Complex Banach Space of Bounded Linear Operators

Noboru Endou
Gifu National College of Technology

Abstract

Summary. An extension of [19]. In this article, the basic properties of complex linear spaces which are defined by the set of all complex linear operators from one complex linear space to another are described. Finally, a complex Banach space is introduced. This is defined by the set of all bounded complex linear operators, like in [19].

MML Identifier: CLOPBAN1.

The articles [24], [6], [26], [27], [4], [5], [17], [22], [21], [2], [1], [20], [11], [7], [25], [23], [18], [15], [13], [14], [12], [16], [3], [9], [10], [8], and [19] provide the terminology and notation for this paper.

1. Complex Vector Space of Operators

Let X be a set, let Y be a non empty set, let F be a function from : \mathbb{C}, Y : into Y, let c be a complex number, and let f be a function from X into Y. Then $F^{\circ}(c, f)$ is an element of Y^{X}.

We now state the proposition
(1) Let X be a non empty set and Y be a complex linear space. Then there exists a function M_{1} from : \mathbb{C}, (the carrier of $\left.Y\right)^{X}$: into (the carrier of $Y)^{X}$ such that for every Complex c and for every element f of (the carrier of $Y)^{X}$ and for every element s of X holds $M_{1}(\langle c, f\rangle)(s)=c \cdot f(s)$.
Let X be a non empty set and let Y be a complex linear space. The functor FuncExtMult (X, Y) yields a function from : \mathbb{C}, (the carrier of $Y)^{X}$: into (the carrier of $Y)^{X}$ and is defined by the condition (Def. 1).
(Def. 1) Let c be a Complex, f be an element of (the carrier of $Y)^{X}$, and x be an element of X. Then $($ FuncExtMult $(X, Y))(\langle c, f\rangle)(x)=c \cdot f(x)$.

We follow the rules: X is a non empty set, Y is a complex linear space, and f, g, h are elements of (the carrier of $Y)^{X}$.

We now state the proposition
(2) For every element x of X holds (FuncZero $(X, Y))(x)=0_{Y}$.

In the sequel a, b are Complexes.
Next we state several propositions:
(3) $\quad h=($ FuncExtMult $(X, Y))(\langle a, f\rangle)$ iff for every element x of X holds $h(x)=a \cdot f(x)$.
(4) $\quad(\operatorname{FuncAdd}(X, Y))(f, g)=(\operatorname{FuncAdd}(X, Y))(g, f)$.
(5) $\quad(\operatorname{FuncAdd}(X, Y))(f,(\operatorname{FuncAdd}(X, Y))(g, h))=$ $(\operatorname{FuncAdd}(X, Y))((\operatorname{FuncAdd}(X, Y))(f, g), h)$.
(6) $\quad(\operatorname{FuncAdd}(X, Y))(\operatorname{FuncZero}(X, Y), f)=f$.
(7) $\quad(\operatorname{FuncAdd}(X, Y))\left(f,(\operatorname{FuncExtMult}(X, Y))\left(\left\langle-1_{\mathbb{C}}, f\right\rangle\right)\right)=$ FuncZero (X, Y).
(8) $\quad(\operatorname{FuncExtMult}(X, Y))\left(\left\langle 1_{\mathbb{C}}, f\right\rangle\right)=f$.
(9) $\quad(\operatorname{FuncExtMult}(X, Y))(\langle a,(\operatorname{FuncExtMult}(X, Y))(\langle b, f\rangle)\rangle)=$ (FuncExtMult $(X, Y))(\langle a \cdot b, f\rangle)$.
(10) $\quad(\operatorname{FuncAdd}(X, Y))((\operatorname{FuncExtMult}(X, Y))(\langle a, f\rangle)$, $(\operatorname{FuncExtMult}(X, Y))(\langle b, f\rangle))=(\operatorname{FuncExtMult}(X, Y))(\langle a+b, f\rangle)$.
(11) $\left\langle(\text { the carrier of } Y)^{X}, \operatorname{FuncZero}(X, Y), \operatorname{FuncAdd}(X, Y)\right.$, FuncExtMult $(X, Y)\rangle$ is a complex linear space.
Let X be a non empty set and let Y be a complex linear space. The functor ComplexVectSpace (X, Y) yielding a complex linear space is defined as follows:
(Def. 2) ComplexVectSpace $(X, Y)=\left\langle(\text { the carrier of } Y)^{X}, \operatorname{FuncZero}(X, Y)\right.$, FuncAdd (X, Y), FuncExtMult $(X, Y)\rangle$.
Let X be a non empty set and let Y be a complex linear space. Observe that ComplexVectSpace (X, Y) is strict.

Let X be a non empty set and let Y be a complex linear space. Observe that every vector of ComplexVectSpace (X, Y) is function-like and relation-like.

Let X be a non empty set, let Y be a complex linear space, let f be a vector of ComplexVectSpace (X, Y), and let x be an element of X. Then $f(x)$ is a vector of Y.

We now state three propositions:
(12) Let X be a non empty set, Y be a complex linear space, and f, g, h be vectors of ComplexVectSpace (X, Y). Then $h=f+g$ if and only if for every element x of X holds $h(x)=f(x)+g(x)$.
(13) Let X be a non empty set, Y be a complex linear space, f, h be vectors of ComplexVectSpace (X, Y), and c be a Complex. Then $h=c \cdot f$ if and only if for every element x of X holds $h(x)=c \cdot f(x)$.
(14) For every non empty set X and for every complex linear space Y holds $0_{\text {ComplexVectSpace }(X, Y)}=X \longmapsto 0_{Y}$.

2. Complex Vector Space of Linear Operators

Let X be a non empty CLS structure, let Y be a non empty loop structure, and let I_{1} be a function from X into Y. We say that I_{1} is additive if and only if:
(Def. 3) For all vectors x, y of X holds $I_{1}(x+y)=I_{1}(x)+I_{1}(y)$.
Let X, Y be non empty CLS structures and let I_{1} be a function from X into Y. We say that I_{1} is homogeneous if and only if:
(Def. 4) For every vector x of X and for every Complex r holds $I_{1}(r \cdot x)=r \cdot I_{1}(x)$.
Let X be a non empty CLS structure and let Y be a complex linear space. One can verify that there exists a function from X into Y which is additive and homogeneous.

Let X, Y be complex linear spaces. A linear operator from X into Y is an additive homogeneous function from X into Y.

Let X, Y be complex linear spaces. The functor LinearOperators (X, Y) yielding a subset of ComplexVectSpace(the carrier of X, Y) is defined by:
(Def. 5) For every set x holds $x \in \operatorname{LinearOperators}(X, Y)$ iff x is a linear operator from X into Y.
Let X, Y be complex linear spaces. Note that LinearOperators (X, Y) is non empty.

Next we state two propositions:
(15) For all complex linear spaces X, Y holds LinearOperators (X, Y) is linearly closed.
(16) Let X, Y be complex linear spaces. Then $\langle\operatorname{LinearOperators}(X, Y)$, Zero_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$), Add_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$), Mult_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$) \rangle is a subspace of ComplexVectSpace(the carrier of X, Y).
Let X, Y be complex linear spaces. One can check that
〈LinearOperators(X, Y), Zero_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$), Add_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$), Mult_(LinearOperators (X, Y), ComplexVectSpace(the carrier of X, $Y))\rangle$ is Abelian, add-associative, right zeroed, right complementable, and complex linear space-like.

Next we state the proposition
(17) Let X, Y be complex linear spaces. Then \langle LinearOperators (X, Y), Zero_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$),

Add_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$), Mult_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$) is a complex linear space.
Let X, Y be complex linear spaces. The functor $\operatorname{CVSpLinOps}(X, Y)$ yielding a complex linear space is defined as follows:
(Def. 6) CVSpLinOps $(X, Y)=\langle$ LinearOperators (X, Y), Zero_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y)$), Add_(LinearOperators $(X$, $Y)$, ComplexVectSpace(the carrier of $X, Y)$), Mult_(LinearOperators (X, Y), ComplexVectSpace(the carrier of $X, Y))\rangle$.
Let X, Y be complex linear spaces. Note that $\operatorname{CVSpLinOps}(X, Y)$ is strict.
Let X, Y be complex linear spaces. One can check that every element of CVSpLinOps (X, Y) is function-like and relation-like.

Let X, Y be complex linear spaces, let f be an element of CVSpLinOps (X, Y), and let v be a vector of X. Then $f(v)$ is a vector of Y.

Next we state four propositions:
(18) Let X, Y be complex linear spaces and f, g, h be vectors of CVSpLinOps (X, Y). Then $h=f+g$ if and only if for every vector x of X holds $h(x)=f(x)+g(x)$.
(19) Let X, Y be complex linear spaces, f, h be vectors of CVSpLinOps (X, Y), and c be a Complex. Then $h=c \cdot f$ if and only if for every vector x of X holds $h(x)=c \cdot f(x)$.
(20) For all complex linear spaces X, Y holds $0_{\mathrm{CVSpLinOps}(X, Y)}=($ the carrier of $X) \longmapsto 0_{Y}$.
(21) For all complex linear spaces X, Y holds (the carrier of $X) \longmapsto 0_{Y}$ is a linear operator from X into Y.

3. Complex Normed Linear Space of Bounded Linear Operators

One can prove the following proposition
(22) Let X be a complex normed space, s_{1} be a sequence of X, and g be a point of X. If s_{1} is convergent and $\lim s_{1}=g$, then $\left\|s_{1}\right\|$ is convergent and $\lim \left\|s_{1}\right\|=\|g\|$.
Let X, Y be complex normed spaces and let I_{1} be a linear operator from X into Y. We say that I_{1} is bounded if and only if:
(Def. 7) There exists a real number K such that $0 \leqslant K$ and for every vector x of X holds $\left\|I_{1}(x)\right\| \leqslant K \cdot\|x\|$.
We now state the proposition
(23) Let X, Y be complex normed spaces and f be a linear operator from X into Y. If for every vector x of X holds $f(x)=0_{Y}$, then f is bounded.

Let X, Y be complex normed spaces. Observe that there exists a linear operator from X into Y which is bounded.

Let X, Y be complex normed spaces. The functor $\operatorname{BdLinOps}(X, Y)$ yielding a subset of CVSpLinOps (X, Y) is defined as follows:
(Def. 8) For every set x holds $x \in \operatorname{BdLinOps}(X, Y)$ iff x is a bounded linear operator from X into Y.
Let X, Y be complex normed spaces. One can check that $\operatorname{BdLinOps}(X, Y)$ is non empty.

One can prove the following two propositions:
(24) For all complex normed spaces X, Y holds $\operatorname{BdLinOps}(X, Y)$ is linearly closed.
(25) For all complex normed spaces X, Y holds $\langle\operatorname{BdLinOps}(X, Y)$, Zero_(BdLinOps $(X, Y), \mathrm{CVSpLinOps}(X, Y))$, Add_($\operatorname{BdLinOps}(X, Y)$, CVSpLinOps $(X, Y))$, Mult_($\operatorname{BdLinOps}(X, Y), \operatorname{CVSpLinOps}(X, Y))\rangle$ is a subspace of $\mathrm{CVSpLinOps}(X, Y)$.
Let X, Y be complex normed spaces. Observe that $\langle\operatorname{BdLinOps}(X, Y)$,
Zero_(BdLinOps $(X, Y), C V S p L i n O p s(X, Y)), \operatorname{Add}(\operatorname{BdLinOps}(X, Y)$,
CVSpLinOps $(X, Y))$, Mult_($\operatorname{BdLinOps}(X, Y)$, $\operatorname{CVSpLinOps}(X, Y))\rangle$ is Abelian, add-associative, right zeroed, right complementable, and complex linear space-like.

Next we state the proposition
(26) For all complex normed spaces X, Y holds $\langle\operatorname{BdLinOps}(X, Y)$, $Z_{\text {Zero_(}}(\operatorname{BdLinOps}(X, Y), \mathrm{CVSpLinOps}(X, Y)), \operatorname{Add}(\operatorname{BdLinOps}(X, Y)$, CVSpLinOps $(X, Y))$, Mult_($\operatorname{BdLinOps}(X, Y), \operatorname{CVSpLinOps}(X, Y))\rangle$ is a complex linear space.
Let X, Y be complex normed spaces. The functor $\operatorname{CVSpBdLinOps}(X, Y)$ yielding a complex linear space is defined by:
(Def. 9) $\quad \mathrm{CVSpBdLinOps}(X, Y)=\left\langle\operatorname{BdLinOps}(X, Y), Z_{\operatorname{Zero}}^{-}(\operatorname{BdLinOps}(X, Y)\right.$, CVSpLinOps $(X, Y)), \operatorname{Add}_{-}(\operatorname{BdLinOps}(X, Y), \operatorname{CVSpLinOps}(X, Y))$, Mult_(BdLinOps $(X, Y), C V S p L i n O p s(X, Y))\rangle$.
Let X, Y be complex normed spaces. One can check that $\operatorname{CVSpBdLinOps}(X, Y)$ is strict.

Let X, Y be complex normed spaces. Note that every element of CVSpBdLinOps (X, Y) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of CVSpBdLinOps (X, Y), and let v be a vector of X. Then $f(v)$ is a vector of Y.

One can prove the following propositions:
(27) Let X, Y be complex normed spaces and f, g, h be vectors of CVSpBdLinOps (X, Y). Then $h=f+g$ if and only if for every vector
x of X holds $h(x)=f(x)+g(x)$.
(28) Let X, Y be complex normed spaces, f, h be vectors of CVSpBdLinOps (X, Y), and c be a Complex. Then $h=c \cdot f$ if and only if for every vector x of X holds $h(x)=c \cdot f(x)$.
(29) For all complex normed spaces X, Y holds $0_{\operatorname{CVSpBdLinOps}(X, Y)}=$ (the carrier of $X) \longmapsto 0_{Y}$.
Let X, Y be complex normed spaces and let f be a set. Let us assume that $f \in \operatorname{BdLinOps}(X, Y)$. The functor modetrans (f, X, Y) yields a bounded linear operator from X into Y and is defined as follows:
(Def. 10) modetrans $(f, X, Y)=f$.
Let X, Y be complex normed spaces and let u be a linear operator from X into Y. The functor $\operatorname{PreNorms}(u)$ yielding a non empty subset of \mathbb{R} is defined as follows:
(Def. 11) PreNorms $(u)=\{\|u(t)\| ; t$ ranges over vectors of $X:\|t\| \leqslant 1\}$.
We now state three propositions:
(30) Let X, Y be complex normed spaces and g be a bounded linear operator from X into Y. Then $\operatorname{PreNorms}(g)$ is non empty and upper bounded.
(31) Let X, Y be complex normed spaces and g be a linear operator from X into Y. Then g is bounded if and only if $\operatorname{PreNorms}(g)$ is upper bounded.
(32) Let X, Y be complex normed spaces. Then there exists a function N_{1} from $\operatorname{BdLinOps}(X, Y)$ into \mathbb{R} such that for every set f if $f \in$ $\operatorname{BdLinOps}(X, Y)$, then $N_{1}(f)=\sup \operatorname{PreNorms}(\operatorname{modetrans}(f, X, Y))$.

Let X, Y be complex normed spaces. The functor $\operatorname{BdLinOpsNorm}(X, Y)$ yields a function from $\operatorname{BdLinOps}(X, Y)$ into \mathbb{R} and is defined by:
(Def. 12) For every set x such that $x \in \operatorname{BdLinOps}(X, Y)$ holds
$(\operatorname{BdLinOpsNorm}(X, Y))(x)=\sup \operatorname{PreNorms}(\operatorname{modetrans}(x, X, Y))$.
We now state two propositions:
(33) For all complex normed spaces X, Y and for every bounded linear operator f from X into Y holds modetrans $(f, X, Y)=f$.
(34) For all complex normed spaces X, Y and for every bounded linear operator f from X into Y holds (BdLinOpsNorm $(X, Y))(f)=$ sup PreNorms (f).
Let X, Y be complex normed spaces. The functor $\operatorname{CNSpBdLinOps}(X, Y)$ yields a non empty complex normed space structure and is defined by:
(Def. 13) $\mathrm{CNSpBdLinOps}(X, Y)=\left\langle\operatorname{BdLinOps}(X, Y), Z_{\operatorname{Zero}}^{-}(\operatorname{BdLinOps}(X, Y)\right.$, CVSpLinOps $\left.(X, Y)), \operatorname{Add}_{-}\left(\operatorname{BdLinOps}^{(X}, Y\right), \operatorname{CVSpLinOps}(X, Y)\right)$, Mult_(BdLinOps $(X, Y), \mathrm{CVSpLinOps}(X, Y)), \operatorname{BdLinOpsNorm}(X, Y)\rangle$.
The following four propositions are true:
(35) For all complex normed spaces X, Y holds (the carrier of $X) \longmapsto 0_{Y}=$ $0_{\mathrm{CNSpBdLinOps}(X, Y)}$.
(36) Let X, Y be complex normed spaces, f be a point of $\mathrm{CNSpBdLinOps}(X$, $Y)$, and g be a bounded linear operator from X into Y. If $g=f$, then for every vector t of X holds $\|g(t)\| \leqslant\|f\| \cdot\|t\|$.
(37) For all complex normed spaces X, Y and for every point f of CNSpBdLinOps (X, Y) holds $0 \leqslant\|f\|$.
(38) For all complex normed spaces X, Y and for every point f of CNSpBdLinOps (X, Y) such that $f=0_{\mathrm{CNSpBdLinOps}(X, Y)}$ holds $0=\|f\|$.
Let X, Y be complex normed spaces. One can check that every element of CNSpBdLinOps (X, Y) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of CNSpBdLinOps (X, Y), and let v be a vector of X. Then $f(v)$ is a vector of Y.

We now state several propositions:
(39) Let X, Y be complex normed spaces and f, g, h be points of CNSpBdLinOps (X, Y). Then $h=f+g$ if and only if for every vector x of X holds $h(x)=f(x)+g(x)$.
(40) Let X, Y be complex normed spaces, f, h be points of CNSpBdLinOps (X, Y), and c be a Complex. Then $h=c \cdot f$ if and only if for every vector x of X holds $h(x)=c \cdot f(x)$.
(41) Let X, Y be complex normed spaces, f, g be points of CNSpBdLinOps (X, Y), and c be a Complex. Then $\|f\|=0$ iff $f=$ $0_{\mathrm{CNSpBdLinOps}(X, Y)}$ and $\|c \cdot f\|=|c| \cdot\|f\|$ and $\|f+g\| \leqslant\|f\|+\|g\|$.
(42) For all complex normed spaces X, Y holds $\operatorname{CNSpBdLinOps}(X, Y)$ is complex normed space-like.
(43) For all complex normed spaces X, Y holds $\operatorname{CNSpBdLinOps}(X, Y)$ is a complex normed space.
Let X, Y be complex normed spaces. Observe that $\operatorname{CNSpBdLinOps}(X, Y)$ is complex normed space-like, complex linear space-like, Abelian, add-associative, right zeroed, and right complementable.

One can prove the following proposition
(44) Let X, Y be complex normed spaces and f, g, h be points of CNSpBdLinOps (X, Y). Then $h=f-g$ if and only if for every vector x of X holds $h(x)=f(x)-g(x)$.

4. Complex Banach Space of Bounded Linear Operators

Let X be a complex normed space. We say that X is complete if and only if:
(Def. 14) For every sequence s_{1} of X such that s_{1} is Cauchy sequence by norm holds s_{1} is convergent.
Let us observe that there exists a complex normed space which is complete. A complex Banach space is a complete complex normed space.
One can prove the following three propositions:
(45) Let X be a complex normed space and s_{1} be a sequence of X. If s_{1} is convergent, then $\left\|s_{1}\right\|$ is convergent and $\lim \left\|s_{1}\right\|=\left\|\lim s_{1}\right\|$.
(46) Let X, Y be complex normed spaces. Suppose Y is complete. Let s_{1} be a sequence of $\mathrm{CNSpBdLinOps}(X, Y)$. If s_{1} is Cauchy sequence by norm, then s_{1} is convergent.
(47) For every complex normed space X and for every complex Banach space Y holds CNSpBdLinOps (X, Y) is a complex Banach space.
Let X be a complex normed space and let Y be a complex Banach space. One can verify that $\mathrm{CNSpBdLinOps}(X, Y)$ is complete.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[8] Noboru Endou. Banach space of absolute summable complex sequences. Formalized Mathematics, 12(2):191-194, 2004.
[9] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[10] Noboru Endou. Complex linear space of complex sequences. Formalized Mathematics, 12(2):109-117, 2004.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[13] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[14] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[16] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[18] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[19] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2003.
[20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[22] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[23] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

