 1 \wedge q_{0}=f\left(s_{1}\right)\right)\right\}$. Then $P_{1}$ is open.
(17) Let $T$ be a non empty topological structure, $Q_{1}, Q_{2}$ be subsets of $T$, and $p_{1}, p_{2}$ be points of $T$. Suppose $Q_{1} \cap Q_{2}=\emptyset$ and $Q_{1} \cup Q_{2}=$ the carrier of $T$ and $p_{1} \in Q_{1}$ and $p_{2} \in Q_{2}$ and $Q_{1}$ is open and $Q_{2}$ is open. Then it is not true that there exists a map $P$ from $\mathbb{I}$ into $T$ such that $P$ is continuous and $P(0)=p_{1}$ and $P(1)=p_{2}$.
(18) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, Q$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$, and $p_{1}$, $p_{2}, q$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $q \in P$ and $q \neq p_{1}$ and $q \neq p_{2}$ and $Q=P \backslash\{q\}$. Then $Q$ is not connected and it is not true that there exists a map $R$ from $\mathbb{I}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P \upharpoonright Q$ such that $R$ is continuous and $R(0)=p_{1}$ and $R(1)=p_{2}$.
(19) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $q_{1} \in P$ and $q_{2} \in P$. Then LE $q_{1}$, $q_{2}, P, p_{1}, p_{2}$ or LE $q_{2}, q_{1}, P, p_{1}, p_{2}$.
(20) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $q_{1} \in P$ and $p_{1} \neq q_{1}$. Then $\operatorname{Segment}\left(P, p_{1}, p_{2}, p_{1}, q_{1}\right)$ is an arc from $p_{1}$ to $q_{1}$.
(21) Let $n$ be a natural number, $p_{1}, p_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and $P, P_{1}$ be non empty subsets of $\mathcal{E}_{\mathrm{T}}^{n}$. If $P$ is an arc from $p_{1}$ to $p_{2}$ and $P_{1}$ is an arc from $p_{1}$ to $p_{2}$ and $P_{1} \subseteq P$, then $P_{1}=P$.
(22) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $q_{1} \in P$ and $p_{2} \neq q_{1}$. Then $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, p_{2}\right)$ is an arc from $q_{1}$ to $p_{2}$.
(23) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}, q_{3}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and LE $q_{1}, q_{2}, P, p_{1}, p_{2}$ and LE $q_{2}$, $q_{3}, P, p_{1}, p_{2}$. Then $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{2}\right) \cup \operatorname{Segment}\left(P, p_{1}, p_{2}, q_{2}, q_{3}\right)=$ $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{3}\right)$.
(24) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}, q_{3}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and LE $q_{1}, q_{2}, P, p_{1}, p_{2}$ and LE $q_{2}, q_{3}, P$, $p_{1}, p_{2}$. Then $\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{2}\right) \cap \operatorname{Segment}\left(P, p_{1}, p_{2}, q_{2}, q_{3}\right)=\left\{q_{2}\right\}$.
(25) For every non empty subset $P$ of $\mathcal{E}_{\mathrm{T}}^{2}$ and for all points $p_{1}, p_{2}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P$ is an arc from $p_{1}$ to $p_{2}$ holds $\operatorname{Segment}\left(P, p_{1}, p_{2}, p_{1}, p_{2}\right)=P$.
(26) Let $T$ be a non empty topological space, $w_{1}, w_{2}, w_{3}$ be points of $T$, and $h_{1}, h_{2}$ be maps from $\mathbb{I}$ into $T$. Suppose $h_{1}$ is continuous and $w_{1}=h_{1}(0)$ and $w_{2}=h_{1}(1)$ and $h_{2}$ is continuous and $w_{2}=h_{2}(0)$ and $w_{3}=h_{2}(1)$. Then there exists a map $h_{3}$ from $\mathbb{I}$ into $T$ such that $h_{3}$ is continuous and $w_{1}=h_{3}(0)$ and $w_{3}=h_{3}(1)$.
(27) Let $T$ be a non empty topological space, $a, b, c$ be points of $T, G_{1}$ be a path from $a$ to $b$, and $G_{2}$ be a path from $b$ to $c$. Suppose $G_{1}$ is continuous and $G_{2}$ is continuous and $G_{1}(0)=a$ and $G_{1}(1)=b$ and $G_{2}(0)=b$ and $G_{2}(1)=c$. Then $G_{1}+G_{2}$ is continuous and $\left(G_{1}+G_{2}\right)(0)=a$ and $\left(G_{1}+G_{2}\right)(1)=c$.
(28) Let $P, Q_{1}$ be non empty subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P$ is an arc from $p_{1}$ to $p_{2}$ and $Q_{1}$ is an arc from $q_{1}$ to $q_{2}$ and LE $q_{1}, q_{2}, P, p_{1}, p_{2}$ and $Q_{1} \subseteq P$. Then $Q_{1}=\operatorname{Segment}\left(P, p_{1}, p_{2}, q_{1}, q_{2}\right)$.
(29) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, q_{1}, q_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $\left(p_{1}\right)_{1}<e$ and $\left(p_{2}\right)_{1}>e$ and $q_{1}$ is LIn of $P$, $p_{1}, p_{2}, e$ and $\left(q_{2}\right)_{\mathbf{1}}=e$ and $\mathcal{L}\left(q_{1}, q_{2}\right) \subseteq P$ and $p \in \mathcal{L}\left(q_{1}, q_{2}\right)$. Then $p$ is LIn of $P, p_{1}, p_{2}, e$.
(30) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, q_{1}, q_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $\left(p_{1}\right)_{\mathbf{1}}<e$ and $\left(p_{2}\right)_{\mathbf{1}}>e$ and $q_{1}$ is RIn of $P$, $p_{1}, p_{2}, e$ and $\left(q_{2}\right)_{\mathbf{1}}=e$ and $\mathcal{L}\left(q_{1}, q_{2}\right) \subseteq P$ and $p \in \mathcal{L}\left(q_{1}, q_{2}\right)$. Then $p$ is RIn of $P, p_{1}, p_{2}, e$.
(31) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, q_{1}, q_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $\left(p_{1}\right)_{\mathbf{1}}<e$ and $\left(p_{2}\right)_{\mathbf{1}}>e$ and $q_{1}$ is LOut of $P, p_{1}, p_{2}, e$ and $\left(q_{2}\right)_{\mathbf{1}}=e$ and $\mathcal{L}\left(q_{1}, q_{2}\right) \subseteq P$ and $p \in \mathcal{L}\left(q_{1}, q_{2}\right)$. Then $p$ is LOut of $P, p_{1}, p_{2}, e$.
(32) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, q_{1}, q_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $\left(p_{1}\right)_{\mathbf{1}}<e$ and $\left(p_{2}\right)_{\mathbf{1}}>e$ and $q_{1}$ is ROut of $P, p_{1}, p_{2}, e$ and $\left(q_{2}\right)_{\mathbf{1}}=e$ and $\mathcal{L}\left(q_{1}, q_{2}\right) \subseteq P$ and $p \in \mathcal{L}\left(q_{1}, q_{2}\right)$. Then $p$ is ROut of $P, p_{1}, p_{2}, e$.
(33) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $P$ is a special polygonal arc joining $p_{1}$ and $p_{2}$ and $\left(p_{1}\right)_{\mathbf{1}}<e$ and $\left(p_{2}\right)_{\mathbf{1}}>e$ and $p \in P$ and $p_{\mathbf{1}}=e$. Then $p$ is LIn of $P, p_{1}, p_{2}$, $e$ and RIn of $P, p_{1}, p_{2}, e$.
(34) Let $P$ be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, p_{1}, p_{2}, p$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and $e$ be a real number. Suppose $P$ is a special polygonal arc joining $p_{1}$ and $p_{2}$ and
$\left(p_{1}\right)_{\mathbf{1}}<e$ and $\left(p_{2}\right)_{\mathbf{1}}>e$ and $p \in P$ and $p_{\mathbf{1}}=e$. Then $p$ is LOut of $P, p_{1}$, $p_{2}, e$ and ROut of $P, p_{1}, p_{2}, e$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[13] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[14] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
[15] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Formalized Mathematics, 6(4):467-473, 1997.
[16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[17] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.
[18] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
[19] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[20] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[22] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

