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Summary. For two finite sequences, we present a notion of their concate-
nation, reducing overlapping part of the tail of the former and the head of the

latter. At the same time, we also give a notion of common part of two finite

sequences, which relates to the concatenation given here. A finite sequence is se-

parated by another finite sequence (separator). We examined the condition that

a separator separates uniquely any finite sequence. This will become a model of

a separator of sequential files.

MML Identifier: FINSEQ 8.

The terminology and notation used here are introduced in the following articles:

[14], [15], [9], [1], [12], [16], [3], [10], [2], [4], [5], [8], [13], [7], [11], and [6].

The following propositions are true:

(1) For every set D and for every finite sequence f of elements of D holds

f↾0 = ∅.

(2) For every set D and for every finite sequence f of elements of D holds

f⇂0 = f.

Let D be a set and let f , g be finite sequences of elements of D. Then f a g

is a finite sequence of elements of D.

Next we state three propositions:

(3) For every non empty set D and for all finite sequences f , g of elements

of D such that len f ­ 1 holds mid(f a g, 1, len f) = f.

(4) Let D be a set, f be a finite sequence of elements of D, and i be a natural

number. If i ­ len f, then f⇂i = εD.
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(5) For every non empty set D and for all natural numbers k1, k2 holds

mid(εD, k1, k2) = εD.

Let D be a set, let f be a finite sequence of elements of D, and let k1, k2 be

natural numbers. The functor smid(f, k1, k2) yields a finite sequence of elements

of D and is defined as follows:

(Def. 1) smid(f, k1, k2) = f⇂k1−
′1↾((k2 + 1)−′ k1).

One can prove the following propositions:

(6) Let D be a non empty set, f be a finite sequence of elements of D, and

k1, k2 be natural numbers. If k1 ¬ k2, then smid(f, k1, k2) = mid(f, k1, k2).

(7) Let D be a non empty set, f be a finite sequence of elements of D, and

k2 be a natural number. Then smid(f, 1, k2) = f↾k2.

(8) Let D be a non empty set, f be a finite sequence of elements of D, and

k2 be a natural number. If len f ¬ k2, then smid(f, 1, k2) = f.

(9) Let D be a set, f be a finite sequence of elements of D, and k1, k2 be

natural numbers. If k1 > k2, then smid(f, k1, k2) = ∅ and smid(f, k1, k2) =

εD.

(10) For every set D and for every finite sequence f of elements of D and for

every natural number k2 holds smid(f, 0, k2) = smid(f, 1, k2 + 1).

(11) For every non empty set D and for all finite sequences f , g of elements

of D holds smid(f a g, len f + 1, len f + len g) = g.

Let D be a non empty set and let f , g be finite sequences of elements of D.

The functor ovlpart(f, g) yielding a finite sequence of elements of D is defined

by the conditions (Def. 2).

(Def. 2)(i) len ovlpart(f, g) ¬ len g,

(ii) ovlpart(f, g) = smid(g, 1, len ovlpart(f, g)),

(iii) ovlpart(f, g) = smid(f, (len f −′ len ovlpart(f, g)) + 1, len f), and

(iv) for every natural number j such that j ¬ len g and smid(g, 1, j) =

smid(f, (len f −′ j) + 1, len f) holds j ¬ len ovlpart(f, g).

Next we state the proposition

(12) For every non empty set D and for all finite sequences f , g of elements

of D holds len ovlpart(f, g) ¬ len f.

Let D be a non empty set and let f , g be finite sequences of elements of D.

The functor ovlcon(f, g) yielding a finite sequence of elements of D is defined

as follows:

(Def. 3) ovlcon(f, g) = f a (g⇂len ovlpart(f,g)).

One can prove the following proposition

(13) For every non empty set D and for all finite sequences f , g of elements

of D holds ovlcon(f, g) = (f↾(len f −′ len ovlpart(f, g))) a g.
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Let D be a non empty set and let f , g be finite sequences of elements of D.

The functor ovlldiff(f, g) yields a finite sequence of elements of D and is defined

as follows:

(Def. 4) ovlldiff(f, g) = f↾(len f −′ len ovlpart(f, g)).

Let D be a non empty set and let f , g be finite sequences of elements of D.

The functor ovlrdiff(f, g) yields a finite sequence of elements of D and is defined

by:

(Def. 5) ovlrdiff(f, g) = g⇂len ovlpart(f,g).

One can prove the following propositions:

(14) Let D be a non empty set and f , g be finite sequences of elements of

D. Then ovlcon(f, g) = (ovlldiff(f, g)) a ovlpart(f, g) a ovlrdiff(f, g) and

ovlcon(f, g) = (ovlldiff(f, g)) a ((ovlpart(f, g)) a ovlrdiff(f, g)).

(15) Let D be a non empty set and f be a finite sequence of elements of D.

Then ovlcon(f, f) = f and ovlpart(f, f) = f and ovlldiff(f, f) = ∅ and

ovlrdiff(f, f) = ∅.

(16) For every non empty set D and for all finite sequences f , g of elements

of D holds ovlpart(f a g, g) = g and ovlpart(f, f a g) = f.

(17) Let D be a non empty set and f , g be finite sequences of elements

of D. Then len ovlcon(f, g) = (len f + len g) − len ovlpart(f, g) and

len ovlcon(f, g) = (len f + len g)−′ len ovlpart(f, g) and len ovlcon(f, g) =

len f + (len g −′ len ovlpart(f, g)).

(18) For every non empty set D and for all finite sequences f , g of elements

of D holds len ovlpart(f, g) ¬ len f and len ovlpart(f, g) ¬ len g.

Let D be a non empty set and let C1 be a finite sequence of elements of

D. We say that C1 separates uniquely if and only if the condition (Def. 6) is

satisfied.

(Def. 6) Let f be a finite sequence of elements of D and i, j be natural numbers.

Suppose 1 ¬ i and i < j and (j + lenC1) −
′ 1 ¬ len f and smid(f, i, (i +

lenC1)−
′ 1) = smid(f, j, (j+ lenC1)−

′ 1) and smid(f, i, (i+ lenC1)−
′ 1) =

C1. Then j −′ i ­ lenC1.

The following proposition is true

(19) Let D be a non empty set and C1 be a finite sequence of elements of D.

Then C1 separates uniquely if and only if len ovlpart((C1)⇂1, C1) = 0.

Let D be a non empty set, let f , g be finite sequences of elements of D, and

let n be a natural number. We say that g is a substring of f if and only if:

(Def. 7) If len g > 0, then there exists a natural number i such that n ¬ i and

i ¬ len f and mid(f, i, (i−′ 1) + len g) = g.

We now state four propositions:
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(20) Let D be a non empty set, f , g be finite sequences of elements of D, and

n be a natural number. If len g = 0, then g is a substring of f .

(21) Let D be a non empty set, f , g be finite sequences of elements of D, and

n, m be natural numbers. If m ­ n and g is a substring of f , then g is a

substring of f .

(22) For every non empty set D and for every finite sequence f of elements

of D such that 1 ¬ len f holds f is a substring of f .

(23) Let D be a non empty set and f , g be finite sequences of elements of D.

If g is a substring of f , then g is a substring of f .

Let D be a non empty set and let f , g be finite sequences of elements of D.

We say that g is a preposition of f if and only if:

(Def. 8) If len g > 0, then 1 ¬ len f and mid(f, 1, len g) = g.

One can prove the following four propositions:

(24) Let D be a non empty set and f , g be finite sequences of elements of D.

If len g = 0, then g is a preposition of f .

(25) For every non empty set D holds every finite sequence f of elements of

D is a preposition of f .

(26) Let D be a non empty set and f , g be finite sequences of elements of D.

If g is a preposition of f , then len g ¬ len f.

(27) Let D be a non empty set and f , g be finite sequences of elements of D.

If len g > 0 and g is a preposition of f , then g(1) = f(1).

Let D be a non empty set and let f , g be finite sequences of elements of D.

We say that g is a postposition of f if and only if:

(Def. 9) Rev(g) is a preposition of Rev(f).

Next we state several propositions:

(28) Let D be a non empty set and f , g be finite sequences of elements of D.

If len g = 0, then g is a postposition of f .

(29) Let D be a non empty set and f , g be finite sequences of elements of D.

If g is a postposition of f , then len g ¬ len f.

(30) Let D be a non empty set, f , g be finite sequences of elements of D, and

n be a natural number. Suppose g is a postposition of f . If len g > 0, then

len g ¬ len f and mid(f, (len f + 1)−′ len g, len f) = g.

(31) Let D be a non empty set, f , g be finite sequences of elements of D,

and n be a natural number such that if len g > 0, then len g ¬ len f and

mid(f, (len f + 1)−′ len g, len f) = g. Then g is a postposition of f .

(32) Let D be a non empty set, f , g be finite sequences of elements of D, and

n be a natural number. If len g = 0, then g is a preposition of f .

(33) Let D be a non empty set, f , g be finite sequences of elements of D, and

n be a natural number. If 1 ¬ len f and g is a preposition of f , then g is
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a substring of f .

(34) Let D be a non empty set, f , g be finite sequences of elements of D,

and n be a natural number. Suppose g is not a substring of f . Let i be a

natural number. If n ¬ i and 0 < i, then mid(f, i, (i−′ 1) + len g) 6= g.

Let D be a non empty set, let f , g be finite sequences of elements of D, and

let n be a natural number. The functor instr(n, f) yielding a natural number is

defined by the conditions (Def. 10).

(Def. 10)(i) If instr(n, f) 6= 0, then n ¬ instr(n, f) and g is a preposition of

f⇂instr(n,f)−′1 and for every natural number j such that j ­ n and j > 0

and g is a preposition of f⇂j−′1 holds j ­ instr(n, f), and

(ii) if instr(n, f) = 0, then g is not a substring of f .

Let D be a non empty set and let f , C1 be finite sequences of elements of D.

The functor addcr(f, C1) yields a finite sequence of elements of D and is defined

by:

(Def. 11) addcr(f, C1) = ovlcon(f, C1).

Let D be a non empty set and let r, C1 be finite sequences of elements of

D. We say that r is terminated by C1 if and only if:

(Def. 12) If lenC1 > 0, then len r ­ lenC1 and instr(1, r) = (len r + 1)−′ lenC1.

The following proposition is true

(35) For every non empty set D holds every finite sequence f of elements of

D is terminated by f .
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