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Summary.We present a formalization of roots of unity, define cyclotomic
polynomials and demonstrate the relationship between cyclotomic polynomials

and unital polynomials.
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The papers [34], [42], [32], [31], [11], [14], [35], [17], [2], [26], [41], [16], [24], [5],

[43], [8], [9], [4], [15], [7], [39], [36], [10], [6], [27], [12], [25], [18], [19], [22], [20],

[21], [23], [1], [40], [44], [28], [13], [37], [33], [3], [38], [30], [45], and [29] provide

the notation and terminology for this paper.

1. Preliminaries

One can prove the following proposition

(1) For every natural number n holds n = 0 or n = 1 or n ­ 2.

The scheme Comp Ind NE concerns a unary predicate P, and states that:

For every non empty natural number k holds P[k]

provided the parameters satisfy the following condition:

• For every non empty natural number k such that for every non

empty natural number n such that n < k holds P[n] holds P[k].

Next we state the proposition

(2) For every finite sequence f such that 1 ¬ len f holds f↾Seg 1 = 〈f(1)〉.

The following propositions are true:
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(3) Let f be a finite sequence of elements of CF and g be a finite sequence of

elements of R. Suppose len f = len g and for every natural number i such

that i ∈ dom f holds |fi| = g(i). Then |
∏

f | =
∏

g.

(4) Let s be a non empty finite subset of CF, x be an element of CF,

and r be a finite sequence of elements of R. Suppose len r = card s

and for every natural number i and for every element c of CF such

that i ∈ dom r and c = (CFS(s))(i) holds r(i) = |x − c|. Then

| eval(poly with roots((s, 1) -bag), x)| =
∏

r.

(5) Let f be a finite sequence of elements of CF. Suppose that for every

natural number i such that i ∈ dom f holds f(i) is integer. Then
∑

f is

integer.

(6) For every real number r there exists an element z of C such that z = r

and z = r + 0i.

(7) For all elements x, y of CF and for all real numbers r1, r2 such that

r1 = x and r2 = y holds r1 · r2 = x · y and r1 + r2 = x + y.

(8) Let q be a real number. Suppose q is an integer and q > 0. Let r be an

element of CF. If |r| = 1 and r 6= 1 + 0iCF , then |(q + 0iCF)− r| > q − 1.

(9) Let p1 be a non empty finite sequence of elements of R and x be a

real number. Suppose x ­ 1 and for every natural number i such that

i ∈ dom p1 holds p1(i) > x. Then
∏

p1 > x.

(10) For every natural number n holds 1CF
= powerCF(1CF

, n).

(11) Let n be a non empty natural number and i be a natural number. Then

cos(2·π·i
n

) = cos(2·π·(imodn)
n

) and sin(2·π·i
n

) = sin(2·π·(imodn)
n

).

(12) For every non empty natural number n and for every natural number i

holds cos(2·π·i
n

) + sin(2·π·i
n

)iCF = cos(2·π·(imodn)
n

) + sin(2·π·(imodn)
n

)iCF .

(13) Let n be a non empty natural number and i, j be natural num-

bers. Then (cos(2·π·i
n

) + sin(2·π·i
n

)iCF) · (cos(2·π·j
n

) + sin(2·π·j
n

)iCF) =

cos(2·π·((i+j)modn)
n

) + sin(2·π·((i+j)modn)
n

)iCF .

(14) Let L be a unital associative non empty groupoid, x be an element of L,

and n, m be natural numbers. Then powerL(x, n ·m) = powerL(powerL(x,

n), m).

(15) For every natural number n and for every element x of CF such that x

is an integer holds powerCF(x, n) is an integer.

(16) Let F be a finite sequence of elements of CF. Suppose that for every

natural number i such that i ∈ domF holds F (i) is an integer. Then
∑

F

is an integer.

(17) For every real number a such that 0 ¬ a and a < 2 · π and cos a = 1

holds a = 0.

Let us note that there exists a field which is finite and there exists a skew
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field which is finite.

2. Multiplicative Group of a Skew Field

Let R be a skew field. The functor MultGroup(R) yields a strict group and

is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of MultGroup(R) = (the carrier of R) \ {0R}, and

(ii) the multiplication of MultGroup(R) = (the multiplication of R)↾[: the

carrier of MultGroup(R), the carrier of MultGroup(R) :].

Next we state three propositions:

(18) For every skew field R holds the carrier of R = (the carrier of

MultGroup(R)) ∪ {0R}.

(19) Let R be a skew field, a, b be elements of R, and c, d be elements of

MultGroup(R). If a = c and b = d, then c · d = a · b.

(20) For every skew field R holds 1R = 1MultGroup(R).

Let R be a finite skew field. Observe that MultGroup(R) is finite.

We now state three propositions:

(21) For every finite skew field R holds ord(MultGroup(R)) = card (the car-

rier of R)− 1.

(22) For every skew field R and for every set s such that s ∈ the carrier of

MultGroup(R) holds s ∈ the carrier of R.

(23) For every skew field R holds the carrier of MultGroup(R) ⊆ the carrier

of R.

3. Roots of Unity

Let n be a non empty natural number. The functor n -roots of 1 yielding a

subset of CF is defined by:

(Def. 2) n -roots of 1 = {x; x ranges over elements of CF: x is a complex root of

n, 1CF
}.

We now state several propositions:

(24) Let n be a non empty natural number and x be an element of CF. Then

x ∈ n -roots of 1 if and only if x is a complex root of n, 1CF
.

(25) For every non empty natural number n holds 1CF
∈ n -roots of 1 .

(26) For every non empty natural number n and for every element x of CF
such that x ∈ n -roots of 1 holds |x| = 1.

(27) Let n be a non empty natural number and x be an element of CF. Then

x ∈ n -roots of 1 if and only if there exists a natural number k such that

x = cos(2·π·k
n

) + sin(2·π·k
n

)iCF .
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(28) For every non empty natural number n and for all elements x, y of C

such that x ∈ n -roots of 1 and y ∈ n -roots of 1 holds x·y ∈ n -roots of 1 .

(29) For every non empty natural number n holds n -roots of 1 =

{cos(2·π·k
n

) + sin(2·π·k
n

)iCF ; k ranges over natural numbers: k < n}.

(30) For every non empty natural number n holds n -roots of 1 = n.

Let n be a non empty natural number. One can check that n -roots of 1 is

non empty and n -roots of 1 is finite.

Next we state several propositions:

(31) For all non empty natural numbers n, n1 such that n1 | n holds

n1 -roots of 1 ⊆ n -roots of 1 .

(32) Let R be a skew field, x be an element of MultGroup(R), and y be

an element of R. If y = x, then for every natural number k holds

powerMultGroup(R)(x, k) = powerR(y, k).

(33) For every non empty natural number n and for every element x of

MultGroup(CF) such that x ∈ n -roots of 1 holds x is not of order 0.

(34) Let n be a non empty natural number, k be a natural number, and x

be an element of MultGroup(CF). If x = cos(2·π·k
n

) + sin(2·π·k
n

)iCF , then

ord(x) = n÷ (k gcdn).

(35) For every non empty natural number n holds n -roots of 1 ⊆ the carrier

of MultGroup(CF).

(36) For every non empty natural number n there exists an element x of

MultGroup(CF) such that ord(x) = n.

(37) For every non empty natural number n and for every element x of

MultGroup(CF) holds ord(x) | n iff x ∈ n -roots of 1 .

(38) For every non empty natural number n holds n -roots of 1 = {x; x ranges

over elements of MultGroup(CF): ord(x) | n}.

(39) Let n be a non empty natural number and x be a set. Then x ∈

n -roots of 1 if and only if there exists an element y of MultGroup(CF)

such that x = y and ord(y) | n.

Let n be a non empty natural number. The functor n -th roots of 1 yielding

a strict group is defined as follows:

(Def. 3) The carrier of n -th roots of 1 = n -roots of 1 and the multiplica-

tion of n -th roots of 1 = (the multiplication of CF)↾[:n -roots of 1,

n -roots of 1 :].

One can prove the following proposition

(40) For every non empty natural number n holds n -th roots of 1 is a sub-

group of MultGroup(CF).
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4. The Unital Polynomial xn − 1

Let n be a non empty natural number and let L be a left unital non empty

double loop structure. The functor unital poly(L, n) yields a polynomial of L

and is defined as follows:

(Def. 4) unital poly(L, n) = 0. L +· (0,−1L) +· (n,1L).

Next we state four propositions:

(41) unital poly(CF, 1) = 〈−1CF
,1CF
〉.

(42) Let L be a left unital non empty double loop structure and n be

a non empty natural number. Then (unital poly(L, n))(0) = −1L and

(unital poly(L, n))(n) = 1L.

(43) Let L be a left unital non empty double loop structure, n be a non

empty natural number, and i be a natural number. If i 6= 0 and i 6= n,

then (unital poly(L, n))(i) = 0L.

(44) Let L be a non degenerated left unital non empty double loop structure

and n be a non empty natural number. Then len unital poly(L, n) = n+1.

Let L be a non degenerated left unital non empty double loop structure

and let n be a non empty natural number. Observe that unital poly(L, n) is

non-zero.

The following propositions are true:

(45) For every non empty natural number n and for every element x of CF
holds eval(unital poly(CF, n), x) = powerCF(x, n)− 1.

(46) For every non empty natural number n holds Roots unital poly(CF, n) =

n -roots of 1 .

(47) Let n be a natural number and z be an element of CF. Suppose z is

a real number. Then there exists a real number x such that x = z and

powerCF(z, n) = xn.

(48) Let n be a non empty natural number and x be a real number. Then there

exists an element y of CF such that y = x and eval(unital poly(CF, n), y) =

xn − 1.

(49) For every non empty natural number n holds BRoots(unital poly(CF, n)) =

(n -roots of 1, 1) -bag .

(50) For every non empty natural number n holds unital poly(CF, n) =

poly with roots((n -roots of 1, 1) -bag).

Let i be an integer and let n be a natural number. Then in is an integer.

The following proposition is true

(51) For every non empty natural number n and for every element i of CF
such that i is an integer holds eval(unital poly(CF, n), i) is an integer.
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5. Cyclotomic Polynomials

Let d be a non empty natural number. The functor cyclotomic poly(d) yields

a polynomial of CF and is defined by:

(Def. 5) There exists a non empty finite subset s of CF such that s = {y; y ranges

over elements of MultGroup(CF): ord(y) = d} and cyclotomic poly(d) =

poly with roots((s, 1) -bag).

The following propositions are true:

(52) cyclotomic poly(1) = 〈−1CF
,1CF
〉.

(53) Let n be a non empty natural number and f be a finite sequence of

elements of the carrier of Polynom-Ring(CF). Suppose len f = n and for

every non empty natural number i such that i ∈ dom f holds if i ∤ n,

then f(i) = 〈1CF
〉 and if i | n, then f(i) = cyclotomic poly(i). Then

unital poly(CF, n) =
∏

f.

(54) Let n be a non empty natural number. Then there exists a finite sequ-

ence f of elements of the carrier of Polynom-Ring(CF) and there exists a

polynomial p of CF such that

(i) p =
∏

f,

(ii) dom f = Seg n,

(iii) for every non empty natural number i such that i ∈ Seg n holds if

i ∤ n or i = n, then f(i) = 〈1CF
〉 and if i | n and i 6= n, then f(i) =

cyclotomic poly(i), and

(iv) unital poly(CF, n) = cyclotomic poly(n) ∗ p.

(55) For every non empty natural number d and for every natural number

i holds (cyclotomic poly(d))(0) = 1 or (cyclotomic poly(d))(0) = −1 but

(cyclotomic poly(d))(i) is integer.

(56) For every non empty natural number d and for every element z of CF
such that z is an integer holds eval(cyclotomic poly(d), z) is an integer.

(57) Let n, n1 be non empty natural numbers, f be a finite sequence of

elements of the carrier of Polynom-Ring(CF), and s be a finite subset of

CF. Suppose that

(i) s = {y; y ranges over elements of MultGroup(CF): ord(y) | n ∧ ord(y) ∤

n1 ∧ ord(y) 6= n},

(ii) dom f = Seg n, and

(iii) for every non empty natural number i such that i ∈ dom f holds if i ∤ n

or i | n1 or i = n, then f(i) = 〈1CF
〉 and if i | n and i ∤ n1 and i 6= n, then

f(i) = cyclotomic poly(i).

Then
∏

f = poly with roots((s, 1) -bag).

(58) Let n, n1 be non empty natural numbers. Suppose n1 < n and n1 |

n. Then there exists a finite sequence f of elements of the carrier of

Polynom-Ring(CF) and there exists a polynomial p of CF such that
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(i) p =
∏

f,

(ii) dom f = Seg n,

(iii) for every non empty natural number i such that i ∈ Seg n holds if i ∤ n

or i | n1 or i = n, then f(i) = 〈1CF
〉 and if i | n and i ∤ n1 and i 6= n, then

f(i) = cyclotomic poly(i), and

(iv) unital poly(CF, n) = unital poly(CF, n1) ∗ cyclotomic poly(n) ∗ p.

(59) Let i be an integer, c be an element of CF, f be a finite sequence of

elements of the carrier of Polynom-Ring(CF), and p be a polynomial of

CF. Suppose p =
∏

f and c = i and for every non empty natural number

i such that i ∈ dom f holds f(i) = 〈1CF
〉 or f(i) = cyclotomic poly(i).

Then eval(p, c) is integer.

(60) Let n be a non empty natural number, j, k, q be integers, and q1 be

an element of CF. If q1 = q and j = eval(cyclotomic poly(n), q1) and

k = eval(unital poly(CF, n), q1), then j | k.

(61) Let n, n1 be non empty natural numbers and q be an integer. Sup-

pose n1 < n and n1 | n. Let q1 be an element of c1. Suppose q1 = q.

Let j, k, l be integers. If j = eval(cyclotomic poly(n), q1) and k =

eval(unital poly(CF, n), q1) and l = eval(unital poly(CF, n1), q1), then

j | k ÷ l, where c1 = the carrier of CF.

(62) Let n, q be non empty natural numbers and q1 be an element of CF. If

q1 = q, then for every integer j such that j = eval(cyclotomic poly(n), q1)

holds j | qn − 1.

(63) Let n, n1, q be non empty natural numbers. Suppose n1 < n and n1 | n.

Let q1 be an element of CF. If q1 = q, then for every integer j such that

j = eval(cyclotomic poly(n), q1) holds j | (qn − 1)÷ (qn1 − 1).

(64) Let n be a non empty natural number. Suppose 1 < n. Let q be a natural

number. Suppose 1 < q. Let q1 be an element of CF. If q1 = q, then for

every integer i such that i = eval(cyclotomic poly(n), q1) holds |i| > q−1.
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