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Summary. An extension of [19]. In this article, the basic properties of
complex linear spaces which are defined by the set of all complex linear opera-

tors from one complex linear space to another are described. Finally, a complex

Banach space is introduced. This is defined by the set of all bounded complex

linear operators, like in [19].
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The articles [24], [6], [26], [27], [4], [5], [17], [22], [21], [2], [1], [20], [11], [7],

[25], [23], [18], [15], [13], [14], [12], [16], [3], [9], [10], [8], and [19] provide the

terminology and notation for this paper.

1. Complex Vector Space of Operators

Let X be a set, let Y be a non empty set, let F be a function from [: C, Y :]

into Y , let c be a complex number, and let f be a function from X into Y . Then

F ◦(c, f) is an element of Y X .

We now state the proposition

(1) Let X be a non empty set and Y be a complex linear space. Then there

exists a function M1 from [: C, (the carrier of Y )X :] into (the carrier of

Y )X such that for every Complex c and for every element f of (the carrier

of Y )X and for every element s of X holds M1(〈〈c, f〉〉)(s) = c · f(s).

Let X be a non empty set and let Y be a complex linear space. The functor

FuncExtMult(X, Y ) yields a function from [: C, (the carrier of Y )X :] into (the

carrier of Y )X and is defined by the condition (Def. 1).

(Def. 1) Let c be a Complex, f be an element of (the carrier of Y )X , and x be

an element of X. Then (FuncExtMult(X,Y ))(〈〈c, f〉〉)(x) = c · f(x).
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202 noboru endou

We follow the rules: X is a non empty set, Y is a complex linear space, and

f , g, h are elements of (the carrier of Y )X .

We now state the proposition

(2) For every element x of X holds (FuncZero(X, Y ))(x) = 0Y .

In the sequel a, b are Complexes.

Next we state several propositions:

(3) h = (FuncExtMult(X, Y ))(〈〈a, f〉〉) iff for every element x of X holds

h(x) = a · f(x).

(4) (FuncAdd(X,Y ))(f, g) = (FuncAdd(X, Y ))(g, f).

(5) (FuncAdd(X,Y ))(f, (FuncAdd(X, Y ))(g, h)) =

(FuncAdd(X,Y ))((FuncAdd(X, Y ))(f, g), h).

(6) (FuncAdd(X,Y ))(FuncZero(X, Y ), f) = f.

(7) (FuncAdd(X,Y ))(f, (FuncExtMult(X, Y ))(〈〈−1C, f〉〉)) =

FuncZero(X,Y ).

(8) (FuncExtMult(X, Y ))(〈〈1C, f〉〉) = f.

(9) (FuncExtMult(X, Y ))(〈〈a, (FuncExtMult(X, Y ))(〈〈b, f〉〉)〉〉) =

(FuncExtMult(X,Y ))(〈〈a · b, f〉〉).

(10) (FuncAdd(X,Y ))((FuncExtMult(X, Y ))(〈〈a, f〉〉),

(FuncExtMult(X, Y ))(〈〈b, f〉〉)) = (FuncExtMult(X, Y ))(〈〈a + b, f〉〉).

(11) 〈(the carrier of Y )X ,FuncZero(X, Y ),FuncAdd(X, Y ),

FuncExtMult(X,Y )〉 is a complex linear space.

Let X be a non empty set and let Y be a complex linear space. The functor

ComplexVectSpace(X, Y ) yielding a complex linear space is defined as follows:

(Def. 2) ComplexVectSpace(X, Y ) = 〈(the carrier of Y )X ,FuncZero(X, Y ),

FuncAdd(X,Y ),FuncExtMult(X,Y )〉.

Let X be a non empty set and let Y be a complex linear space. Observe that

ComplexVectSpace(X, Y ) is strict.

Let X be a non empty set and let Y be a complex linear space. Observe that

every vector of ComplexVectSpace(X, Y ) is function-like and relation-like.

Let X be a non empty set, let Y be a complex linear space, let f be a vector

of ComplexVectSpace(X, Y ), and let x be an element ofX. Then f(x) is a vector

of Y .

We now state three propositions:

(12) Let X be a non empty set, Y be a complex linear space, and f , g, h

be vectors of ComplexVectSpace(X, Y ). Then h = f + g if and only if for

every element x of X holds h(x) = f(x) + g(x).

(13) Let X be a non empty set, Y be a complex linear space, f , h be vectors

of ComplexVectSpace(X,Y ), and c be a Complex. Then h = c · f if and

only if for every element x of X holds h(x) = c · f(x).
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(14) For every non empty set X and for every complex linear space Y holds

0ComplexVectSpace(X,Y ) = X 7−→ 0Y .

2. Complex Vector Space of Linear Operators

Let X be a non empty CLS structure, let Y be a non empty loop structure,

and let I1 be a function from X into Y . We say that I1 is additive if and only

if:

(Def. 3) For all vectors x, y of X holds I1(x + y) = I1(x) + I1(y).

Let X, Y be non empty CLS structures and let I1 be a function from X into

Y . We say that I1 is homogeneous if and only if:

(Def. 4) For every vector x of X and for every Complex r holds I1(r ·x) = r ·I1(x).

Let X be a non empty CLS structure and let Y be a complex linear space.

One can verify that there exists a function from X into Y which is additive and

homogeneous.

Let X, Y be complex linear spaces. A linear operator from X into Y is an

additive homogeneous function from X into Y .

Let X, Y be complex linear spaces. The functor LinearOperators(X,Y ) yiel-

ding a subset of ComplexVectSpace(the carrier of X, Y ) is defined by:

(Def. 5) For every set x holds x ∈ LinearOperators(X,Y ) iff x is a linear operator

from X into Y .

Let X, Y be complex linear spaces. Note that LinearOperators(X, Y ) is non

empty.

Next we state two propositions:

(15) For all complex linear spaces X, Y holds LinearOperators(X, Y ) is line-

arly closed.

(16) Let X, Y be complex linear spaces. Then 〈LinearOperators(X, Y ),

Zero (LinearOperators(X,Y ),ComplexVectSpace(the carrier of X, Y )),

Add (LinearOperators(X,Y ),ComplexVectSpace(the carrier of X, Y )),

Mult (LinearOperators(X,Y ),ComplexVectSpace(the carrier of X, Y ))〉

is a subspace of ComplexVectSpace(the carrier of X, Y ).

Let X, Y be complex linear spaces. One can check that

〈LinearOperators(X, Y ),Zero (LinearOperators(X, Y ),ComplexVectSpace(the

carrier of X, Y )),Add (LinearOperators(X,Y ),ComplexVectSpace(the carrier

of X, Y )),Mult (LinearOperators(X, Y ),ComplexVectSpace(the carrier of X,

Y ))〉 is Abelian, add-associative, right zeroed, right complementable, and com-

plex linear space-like.

Next we state the proposition

(17) Let X, Y be complex linear spaces. Then 〈LinearOperators(X, Y ),

Zero (LinearOperators(X,Y ),ComplexVectSpace(the carrier of X, Y )),
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Add (LinearOperators(X, Y ),ComplexVectSpace(the carrier of X, Y )),

Mult (LinearOperators(X,Y ),ComplexVectSpace(the carrier of X, Y ))〉

is a complex linear space.

Let X, Y be complex linear spaces. The functor CVSpLinOps(X, Y ) yielding

a complex linear space is defined as follows:

(Def. 6) CVSpLinOps(X, Y ) = 〈LinearOperators(X,Y ),Zero (LinearOperators

(X, Y ),ComplexVectSpace(the carrier ofX, Y )),Add (LinearOperators(X,

Y ),ComplexVectSpace(the carrier ofX, Y )),Mult (LinearOperators(X,Y ),

ComplexVectSpace(the carrier of X, Y ))〉.

Let X, Y be complex linear spaces. Note that CVSpLinOps(X, Y ) is strict.

Let X, Y be complex linear spaces. One can check that every element of

CVSpLinOps(X, Y ) is function-like and relation-like.

Let X, Y be complex linear spaces, let f be an element of

CVSpLinOps(X, Y ), and let v be a vector of X. Then f(v) is a vector of Y .

Next we state four propositions:

(18) Let X, Y be complex linear spaces and f , g, h be vectors of

CVSpLinOps(X,Y ). Then h = f + g if and only if for every vector x

of X holds h(x) = f(x) + g(x).

(19) Let X, Y be complex linear spaces, f , h be vectors of

CVSpLinOps(X,Y ), and c be a Complex. Then h = c · f if and only

if for every vector x of X holds h(x) = c · f(x).

(20) For all complex linear spaces X, Y holds 0CVSpLinOps(X,Y ) = (the carrier

of X) 7−→ 0Y .

(21) For all complex linear spaces X, Y holds (the carrier of X) 7−→ 0Y is a

linear operator from X into Y .

3. Complex Normed Linear Space of Bounded Linear Operators

One can prove the following proposition

(22) Let X be a complex normed space, s1 be a sequence of X, and g be a

point of X. If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and

lim‖s1‖ = ‖g‖.

Let X, Y be complex normed spaces and let I1 be a linear operator from X

into Y . We say that I1 is bounded if and only if:

(Def. 7) There exists a real number K such that 0 ¬ K and for every vector x of

X holds ‖I1(x)‖ ¬ K · ‖x‖.

We now state the proposition

(23) Let X, Y be complex normed spaces and f be a linear operator from X

into Y . If for every vector x of X holds f(x) = 0Y , then f is bounded.
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Let X, Y be complex normed spaces. Observe that there exists a linear

operator from X into Y which is bounded.

Let X, Y be complex normed spaces. The functor BdLinOps(X, Y ) yielding

a subset of CVSpLinOps(X, Y ) is defined as follows:

(Def. 8) For every set x holds x ∈ BdLinOps(X, Y ) iff x is a bounded linear

operator from X into Y .

Let X, Y be complex normed spaces. One can check that BdLinOps(X, Y )

is non empty.

One can prove the following two propositions:

(24) For all complex normed spaces X, Y holds BdLinOps(X, Y ) is linearly

closed.

(25) For all complex normed spaces X, Y holds 〈BdLinOps(X, Y ),

Zero (BdLinOps(X,Y ),CVSpLinOps(X,Y )),Add (BdLinOps(X, Y ),

CVSpLinOps(X, Y )),Mult (BdLinOps(X, Y ),CVSpLinOps(X,Y ))〉 is a

subspace of CVSpLinOps(X,Y ).

Let X, Y be complex normed spaces. Observe that 〈BdLinOps(X, Y ),

Zero (BdLinOps(X, Y ),CVSpLinOps(X, Y )),Add (BdLinOps(X, Y ),

CVSpLinOps(X, Y )),Mult (BdLinOps(X,Y ),CVSpLinOps(X,Y ))〉 is Abe-

lian, add-associative, right zeroed, right complementable, and complex linear

space-like.

Next we state the proposition

(26) For all complex normed spaces X, Y holds 〈BdLinOps(X, Y ),

Zero (BdLinOps(X,Y ),CVSpLinOps(X,Y )),Add (BdLinOps(X, Y ),

CVSpLinOps(X, Y )),Mult (BdLinOps(X, Y ),CVSpLinOps(X,Y ))〉 is a

complex linear space.

Let X, Y be complex normed spaces. The functor CVSpBdLinOps(X, Y )

yielding a complex linear space is defined by:

(Def. 9) CVSpBdLinOps(X,Y ) = 〈BdLinOps(X, Y ),Zero (BdLinOps(X, Y ),

CVSpLinOps(X, Y )),Add (BdLinOps(X, Y ),CVSpLinOps(X, Y )),

Mult (BdLinOps(X, Y ),CVSpLinOps(X,Y ))〉.

LetX, Y be complex normed spaces. One can check that CVSpBdLinOps(X, Y )

is strict.

Let X, Y be complex normed spaces. Note that every element of

CVSpBdLinOps(X, Y ) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of

CVSpBdLinOps(X, Y ), and let v be a vector of X. Then f(v) is a vector of

Y .

One can prove the following propositions:

(27) Let X, Y be complex normed spaces and f , g, h be vectors of

CVSpBdLinOps(X,Y ). Then h = f + g if and only if for every vector
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x of X holds h(x) = f(x) + g(x).

(28) Let X, Y be complex normed spaces, f , h be vectors of

CVSpBdLinOps(X, Y ), and c be a Complex. Then h = c · f if and only if

for every vector x of X holds h(x) = c · f(x).

(29) For all complex normed spaces X, Y holds 0CVSpBdLinOps(X,Y ) = (the

carrier of X) 7−→ 0Y .

Let X, Y be complex normed spaces and let f be a set. Let us assume that

f ∈ BdLinOps(X,Y ). The functor modetrans(f, X, Y ) yields a bounded linear

operator from X into Y and is defined as follows:

(Def. 10) modetrans(f, X, Y ) = f.

Let X, Y be complex normed spaces and let u be a linear operator from X

into Y . The functor PreNorms(u) yielding a non empty subset of R is defined

as follows:

(Def. 11) PreNorms(u) = {‖u(t)‖; t ranges over vectors of X: ‖t‖ ¬ 1}.

We now state three propositions:

(30) Let X, Y be complex normed spaces and g be a bounded linear operator

from X into Y . Then PreNorms(g) is non empty and upper bounded.

(31) Let X, Y be complex normed spaces and g be a linear operator from X

into Y . Then g is bounded if and only if PreNorms(g) is upper bounded.

(32) Let X, Y be complex normed spaces. Then there exists a function

N1 from BdLinOps(X,Y ) into R such that for every set f if f ∈

BdLinOps(X,Y ), then N1(f) = supPreNorms(modetrans(f,X, Y )).

Let X, Y be complex normed spaces. The functor BdLinOpsNorm(X, Y )

yields a function from BdLinOps(X, Y ) into R and is defined by:

(Def. 12) For every set x such that x ∈ BdLinOps(X, Y ) holds

(BdLinOpsNorm(X, Y ))(x) = supPreNorms(modetrans(x, X, Y )).

We now state two propositions:

(33) For all complex normed spaces X, Y and for every bounded linear ope-

rator f from X into Y holds modetrans(f,X, Y ) = f.

(34) For all complex normed spaces X, Y and for every bounded li-

near operator f from X into Y holds (BdLinOpsNorm(X, Y ))(f) =

supPreNorms(f).

Let X, Y be complex normed spaces. The functor CNSpBdLinOps(X, Y )

yields a non empty complex normed space structure and is defined by:

(Def. 13) CNSpBdLinOps(X,Y ) = 〈BdLinOps(X, Y ),Zero (BdLinOps(X,Y ),

CVSpLinOps(X,Y )),Add (BdLinOps(X, Y ),CVSpLinOps(X, Y )),

Mult (BdLinOps(X, Y ),CVSpLinOps(X, Y )),BdLinOpsNorm(X, Y )〉.

The following four propositions are true:
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(35) For all complex normed spaces X, Y holds (the carrier of X) 7−→ 0Y =

0CNSpBdLinOps(X,Y ).

(36) Let X, Y be complex normed spaces, f be a point of CNSpBdLinOps(X,

Y ), and g be a bounded linear operator from X into Y . If g = f, then for

every vector t of X holds ‖g(t)‖ ¬ ‖f‖ · ‖t‖.

(37) For all complex normed spaces X, Y and for every point f of

CNSpBdLinOps(X,Y ) holds 0 ¬ ‖f‖.

(38) For all complex normed spaces X, Y and for every point f of

CNSpBdLinOps(X,Y ) such that f = 0CNSpBdLinOps(X,Y ) holds 0 = ‖f‖.

Let X, Y be complex normed spaces. One can check that every element of

CNSpBdLinOps(X, Y ) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of

CNSpBdLinOps(X, Y ), and let v be a vector of X. Then f(v) is a vector of

Y .

We now state several propositions:

(39) Let X, Y be complex normed spaces and f , g, h be points of

CNSpBdLinOps(X,Y ). Then h = f + g if and only if for every vector

x of X holds h(x) = f(x) + g(x).

(40) Let X, Y be complex normed spaces, f , h be points of

CNSpBdLinOps(X,Y ), and c be a Complex. Then h = c · f if and only if

for every vector x of X holds h(x) = c · f(x).

(41) Let X, Y be complex normed spaces, f , g be points of

CNSpBdLinOps(X,Y ), and c be a Complex. Then ‖f‖ = 0 iff f =

0CNSpBdLinOps(X,Y ) and ‖c · f‖ = |c| · ‖f‖ and ‖f + g‖ ¬ ‖f‖+ ‖g‖.

(42) For all complex normed spaces X, Y holds CNSpBdLinOps(X, Y ) is

complex normed space-like.

(43) For all complex normed spaces X, Y holds CNSpBdLinOps(X,Y ) is a

complex normed space.

Let X, Y be complex normed spaces. Observe that CNSpBdLinOps(X, Y ) is

complex normed space-like, complex linear space-like, Abelian, add-associative,

right zeroed, and right complementable.

One can prove the following proposition

(44) Let X, Y be complex normed spaces and f , g, h be points of

CNSpBdLinOps(X,Y ). Then h = f − g if and only if for every vector

x of X holds h(x) = f(x)− g(x).

4. Complex Banach Space of Bounded Linear Operators

Let X be a complex normed space. We say that X is complete if and only

if:
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(Def. 14) For every sequence s1 of X such that s1 is Cauchy sequence by norm

holds s1 is convergent.

Let us observe that there exists a complex normed space which is complete.

A complex Banach space is a complete complex normed space.

One can prove the following three propositions:

(45) Let X be a complex normed space and s1 be a sequence of X. If s1 is

convergent, then ‖s1‖ is convergent and lim‖s1‖ = ‖lim s1‖.

(46) Let X, Y be complex normed spaces. Suppose Y is complete. Let s1 be

a sequence of CNSpBdLinOps(X,Y ). If s1 is Cauchy sequence by norm,

then s1 is convergent.

(47) For every complex normed space X and for every complex Banach space

Y holds CNSpBdLinOps(X,Y ) is a complex Banach space.

Let X be a complex normed space and let Y be a complex Banach space.

One can verify that CNSpBdLinOps(X,Y ) is complete.
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