Behaviour of an Arc Crossing a Line

Yatsuka Nakamura Shinshu University Nagano

Summary. In two-dimensional Euclidean space, we examine behaviour of an arc when it crosses a vertical line. There are three types when an arc enters into a line, which are: "Left-In", "Right-In" and "Oscillating-In". Also, there are three types when an arc goes out from a line, which are: "Left-Out", "Right-Out" and "Oscillating-Out". If an arc is a special polygonal arc, there are only two types for each case, entering in and going out. They are "Left-In" and "Right-In" for entering in, and "Left-Out" and "Right-Out" for going out.

 ${\rm MML} \ {\rm Identifier:} \ {\tt JORDAN20}.$

The articles [23], [26], [27], [7], [20], [16], [5], [15], [19], [24], [11], [6], [12], [9], [21], [10], [22], [2], [3], [14], [17], [18], [25], [4], [13], [1], and [8] provide the terminology and notation for this paper.

The following propositions are true:

- (1) For every subset P of $\mathcal{E}_{\mathrm{T}}^2$ and for all points p_1, p_2, p of $\mathcal{E}_{\mathrm{T}}^2$ such that P is an arc from p_1 to p_2 and $p \in P$ holds $\mathrm{Segment}(P, p_1, p_2, p, p) = \{p\}.$
- (2) For all points p_1 , p_2 , p of \mathcal{E}^2_T and for every real number a such that $p \in \mathcal{L}(p_1, p_2)$ and $(p_1)_1 \leq a$ and $(p_2)_1 \leq a$ holds $p_1 \leq a$.
- (3) For all points p_1 , p_2 , p of \mathcal{E}_T^2 and for every real number a such that $p \in \mathcal{L}(p_1, p_2)$ and $(p_1)_1 \ge a$ and $(p_2)_1 \ge a$ holds $p_1 \ge a$.
- (4) For all points p_1 , p_2 , p of \mathcal{E}_T^2 and for every real number a such that $p \in \mathcal{L}(p_1, p_2)$ and $(p_1)_1 < a$ and $(p_2)_1 < a$ holds $p_1 < a$.
- (5) For all points p_1 , p_2 , p of \mathcal{E}_T^2 and for every real number a such that $p \in \mathcal{L}(p_1, p_2)$ and $(p_1)_1 > a$ and $(p_2)_1 > a$ holds $p_1 > a$.

In the sequel j is a natural number.

Next we state two propositions:

C 2004 University of Białystok ISSN 1426-2630

YATSUKA NAKAMURA

- (6) Let f be a S-sequence in \mathbb{R}^2 and p, q be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $1 \leq j$ and $j < \mathrm{len} f$ and $p \in \mathcal{L}(f, j)$ and $q \in \mathcal{L}(f, j)$ and $(f_j)_2 = (f_{j+1})_2$ and $(f_j)_1 > (f_{j+1})_1$ and LE $p, q, \widetilde{\mathcal{L}}(f), f_1, f_{\mathrm{len} f}$. Then $p_1 \geq q_1$.
- (7) Let f be a S-sequence in \mathbb{R}^2 and p, q be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $1 \leq j$ and $j < \mathrm{len} f$ and $p \in \mathcal{L}(f, j)$ and $q \in \mathcal{L}(f, j)$ and $(f_j)_2 = (f_{j+1})_2$ and $(f_j)_1 < (f_{j+1})_1$ and LE $p, q, \widetilde{\mathcal{L}}(f), f_1, f_{\mathrm{len} f}$. Then $p_1 \leq q_1$.

Let P be a subset of \mathcal{E}_{T}^{2} , let p_{1} , p_{2} , p be points of \mathcal{E}_{T}^{2} , and let e be a real number. We say that p is LIn of P, p_{1} , p_{2} , e if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) P is an arc from p_1 to p_2 ,

- (ii) $p \in P$,
- (iii) $p_1 = e$, and
- (iv) there exists a point p_4 of \mathcal{E}_T^2 such that $(p_4)_1 < e$ and LE p_4 , p, P, p_1 , p_2 and for every point p_5 of \mathcal{E}_T^2 such that LE p_4 , p_5 , P, p_1 , p_2 and LE p_5 , p, P, p_1 , p_2 holds $(p_5)_1 \leq e$.

We say that p is RIn of P, p_1 , p_2 , e if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) P is an arc from p_1 to p_2 ,

- (ii) $p \in P$,
- (iii) $p_1 = e$, and
- (iv) there exists a point p_4 of \mathcal{E}_T^2 such that $(p_4)_1 > e$ and LE p_4 , p, P, p_1 , p_2 and for every point p_5 of \mathcal{E}_T^2 such that LE p_4 , p_5 , P, p_1 , p_2 and LE p_5 , p, P, p_1 , p_2 holds $(p_5)_1 \ge e$.

We say that p is LOut of P, p_1 , p_2 , e if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) P is an arc from p_1 to p_2 ,

- (ii) $p \in P$,
- (iii) $p_1 = e$, and
- (iv) there exists a point p_4 of \mathcal{E}_T^2 such that $(p_4)_1 < e$ and LE p, p_4, P, p_1, p_2 and for every point p_5 of \mathcal{E}_T^2 such that LE p_5, p_4, P, p_1, p_2 and LE p, p_5, P, p_1, p_2 holds $(p_5)_1 \leq e$.

We say that p is ROut of P, p_1 , p_2 , e if and only if the conditions (Def. 4) are satisfied.

(Def. 4)(i) P is an arc from p_1 to p_2 ,

- (ii) $p \in P$,
- (iii) $p_1 = e$, and
- (iv) there exists a point p_4 of \mathcal{E}_T^2 such that $(p_4)_1 > e$ and LE p, p_4, P, p_1, p_2 and for every point p_5 of \mathcal{E}_T^2 such that LE p_5, p_4, P, p_1, p_2 and LE p, p_5, P, p_1, p_2 holds $(p_5)_1 \ge e$.

120

We say that p is OsIn of P, p_1 , p_2 , e if and only if the conditions (Def. 5) are satisfied.

- (Def. 5)(i) P is an arc from p_1 to p_2 ,
 - (ii) $p \in P$,
 - (iii) $p_1 = e$, and
 - (iv) there exists a point p_7 of \mathcal{E}_T^2 such that LE p_7 , p, P, p_1 , p_2 and for every point p_8 of \mathcal{E}_T^2 such that LE p_7 , p_8 , P, p_1 , p_2 and LE p_8 , p, P, p_1 , p_2 holds $(p_8)_1 = e$ and for every point p_4 of \mathcal{E}_T^2 such that LE p_4 , p_7 , P, p_1 , p_2 and $p_4 \neq p_7$ holds there exists a point p_5 of \mathcal{E}_T^2 such that LE p_4 , p_5 , P, p_1 , p_2 and LE p_5 , p_7 , P, p_1 , p_2 and $(p_5)_1 > e$ and there exists a point p_6 of \mathcal{E}_T^2 such that LE p_4 , p_6 , P, p_1 , p_2 and LE p_6 , p_7 , P, p_1 , p_2 and $(p_6)_1 < e$.

We say that p is OsOut of P, p_1 , p_2 , e if and only if the conditions (Def. 6) are satisfied.

- (Def. 6)(i) P is an arc from p_1 to p_2 ,
 - (ii) $p \in P$,
 - (iii) $p_1 = e$, and
 - (iv) there exists a point p_7 of \mathcal{E}_T^2 such that LE p, p_7, P, p_1, p_2 and for every point p_8 of \mathcal{E}_T^2 such that LE p_8, p_7, P, p_1, p_2 and LE p, p_8, P, p_1, p_2 holds $(p_8)_1 = e$ and for every point p_4 of \mathcal{E}_T^2 such that LE p_7, p_4, P, p_1, p_2 and $p_4 \neq p_7$ holds there exists a point p_5 of \mathcal{E}_T^2 such that LE p_5, p_4, P, p_1, p_2 and LE p_7, p_5, P, p_1, p_2 and $(p_5)_1 > e$ and there exists a point p_6 of \mathcal{E}_T^2 such that LE p_6, p_4, P, p_1, p_2 and LE p_7, p_6, P, p_1, p_2 and $(p_6)_1 < e$.

We now state a number of propositions:

- (8) Let P be a subset of \mathcal{E}_{T}^{2} , p_{1} , p_{2} , p be points of \mathcal{E}_{T}^{2} , and e be a real number. Suppose P is an arc from p_{1} to p_{2} and $(p_{1})_{1} \leq e$ and $(p_{2})_{1} \geq e$. Then there exists a point p_{3} of \mathcal{E}_{T}^{2} such that $p_{3} \in P$ and $(p_{3})_{1} = e$.
- (9) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , p be points of $\mathcal{E}_{\mathrm{T}}^2$, and e be a real number. Suppose P is an arc from p_1 to p_2 and $(p_1)_1 < e$ and $(p_2)_1 > e$ and $p \in P$ and $p_1 = e$. Then p is LIn of P, p_1 , p_2 , e, RIn of P, p_1 , p_2 , e, and OsIn of P, p_1 , p_2 , e.
- (10) Let P be a non empty subset of \mathcal{E}_{T}^{2} , p_{1} , p_{2} , p be points of \mathcal{E}_{T}^{2} , and e be a real number. Suppose P is an arc from p_{1} to p_{2} and $(p_{1})_{1} < e$ and $(p_{2})_{1} > e$ and $p \in P$ and $p_{1} = e$. Then p is LOut of P, p_{1} , p_{2} , e, ROut of P, p_{1} , p_{2} , e, and OsOut of P, p_{1} , p_{2} , e.
- (11) For every subset P of \mathbb{I} and for every real number s such that P = [0, s[holds P is open.
- (12) For every subset P of \mathbb{I} and for every real number s such that P =]s, 1] holds P is open.
- (13) Let *P* be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, *P*₁ be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, *Q* be a subset of \mathbb{I} , *f* be a map from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, and *s* be a real number. Suppose

YATSUKA NAKAMURA

 $s \leq 1$ and $P_1 = \{q_0; q_0 \text{ ranges over points of } \mathcal{E}_T^2: \bigvee_{s_1: \text{real number}} (0 \leq s_1 \land s_1 < s \land q_0 = f(s_1))\}$ and Q = [0, s[. Then $f^{\circ}Q = P_1$.

- (14) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, P_1 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, Q be a subset of \mathbb{I} , f be a map from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, and s be a real number. Suppose $s \ge 0$ and $P_1 = \{q_0; q_0 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $\bigvee_{s_1: \text{ real number}} (s < s_1 \land s_1 \le 1 \land q_0 = f(s_1))\}$ and Q =]s, 1]. Then $f^{\circ}Q = P_1$.
- (15) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, P_1 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, f be a map from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, and s be a real number. Suppose $s \leqslant 1$ and f is a homeomorphism and $P_1 = \{q_0; q_0 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $\bigvee_{s_1: \text{ real number}} (0 \leqslant s_1 \land s_1 < s \land q_0 = f(s_1))\}$. Then P_1 is open.
- (16) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, P_1 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, f be a map from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, and s be a real number. Suppose $s \ge 0$ and f is a homeomorphism and $P_1 = \{q_0; q_0 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $\bigvee_{s_1: \text{real number}} (s < s_1 \land s_1 \le 1 \land q_0 = f(s_1))\}$. Then P_1 is open.
- (17) Let T be a non empty topological structure, Q_1, Q_2 be subsets of T, and p_1, p_2 be points of T. Suppose $Q_1 \cap Q_2 = \emptyset$ and $Q_1 \cup Q_2$ = the carrier of T and $p_1 \in Q_1$ and $p_2 \in Q_2$ and Q_1 is open and Q_2 is open. Then it is not true that there exists a map P from I into T such that P is continuous and $P(0) = p_1$ and $P(1) = p_2$.
- (18) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P$, and p_1 , p_2 , q be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $q \in P$ and $q \neq p_1$ and $q \neq p_2$ and $Q = P \setminus \{q\}$. Then Q is not connected and it is not true that there exists a map R from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright P \upharpoonright Q$ such that R is continuous and $R(0) = p_1$ and $R(1) = p_2$.
- (19) Let P be a non empty subset of \mathcal{E}_{T}^{2} and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} and $q_{1} \in P$ and $q_{2} \in P$. Then LE $q_{1}, q_{2}, P, p_{1}, p_{2}$ or LE $q_{2}, q_{1}, P, p_{1}, p_{2}$.
- (20) Let P be a non empty subset of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} and $q_{1} \in P$ and $p_{1} \neq q_{1}$. Then Segment $(P, p_{1}, p_{2}, p_{1}, q_{1})$ is an arc from p_{1} to q_{1} .
- (21) Let n be a natural number, p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^n$, and P, P_1 be non empty subsets of $\mathcal{E}_{\mathrm{T}}^n$. If P is an arc from p_1 to p_2 and P_1 is an arc from p_1 to p_2 and $P_1 \subseteq P$, then $P_1 = P$.
- (22) Let P be a non empty subset of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} and $q_{1} \in P$ and $p_{2} \neq q_{1}$. Then Segment $(P, p_{1}, p_{2}, q_{1}, p_{2})$ is an arc from q_{1} to p_{2} .
- (23) Let *P* be a non empty subset of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} , q_{2} , q_{3} be points of \mathcal{E}_{T}^{2} . Suppose *P* is an arc from p_{1} to p_{2} and LE q_{1} , q_{2} , *P*, p_{1} , p_{2} and LE q_{2} , q_{3} , *P*, p_{1} , p_{2} . Then Segment(*P*, p_{1} , p_{2} , q_{1} , q_{2}) \cup Segment(*P*, p_{1} , p_{2} , q_{3} , q_{3} , *P*, p_{1} , p_{2} , q_{1} , q_{3}).

- (24) Let P be a non empty subset of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} , q_{2} , q_{3} be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} and LE q_{1} , q_{2} , P, p_{1} , p_{2} and LE q_{2} , q_{3} , P, p_{1} , p_{2} . Then Segment $(P, p_{1}, p_{2}, q_{1}, q_{2}) \cap$ Segment $(P, p_{1}, p_{2}, q_{3}) = \{q_{2}\}$.
- (25) For every non empty subset P of $\mathcal{E}_{\mathrm{T}}^2$ and for all points p_1 , p_2 of $\mathcal{E}_{\mathrm{T}}^2$ such that P is an arc from p_1 to p_2 holds Segment $(P, p_1, p_2, p_1, p_2) = P$.
- (26) Let T be a non empty topological space, w_1, w_2, w_3 be points of T, and h_1, h_2 be maps from I into T. Suppose h_1 is continuous and $w_1 = h_1(0)$ and $w_2 = h_1(1)$ and h_2 is continuous and $w_2 = h_2(0)$ and $w_3 = h_2(1)$. Then there exists a map h_3 from I into T such that h_3 is continuous and $w_1 = h_3(0)$ and $w_3 = h_3(1)$.
- (27) Let T be a non empty topological space, a, b, c be points of T, G_1 be a path from a to b, and G_2 be a path from b to c. Suppose G_1 is continuous and G_2 is continuous and $G_1(0) = a$ and $G_1(1) = b$ and $G_2(0) = b$ and $G_2(1) = c$. Then $G_1 + G_2$ is continuous and $(G_1 + G_2)(0) = a$ and $(G_1 + G_2)(1) = c$.
- (28) Let P, Q_1 be non empty subsets of \mathcal{E}_T^2 and p_1 , p_2 , q_1 , q_2 be points of \mathcal{E}_T^2 . Suppose P is an arc from p_1 to p_2 and Q_1 is an arc from q_1 to q_2 and LE q_1, q_2, P, p_1, p_2 and $Q_1 \subseteq P$. Then $Q_1 = \text{Segment}(P, p_1, p_2, q_1, q_2)$.
- (29) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , q_1 , q_2 , p be points of $\mathcal{E}_{\mathrm{T}}^2$, and e be a real number. Suppose $(p_1)_1 < e$ and $(p_2)_1 > e$ and q_1 is LIn of P, p_1 , p_2 , e and $(q_2)_1 = e$ and $\mathcal{L}(q_1, q_2) \subseteq P$ and $p \in \mathcal{L}(q_1, q_2)$. Then p is LIn of P, p_1 , p_2 , e.
- (30) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , q_1 , q_2 , p be points of $\mathcal{E}_{\mathrm{T}}^2$, and e be a real number. Suppose $(p_1)_1 < e$ and $(p_2)_1 > e$ and q_1 is RIn of P, p_1 , p_2 , e and $(q_2)_1 = e$ and $\mathcal{L}(q_1, q_2) \subseteq P$ and $p \in \mathcal{L}(q_1, q_2)$. Then p is RIn of P, p_1 , p_2 , e.
- (31) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , q_1 , q_2 , p be points of $\mathcal{E}_{\mathrm{T}}^2$, and e be a real number. Suppose $(p_1)_1 < e$ and $(p_2)_1 > e$ and q_1 is LOut of P, p_1 , p_2 , e and $(q_2)_1 = e$ and $\mathcal{L}(q_1, q_2) \subseteq P$ and $p \in \mathcal{L}(q_1, q_2)$. Then p is LOut of P, p_1 , p_2 , e.
- (32) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , q_1 , q_2 , p be points of $\mathcal{E}_{\mathrm{T}}^2$, and e be a real number. Suppose $(p_1)_1 < e$ and $(p_2)_1 > e$ and q_1 is ROut of P, p_1 , p_2 , e and $(q_2)_1 = e$ and $\mathcal{L}(q_1, q_2) \subseteq P$ and $p \in \mathcal{L}(q_1, q_2)$. Then p is ROut of P, p_1 , p_2 , e.
- (33) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , p be points of $\mathcal{E}_{\mathrm{T}}^2$, and e be a real number. Suppose P is a special polygonal arc joining p_1 and p_2 and $(p_1)_1 < e$ and $(p_2)_1 > e$ and $p \in P$ and $p_1 = e$. Then p is LIn of P, p_1 , p_2 , e and RIn of P, p_1 , p_2 , e.
- (34) Let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, p_1 , p_2 , p be points of $\mathcal{E}_{\mathrm{T}}^2$, and e be a real number. Suppose P is a special polygonal arc joining p_1 and p_2 and

YATSUKA NAKAMURA

 $(p_1)_1 < e$ and $(p_2)_1 > e$ and $p \in P$ and $p_1 = e$. Then p is LOut of P, p_1 , p_2 , e and ROut of P, p_1 , p_2 , e.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe*matics*, 1(1):41–46, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-[3] $290, \bar{1}990.$
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485. 1991
- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– [7]65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, [8] 1990.
 [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [12] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [13] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_T^2 . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
- [14] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
- [15] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Formalized Mathematics, 6(4):467–473, 1997.
- [16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [17] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.
- [18] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
- [19] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
- [20] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [24] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 26, 2004