Concatenation of Finite Sequences Reducing Overlapping Part and an Argument of Separators of Sequential Files

Hirofumi Fukura
Shinshu University
Nagano
Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. For two finite sequences, we present a notion of their concatenation, reducing overlapping part of the tail of the former and the head of the latter. At the same time, we also give a notion of common part of two finite sequences, which relates to the concatenation given here. A finite sequence is separated by another finite sequence (separator). We examined the condition that a separator separates uniquely any finite sequence. This will become a model of a separator of sequential files.

MML Identifier: FINSEQ_8.

The terminology and notation used here are introduced in the following articles: [14], [15], [9], [1], [12], [16], [3], [10], [2], [4], [5], [8], [13], [7], [11], and [6].

The following propositions are true:
(1) For every set D and for every finite sequence f of elements of D holds $f\ulcorner 0=\emptyset$.
(2) For every set D and for every finite sequence f of elements of D holds $f_{10}=f$.
Let D be a set and let f, g be finite sequences of elements of D. Then $f \sim g$ is a finite sequence of elements of D.

Next we state three propositions:
(3) For every non empty set D and for all finite sequences f, g of elements of D such that len $f \geqslant 1$ holds $\operatorname{mid}\left(f^{\wedge} g, 1, \operatorname{len} f\right)=f$.
(4) Let D be a set, f be a finite sequence of elements of D, and i be a natural number. If $i \geqslant \operatorname{len} f$, then $f_{l i}=\varepsilon_{D}$.
(5) For every non empty set D and for all natural numbers k_{1}, k_{2} holds $\operatorname{mid}\left(\varepsilon_{D}, k_{1}, k_{2}\right)=\varepsilon_{D}$.
Let D be a set, let f be a finite sequence of elements of D, and let k_{1}, k_{2} be natural numbers. The functor $\operatorname{smid}\left(f, k_{1}, k_{2}\right)$ yields a finite sequence of elements of D and is defined as follows:
(Def. 1) $\operatorname{smid}\left(f, k_{1}, k_{2}\right)=f_{\left\lfloor k_{1}-^{\prime} 1\right.} \uparrow\left(\left(k_{2}+1\right)-^{\prime} k_{1}\right)$.
One can prove the following propositions:
(6) Let D be a non empty set, f be a finite sequence of elements of D, and k_{1}, k_{2} be natural numbers. If $k_{1} \leqslant k_{2}$, then $\operatorname{smid}\left(f, k_{1}, k_{2}\right)=\operatorname{mid}\left(f, k_{1}, k_{2}\right)$.
(7) Let D be a non empty set, f be a finite sequence of elements of D, and k_{2} be a natural number. Then $\operatorname{smid}\left(f, 1, k_{2}\right)=f \backslash k_{2}$.
(8) Let D be a non empty set, f be a finite sequence of elements of D, and k_{2} be a natural number. If len $f \leqslant k_{2}$, then $\operatorname{smid}\left(f, 1, k_{2}\right)=f$.
(9) Let D be a set, f be a finite sequence of elements of D, and k_{1}, k_{2} be natural numbers. If $k_{1}>k_{2}$, then $\operatorname{smid}\left(f, k_{1}, k_{2}\right)=\emptyset$ and $\operatorname{smid}\left(f, k_{1}, k_{2}\right)=$ ε_{D}.
(10) For every set D and for every finite sequence f of elements of D and for every natural number k_{2} holds $\operatorname{smid}\left(f, 0, k_{2}\right)=\operatorname{smid}\left(f, 1, k_{2}+1\right)$.
(11) For every non empty set D and for all finite sequences f, g of elements of D holds $\operatorname{smid}\left(f^{\wedge} g, \operatorname{len} f+1, \operatorname{len} f+\operatorname{len} g\right)=g$.
Let D be a non empty set and let f, g be finite sequences of elements of D. The functor ovlpart (f, g) yielding a finite sequence of elements of D is defined by the conditions (Def. 2).
(Def. 2)(i) $\quad \operatorname{len} \operatorname{ovlpart}(f, g) \leqslant \operatorname{len} g$,
(ii) $\operatorname{ovlpart}(f, g)=\operatorname{smid}(g, 1$, len ovlpart $(f, g))$,
(iii) $\quad \operatorname{ovlpart}(f, g)=\operatorname{smid}\left(f,\left(\operatorname{len} f-^{\prime} \operatorname{len} \operatorname{ovlpart}(f, g)\right)+1\right.$, len $\left.f\right)$, and
(iv) for every natural number j such that $j \leqslant \operatorname{len} g$ and $\operatorname{smid}(g, 1, j)=$ $\operatorname{smid}\left(f,\left(\operatorname{len} f-^{\prime} j\right)+1, \operatorname{len} f\right)$ holds $j \leqslant \operatorname{len} \operatorname{ovlpart}(f, g)$.
Next we state the proposition
(12) For every non empty set D and for all finite sequences f, g of elements of D holds len ovlpart $(f, g) \leqslant \operatorname{len} f$.
Let D be a non empty set and let f, g be finite sequences of elements of D. The functor ovlcon (f, g) yielding a finite sequence of elements of D is defined as follows:
(Def. 3) $\operatorname{ovlcon~}(f, g)=f^{\wedge}\left(g_{\text {llen ovlpart }(f, g)}\right)$.
One can prove the following proposition
(13) For every non empty set D and for all finite sequences f, g of elements of D holds ovlcon $(f, g)=\left(f \upharpoonright\left(\operatorname{len} f-^{\prime} \text { len ovlpart }(f, g)\right)\right)^{\wedge} g$.

Let D be a non empty set and let f, g be finite sequences of elements of D. The functor ovlldiff (f, g) yields a finite sequence of elements of D and is defined as follows:
(Def. 4) ovlldiff $(f, g)=f \upharpoonright\left(\operatorname{len} f-^{\prime}\right.$ len ovlpart $\left.(f, g)\right)$.
Let D be a non empty set and let f, g be finite sequences of elements of D. The functor ovlrdiff (f, g) yields a finite sequence of elements of D and is defined by:
(Def. 5) ovlrdiff $(f, g)=g_{\text {llen ovlpart }(f, g)}$.
One can prove the following propositions:
(14) Let D be a non empty set and f, g be finite sequences of elements of D. Then ovlcon $(f, g)=(\operatorname{ovlldiff}(f, g))^{\wedge} \operatorname{ovlpart}(f, g)^{\wedge} \operatorname{ovlrdiff}(f, g)$ and $\operatorname{ovlcon}(f, g)=(\operatorname{ovlldiff}(f, g))^{\wedge}\left((\operatorname{ovlpart}(f, g))^{\wedge} \operatorname{ovlrdiff}(f, g)\right)$.
(15) Let D be a non empty set and f be a finite sequence of elements of D. Then ovlcon $(f, f)=f$ and $\operatorname{ovlpart}(f, f)=f$ and $\operatorname{ovlldiff}(f, f)=\emptyset$ and ovlrdiff $(f, f)=\emptyset$.
(16) For every non empty set D and for all finite sequences f, g of elements of D holds ovlpart $(f \frown g, g)=g$ and $\operatorname{ovlpart}(f, f \frown g)=f$.
(17) Let D be a non empty set and f, g be finite sequences of elements of D. Then len ovlcon $(f, g)=$ (len $f+\operatorname{len} g)-\operatorname{len} \operatorname{ovlpart}(f, g)$ and len ovlcon $(f, g)=(\operatorname{len} f+\operatorname{len} g)-^{\prime}$ len $\operatorname{ovlpart}(f, g)$ and len ovlcon $(f, g)=$ len $f+\left(\operatorname{len} g-{ }^{\prime}\right.$ len ovlpart $\left.(f, g)\right)$.
(18) For every non empty set D and for all finite sequences f, g of elements of D holds len ovlpart $(f, g) \leqslant \operatorname{len} f$ and len ovlpart $(f, g) \leqslant \operatorname{len} g$.
Let D be a non empty set and let C_{1} be a finite sequence of elements of D. We say that C_{1} separates uniquely if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let f be a finite sequence of elements of D and i, j be natural numbers. Suppose $1 \leqslant i$ and $i<j$ and $\left(j+\right.$ len $\left.C_{1}\right)-^{\prime} 1 \leqslant \operatorname{len} f$ and $\operatorname{smid}(f, i,(i+$ len $\left.\left.C_{1}\right)-^{\prime} 1\right)=\operatorname{smid}\left(f, j,\left(j+\operatorname{len} C_{1}\right)-^{\prime} 1\right)$ and $\operatorname{smid}\left(f, i,\left(i+\operatorname{len} C_{1}\right)-^{\prime} 1\right)=$ C_{1}. Then $j-{ }^{\prime} i \geqslant \operatorname{len} C_{1}$.
The following proposition is true
(19) Let D be a non empty set and C_{1} be a finite sequence of elements of D. Then C_{1} separates uniquely if and only if len ovlpart $\left(\left(C_{1}\right)_{\llcorner 1}, C_{1}\right)=0$.

Let D be a non empty set, let f, g be finite sequences of elements of D, and let n be a natural number. We say that g is a substring of f if and only if:
(Def. 7) If len $g>0$, then there exists a natural number i such that $n \leqslant i$ and $i \leqslant \operatorname{len} f$ and $\operatorname{mid}\left(f, i,\left(i-^{\prime} 1\right)+\operatorname{len} g\right)=g$.
We now state four propositions:
(20) Let D be a non empty set, f, g be finite sequences of elements of D, and n be a natural number. If len $g=0$, then g is a substring of f.
(21) Let D be a non empty set, f, g be finite sequences of elements of D, and n, m be natural numbers. If $m \geqslant n$ and g is a substring of f, then g is a substring of f.
(22) For every non empty set D and for every finite sequence f of elements of D such that $1 \leqslant \operatorname{len} f$ holds f is a substring of f.
(23) Let D be a non empty set and f, g be finite sequences of elements of D. If g is a substring of f, then g is a substring of f.
Let D be a non empty set and let f, g be finite sequences of elements of D.
We say that g is a preposition of f if and only if:
(Def. 8) If len $g>0$, then $1 \leqslant \operatorname{len} f$ and $\operatorname{mid}(f, 1, \operatorname{len} g)=g$.
One can prove the following four propositions:
(24) Let D be a non empty set and f, g be finite sequences of elements of D. If len $g=0$, then g is a preposition of f.
(25) For every non empty set D holds every finite sequence f of elements of D is a preposition of f.
(26) Let D be a non empty set and f, g be finite sequences of elements of D. If g is a preposition of f, then len $g \leqslant \operatorname{len} f$.
(27) Let D be a non empty set and f, g be finite sequences of elements of D. If len $g>0$ and g is a preposition of f, then $g(1)=f(1)$.

Let D be a non empty set and let f, g be finite sequences of elements of D. We say that g is a postposition of f if and only if:
(Def. 9) $\operatorname{Rev}(g)$ is a preposition of $\operatorname{Rev}(f)$.
Next we state several propositions:
(28) Let D be a non empty set and f, g be finite sequences of elements of D. If len $g=0$, then g is a postposition of f.
(29) Let D be a non empty set and f, g be finite sequences of elements of D. If g is a postposition of f, then len $g \leqslant \operatorname{len} f$.
(30) Let D be a non empty set, f, g be finite sequences of elements of D, and n be a natural number. Suppose g is a postposition of f. If len $g>0$, then $\operatorname{len} g \leqslant \operatorname{len} f$ and $\operatorname{mid}\left(f,(\operatorname{len} f+1)-^{\prime} \operatorname{len} g, \operatorname{len} f\right)=g$.
(31) Let D be a non empty set, f, g be finite sequences of elements of D, and n be a natural number such that if len $g>0$, then len $g \leqslant \operatorname{len} f$ and $\operatorname{mid}\left(f,(\operatorname{len} f+1)-^{\prime}\right.$ len g, len $\left.f\right)=g$. Then g is a postposition of f.
(32) Let D be a non empty set, f, g be finite sequences of elements of D, and n be a natural number. If len $g=0$, then g is a preposition of f.
(33) Let D be a non empty set, f, g be finite sequences of elements of D, and n be a natural number. If $1 \leqslant \operatorname{len} f$ and g is a preposition of f, then g is
a substring of f.
(34) Let D be a non empty set, f, g be finite sequences of elements of D, and n be a natural number. Suppose g is not a substring of f. Let i be a natural number. If $n \leqslant i$ and $0<i$, then $\operatorname{mid}\left(f, i,\left(i-{ }^{\prime} 1\right)+\operatorname{len} g\right) \neq g$.
Let D be a non empty set, let f, g be finite sequences of elements of D, and let n be a natural number. The functor $\operatorname{instr}(n, f)$ yielding a natural number is defined by the conditions (Def. 10).
(Def. 10)(i) If $\operatorname{instr}(n, f) \neq 0$, then $n \leqslant \operatorname{instr}(n, f)$ and g is a preposition of $f_{\text {linstr }(n, f)-^{\prime} 1}$ and for every natural number j such that $j \geqslant n$ and $j>0$ and g is a preposition of $f_{l j-^{\prime} 1}$ holds $j \geqslant \operatorname{instr}(n, f)$, and
(ii) if $\operatorname{instr}(n, f)=0$, then g is not a substring of f.

Let D be a non empty set and let f, C_{1} be finite sequences of elements of D. The functor $\operatorname{addcr}\left(f, C_{1}\right)$ yields a finite sequence of elements of D and is defined by:
(Def. 11) $\operatorname{addcr}\left(f, C_{1}\right)=\operatorname{ovlcon}\left(f, C_{1}\right)$.
Let D be a non empty set and let r, C_{1} be finite sequences of elements of D. We say that r is terminated by C_{1} if and only if:
(Def. 12) If len $C_{1}>0$, then len $r \geqslant \operatorname{len} C_{1}$ and $\operatorname{instr}(1, r)=(\operatorname{len} r+1)-^{\prime} \operatorname{len} C_{1}$.
The following proposition is true
(35) For every non empty set D holds every finite sequence f of elements of D is terminated by f.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[11] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, $4(\mathbf{1}): 83-86,1993$.
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received March 18, 2004

