# Convergent Sequences in Complex Unitary Space 

Noboru Endou<br>Gifu National College of Technology


#### Abstract

Summary. In this article, we introduce the notion of convergence sequence in complex unitary space and complex Hilbert space.


MML Identifier: CLVECT_2.

The terminology and notation used in this paper are introduced in the following papers: [15], [2], [14], [7], [1], [17], [3], [4], [10], [9], [16], [13], [11], [12], [8], [5], and [6].

## 1. Convergence in Complex Unitary Space

For simplicity, we adopt the following convention: $X$ is a complex unitary space, $x, y, w, g, g_{1}, g_{2}$ are points of $X, z$ is a Complex, $q, r, M$ are real numbers, $s_{1}, s_{2}, s_{3}, s_{4}$ are sequences of $X, k, n, m$ are natural numbers, and $N_{1}$ is an increasing sequence of naturals.

Let us consider $X, s_{1}$. We say that $s_{1}$ is convergent if and only if:
(Def. 1) There exists $g$ such that for every $r$ such that $r>0$ there exists $m$ such that for every $n$ such that $n \geqslant m$ holds $\rho\left(s_{1}(n), g\right)<r$.
Next we state several propositions:
(1) If $s_{1}$ is constant, then $s_{1}$ is convergent.
(2) If $s_{2}$ is convergent and there exists $k$ such that for every $n$ such that $k \leqslant n$ holds $s_{3}(n)=s_{2}(n)$, then $s_{3}$ is convergent.
(3) If $s_{2}$ is convergent and $s_{3}$ is convergent, then $s_{2}+s_{3}$ is convergent.
(4) If $s_{2}$ is convergent and $s_{3}$ is convergent, then $s_{2}-s_{3}$ is convergent.
(5) If $s_{1}$ is convergent, then $z \cdot s_{1}$ is convergent.
(6) If $s_{1}$ is convergent, then $-s_{1}$ is convergent.
(7) If $s_{1}$ is convergent, then $s_{1}+x$ is convergent.
(8) If $s_{1}$ is convergent, then $s_{1}-x$ is convergent.
(9) $s_{1}$ is convergent if and only if there exists $g$ such that for every $r$ such that $r>0$ there exists $m$ such that for every $n$ such that $n \geqslant m$ holds $\left\|s_{1}(n)-g\right\|<r$.
Let us consider $X, s_{1}$. Let us assume that $s_{1}$ is convergent. The functor $\lim s_{1}$ yields a point of $X$ and is defined as follows:
(Def. 2) For every $r$ such that $r>0$ there exists $m$ such that for every $n$ such that $n \geqslant m$ holds $\rho\left(s_{1}(n), \lim s_{1}\right)<r$.
One can prove the following propositions:
(10) If $s_{1}$ is constant and $x \in \operatorname{rng} s_{1}$, then $\lim s_{1}=x$.
(11) If $s_{1}$ is constant and there exists $n$ such that $s_{1}(n)=x$, then $\lim s_{1}=x$.
(12) If $s_{2}$ is convergent and there exists $k$ such that for every $n$ such that $n \geqslant k$ holds $s_{3}(n)=s_{2}(n)$, then $\lim s_{2}=\lim s_{3}$.
(13) If $s_{2}$ is convergent and $s_{3}$ is convergent, then $\lim \left(s_{2}+s_{3}\right)=\lim s_{2}+\lim s_{3}$.
(14) If $s_{2}$ is convergent and $s_{3}$ is convergent, then $\lim \left(s_{2}-s_{3}\right)=\lim s_{2}-\lim s_{3}$.
(15) If $s_{1}$ is convergent, then $\lim \left(z \cdot s_{1}\right)=z \cdot \lim s_{1}$.
(16) If $s_{1}$ is convergent, then $\lim \left(-s_{1}\right)=-\lim s_{1}$.
(17) If $s_{1}$ is convergent, then $\lim \left(s_{1}+x\right)=\lim s_{1}+x$.
(18) If $s_{1}$ is convergent, then $\lim \left(s_{1}-x\right)=\lim s_{1}-x$.
(19) Suppose $s_{1}$ is convergent. Then $\lim s_{1}=g$ if and only if for every $r$ such that $r>0$ there exists $m$ such that for every $n$ such that $n \geqslant m$ holds $\left\|s_{1}(n)-g\right\|<r$.
Let us consider $X, s_{1}$. The functor $\left\|s_{1}\right\|$ yielding a sequence of real numbers is defined as follows:
(Def. 3) For every $n$ holds $\left\|s_{1}\right\|(n)=\left\|s_{1}(n)\right\|$.
One can prove the following three propositions:
(20) If $s_{1}$ is convergent, then $\left\|s_{1}\right\|$ is convergent.
(21) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|s_{1}\right\|$ is convergent and $\lim \left\|s_{1}\right\|=$ $\|g\|$.
(22) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|s_{1}-g\right\|$ is convergent and $\lim \left\|s_{1}-g\right\|=0$.
Let us consider $X, s_{1}, x$. The functor $\rho\left(s_{1}, x\right)$ yielding a sequence of real numbers is defined as follows:
(Def. 4) For every $n$ holds $\left(\rho\left(s_{1}, x\right)\right)(n)=\rho\left(s_{1}(n), x\right)$.
One can prove the following propositions:
(23) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\rho\left(s_{1}, g\right)$ is convergent.
(24) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\rho\left(s_{1}, g\right)$ is convergent and $\lim \rho\left(s_{1}, g\right)=0$.
(25) If $s_{2}$ is convergent and $\lim s_{2}=g_{1}$ and $s_{3}$ is convergent and $\lim s_{3}=g_{2}$, then $\left\|s_{2}+s_{3}\right\|$ is convergent and $\lim \left\|s_{2}+s_{3}\right\|=\left\|g_{1}+g_{2}\right\|$.
(26) If $s_{2}$ is convergent and $\lim s_{2}=g_{1}$ and $s_{3}$ is convergent and $\lim s_{3}=g_{2}$, then $\left\|\left(s_{2}+s_{3}\right)-\left(g_{1}+g_{2}\right)\right\|$ is convergent and $\lim \left\|\left(s_{2}+s_{3}\right)-\left(g_{1}+g_{2}\right)\right\|=0$.
(27) If $s_{2}$ is convergent and $\lim s_{2}=g_{1}$ and $s_{3}$ is convergent and $\lim s_{3}=g_{2}$, then $\left\|s_{2}-s_{3}\right\|$ is convergent and $\lim \left\|s_{2}-s_{3}\right\|=\left\|g_{1}-g_{2}\right\|$.
(28) If $s_{2}$ is convergent and $\lim s_{2}=g_{1}$ and $s_{3}$ is convergent and $\lim s_{3}=g_{2}$, then $\left\|s_{2}-s_{3}-\left(g_{1}-g_{2}\right)\right\|$ is convergent and $\lim \left\|s_{2}-s_{3}-\left(g_{1}-g_{2}\right)\right\|=0$.
(29) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|z \cdot s_{1}\right\|$ is convergent and $\lim \| z$. $s_{1}\|=\| z \cdot g \|$.
(30) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|z \cdot s_{1}-z \cdot g\right\|$ is convergent and $\lim \left\|z \cdot s_{1}-z \cdot g\right\|=0$.
(31) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|-s_{1}\right\|$ is convergent and $\lim \left\|-s_{1}\right\|=\|-g\|$.
(32) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|-s_{1}--g\right\|$ is convergent and $\lim \left\|-s_{1}--g\right\|=0$.
(33) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|\left(s_{1}+x\right)-(g+x)\right\|$ is convergent and $\lim \left\|\left(s_{1}+x\right)-(g+x)\right\|=0$.
(34) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|s_{1}-x\right\|$ is convergent and $\lim \left\|s_{1}-x\right\|=\|g-x\|$.
(35) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\left\|s_{1}-x-(g-x)\right\|$ is convergent and $\lim \left\|s_{1}-x-(g-x)\right\|=0$.
(36) If $s_{2}$ is convergent and $\lim s_{2}=g_{1}$ and $s_{3}$ is convergent and $\lim s_{3}=g_{2}$, then $\rho\left(s_{2}+s_{3}, g_{1}+g_{2}\right)$ is convergent and $\lim \rho\left(s_{2}+s_{3}, g_{1}+g_{2}\right)=0$.
(37) If $s_{2}$ is convergent and $\lim s_{2}=g_{1}$ and $s_{3}$ is convergent and $\lim s_{3}=g_{2}$, then $\rho\left(s_{2}-s_{3}, g_{1}-g_{2}\right)$ is convergent and $\lim \rho\left(s_{2}-s_{3}, g_{1}-g_{2}\right)=0$.
(38) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\rho\left(z \cdot s_{1}, z \cdot g\right)$ is convergent and $\lim \rho\left(z \cdot s_{1}, z \cdot g\right)=0$.
(39) If $s_{1}$ is convergent and $\lim s_{1}=g$, then $\rho\left(s_{1}+x, g+x\right)$ is convergent and $\lim \rho\left(s_{1}+x, g+x\right)=0$.
Let us consider $X, x, r$. The functor $\operatorname{Ball}(x, r)$ yields a subset of $X$ and is defined by:
(Def. 5) $\operatorname{Ball}(x, r)=\{y ; y$ ranges over points of $X:\|x-y\|<r\}$.
The functor $\overline{\operatorname{Ball}}(x, r)$ yielding a subset of $X$ is defined by:
(Def. 6) $\overline{\operatorname{Ball}}(x, r)=\{y ; y$ ranges over points of $X:\|x-y\| \leqslant r\}$.
The functor Sphere $(x, r)$ yielding a subset of $X$ is defined as follows:
(Def. 7) $\operatorname{Sphere}(x, r)=\{y ; y$ ranges over points of $X:\|x-y\|=r\}$.

Next we state a number of propositions:
(40) $\quad w \in \operatorname{Ball}(x, r)$ iff $\|x-w\|<r$.
(41) $w \in \operatorname{Ball}(x, r)$ iff $\rho(x, w)<r$.
(42) If $r>0$, then $x \in \operatorname{Ball}(x, r)$.
(43) If $y \in \operatorname{Ball}(x, r)$ and $w \in \operatorname{Ball}(x, r)$, then $\rho(y, w)<2 \cdot r$.
(44) If $y \in \operatorname{Ball}(x, r)$, then $y-w \in \operatorname{Ball}(x-w, r)$.
(45) If $y \in \operatorname{Ball}(x, r)$, then $y-x \in \operatorname{Ball}\left(0_{X}, r\right)$.
(46) If $y \in \operatorname{Ball}(x, r)$ and $r \leqslant q$, then $y \in \operatorname{Ball}(x, q)$.
(47) $w \in \overline{\operatorname{Ball}}(x, r)$ iff $\|x-w\| \leqslant r$.
(48) $w \in \overline{\operatorname{Ball}}(x, r)$ iff $\rho(x, w) \leqslant r$.
(49) If $r \geqslant 0$, then $x \in \overline{\operatorname{Ball}}(x, r)$.
(50) If $y \in \operatorname{Ball}(x, r)$, then $y \in \overline{\operatorname{Ball}}(x, r)$.
(51) $w \in \operatorname{Sphere}(x, r)$ iff $\|x-w\|=r$.
(52) $w \in \operatorname{Sphere}(x, r)$ iff $\rho(x, w)=r$.
(53) If $y \in \operatorname{Sphere}(x, r)$, then $y \in \overline{\operatorname{Ball}}(x, r)$.
(54) $\operatorname{Ball}(x, r) \subseteq \overline{\operatorname{Ball}}(x, r)$.
(55) $\operatorname{Sphere}(x, r) \subseteq \overline{\operatorname{Ball}}(x, r)$.
(56) $\operatorname{Ball}(x, r) \cup \operatorname{Sphere}(x, r)=\overline{\operatorname{Ball}}(x, r)$.

## 2. Cauchy Sequence and Hilbert Space with Complex Coefficient

Let us consider $X$ and let us consider $s_{1}$. We say that $s_{1}$ is Cauchy if and only if:
(Def. 8) For every $r$ such that $r>0$ there exists $k$ such that for all $n, m$ such that $n \geqslant k$ and $m \geqslant k$ holds $\rho\left(s_{1}(n), s_{1}(m)\right)<r$.
The following propositions are true:
(57) If $s_{1}$ is constant, then $s_{1}$ is Cauchy.
(58) $s_{1}$ is Cauchy if and only if for every $r$ such that $r>0$ there exists $k$ such that for all $n, m$ such that $n \geqslant k$ and $m \geqslant k$ holds $\left\|s_{1}(n)-s_{1}(m)\right\|<r$.
(59) If $s_{2}$ is Cauchy and $s_{3}$ is Cauchy, then $s_{2}+s_{3}$ is Cauchy.
(60) If $s_{2}$ is Cauchy and $s_{3}$ is Cauchy, then $s_{2}-s_{3}$ is Cauchy.
(61) If $s_{1}$ is Cauchy, then $z \cdot s_{1}$ is Cauchy.
(62) If $s_{1}$ is Cauchy, then $-s_{1}$ is Cauchy.
(63) If $s_{1}$ is Cauchy, then $s_{1}+x$ is Cauchy.
(64) If $s_{1}$ is Cauchy, then $s_{1}-x$ is Cauchy.
(65) If $s_{1}$ is convergent, then $s_{1}$ is Cauchy.

Let us consider $X$ and let us consider $s_{2}, s_{3}$. We say that $s_{2}$ is compared to $s_{3}$ if and only if:
(Def. 9) For every $r$ such that $r>0$ there exists $m$ such that for every $n$ such that $n \geqslant m$ holds $\rho\left(s_{2}(n), s_{3}(n)\right)<r$.
One can prove the following two propositions:
(66) $s_{1}$ is compared to $s_{1}$.
(67) If $s_{2}$ is compared to $s_{3}$, then $s_{3}$ is compared to $s_{2}$.

Let us consider $X$ and let us consider $s_{2}, s_{3}$. Let us notice that the predicate $s_{2}$ is compared to $s_{3}$ is reflexive and symmetric.

The following propositions are true:
(68) If $s_{2}$ is compared to $s_{3}$ and $s_{3}$ is compared to $s_{4}$, then $s_{2}$ is compared to $s_{4}$.
(69) $s_{2}$ is compared to $s_{3}$ iff for every $r$ such that $r>0$ there exists $m$ such that for every $n$ such that $n \geqslant m$ holds $\left\|s_{2}(n)-s_{3}(n)\right\|<r$.
(70) If there exists $k$ such that for every $n$ such that $n \geqslant k$ holds $s_{2}(n)=$ $s_{3}(n)$, then $s_{2}$ is compared to $s_{3}$.
(71) If $s_{2}$ is Cauchy and compared to $s_{3}$, then $s_{3}$ is Cauchy.
(72) If $s_{2}$ is convergent and compared to $s_{3}$, then $s_{3}$ is convergent.
(73) If $s_{2}$ is convergent and $\lim s_{2}=g$ and $s_{2}$ is compared to $s_{3}$, then $s_{3}$ is convergent and $\lim s_{3}=g$.
Let us consider $X$ and let us consider $s_{1}$. We say that $s_{1}$ is bounded if and only if:
(Def. 10) There exists $M$ such that $M>0$ and for every $n$ holds $\left\|s_{1}(n)\right\| \leqslant M$.
We now state several propositions:
(74) If $s_{2}$ is bounded and $s_{3}$ is bounded, then $s_{2}+s_{3}$ is bounded.
(75) If $s_{1}$ is bounded, then $-s_{1}$ is bounded.
(76) If $s_{2}$ is bounded and $s_{3}$ is bounded, then $s_{2}-s_{3}$ is bounded.
(77) If $s_{1}$ is bounded, then $z \cdot s_{1}$ is bounded.
(78) If $s_{1}$ is constant, then $s_{1}$ is bounded.
(79) For every $m$ there exists $M$ such that $M>0$ and for every $n$ such that $n \leqslant m$ holds $\left\|s_{1}(n)\right\|<M$.
(80) If $s_{1}$ is convergent, then $s_{1}$ is bounded.
(81) If $s_{2}$ is bounded and compared to $s_{3}$, then $s_{3}$ is bounded.

Let us consider $X, N_{1}, s_{1}$. Then $s_{1} \cdot N_{1}$ is a sequence of $X$.
We now state several propositions:
(82) Let $X$ be a complex unitary space, $s$ be a sequence of $X, N$ be an increasing sequence of naturals, and $n$ be a natural number. Then $(s$. $N)(n)=s(N(n))$.
(83) $s_{1}$ is a subsequence of $s_{1}$.
(84) If $s_{2}$ is a subsequence of $s_{3}$ and $s_{3}$ is a subsequence of $s_{4}$, then $s_{2}$ is a subsequence of $s_{4}$.
(85) If $s_{1}$ is constant and $s_{2}$ is a subsequence of $s_{1}$, then $s_{2}$ is constant.
(86) If $s_{1}$ is constant and $s_{2}$ is a subsequence of $s_{1}$, then $s_{1}=s_{2}$.
(87) If $s_{1}$ is bounded and $s_{2}$ is a subsequence of $s_{1}$, then $s_{2}$ is bounded.
(88) If $s_{1}$ is convergent and $s_{2}$ is a subsequence of $s_{1}$, then $s_{2}$ is convergent.
(89) If $s_{2}$ is a subsequence of $s_{1}$ and $s_{1}$ is convergent, then $\lim s_{2}=\lim s_{1}$.
(90) If $s_{1}$ is Cauchy and $s_{2}$ is a subsequence of $s_{1}$, then $s_{2}$ is Cauchy.

Let us consider $X$, let us consider $s_{1}$, and let us consider $k$. The functor $s_{1} \uparrow k$ yields a sequence of $X$ and is defined as follows:
(Def. 11) For every $n$ holds $\left(s_{1} \uparrow k\right)(n)=s_{1}(n+k)$.
One can prove the following propositions:
(91) $s_{1} \uparrow 0=s_{1}$.
(92) $s_{1} \uparrow k \uparrow m=s_{1} \uparrow m \uparrow k$.
(93) $s_{1} \uparrow k \uparrow m=s_{1} \uparrow(k+m)$.
(94) $\left(s_{2}+s_{3}\right) \uparrow k=s_{2} \uparrow k+s_{3} \uparrow k$.
(95) $\left(-s_{1}\right) \uparrow k=-s_{1} \uparrow k$.
(96) $\left(s_{2}-s_{3}\right) \uparrow k=s_{2} \uparrow k-s_{3} \uparrow k$.
(97) $\left(z \cdot s_{1}\right) \uparrow k=z \cdot\left(s_{1} \uparrow k\right)$.
(98) $\left(s_{1} \cdot N_{1}\right) \uparrow k=s_{1} \cdot\left(N_{1} \uparrow k\right)$.
(99) $s_{1} \uparrow k$ is a subsequence of $s_{1}$.
(100) If $s_{1}$ is convergent, then $s_{1} \uparrow k$ is convergent and $\lim \left(s_{1} \uparrow k\right)=\lim s_{1}$.
(101) If $s_{1}$ is convergent and there exists $k$ such that $s_{1}=s_{2} \uparrow k$, then $s_{2}$ is convergent.
(102) If $s_{1}$ is Cauchy and there exists $k$ such that $s_{1}=s_{2} \uparrow k$, then $s_{2}$ is Cauchy.
(103) If $s_{1}$ is Cauchy, then $s_{1} \uparrow k$ is Cauchy.
(104) If $s_{2}$ is compared to $s_{3}$, then $s_{2} \uparrow k$ is compared to $s_{3} \uparrow k$.
(105) If $s_{1}$ is bounded, then $s_{1} \uparrow k$ is bounded.
(106) If $s_{1}$ is constant, then $s_{1} \uparrow k$ is constant.

Let us consider $X$. We say that $X$ is complete if and only if:
(Def. 12) For every $s_{1}$ such that $s_{1}$ is Cauchy holds $s_{1}$ is convergent.
The following proposition is true
(107) If $X$ is complete and $s_{1}$ is Cauchy, then $s_{1}$ is bounded.

Let us consider $X$. We say that $X$ is Hilbert if and only if:
(Def. 13) $X$ is a complex unitary space and complete.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[6] Noboru Endou. Complex linear space of complex sequences. Formalized Mathematics, 12(2):109-117, 2004.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[9] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Jan Popiołek. Introduction to Banach and Hilbert spaces - part I. Formalized Mathematics, 2(4):511-516, 1991.
[12] Jan Popiołek. Introduction to Banach and Hilbert spaces - part III. Formalized Mathematics, 2(4):523-526, 1991.
[13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

