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Summary. This article is an extension of [9] to complex valued functions.
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The articles [14], [5], [16], [10], [17], [3], [4], [1], [12], [11], [15], [2], [8], [13], [9],
[7], and [6] provide the notation and terminology for this paper.

1. Operation of Complex Functions

We adopt the following convention: x1, x2, z are sets, A is a non empty set,
and f , g, h are elements of CA.

Let us consider A. The functor +CA yielding a binary operation on CA is
defined by:

(Def. 1) For all elements f , g of CA holds +CA(f, g) = (+C)◦(f, g).
Let us consider A. The functor ·CA yielding a binary operation on CA is

defined as follows:

(Def. 2) For all elements f , g of CA holds ·CA(f, g) = (·C)◦(f, g).
Let us consider A. The functor ·CCA yielding a function from [:C, CA :] into

CA is defined by:

(Def. 3) For every complex number z and for every element f of CA and for every
element x of A holds ·CCA(〈〈z, f〉〉)(x) = z · f(x).

Let us consider A. The functor 0CA yielding an element of CA is defined by:

(Def. 4) 0CA = A 7−→ 0C.

Let us consider A. The functor 1CA yields an element of CA and is defined
by:

(Def. 5) 1CA = A 7−→ 1C.
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232 noboru endou

One can prove the following propositions:

(1) h = +CA(f, g) iff for every element x of A holds h(x) = f(x) + g(x).
(2) h = ·CA(f, g) iff for every element x of A holds h(x) = f(x) · g(x).
(3) For every element x of A holds 1CA(x) = 1C.

(4) For every element x of A holds 0CA(x) = 0C.

(5) 0CA 6= 1CA .

In the sequel a, b denote complex numbers.
The following proposition is true

(6) h = ·CCA(〈〈a, f〉〉) iff for every element x of A holds h(x) = a · f(x).
In the sequel u, v, w are vectors of 〈CA, 0CA , +CA , ·CCA〉.
One can prove the following propositions:

(7) +CA(f, g) = +CA(g, f).
(8) +CA(f, +CA(g, h)) = +CA(+CA(f, g), h).
(9) ·CA(f, g) = ·CA(g, f).

(10) ·CA(f, ·CA(g, h)) = ·CA(·CA(f, g), h).
(11) ·CA(1CA , f) = f.

(12) +CA(0CA , f) = f.

(13) +CA(f, ·CCA(〈〈−1C, f〉〉)) = 0CA .

(14) ·CCA(〈〈1C, f〉〉) = f.

(15) ·CCA(〈〈a, ·CCA(〈〈b, f〉〉)〉〉) = ·CCA(〈〈a · b, f〉〉).
(16) +CA(·CCA(〈〈a, f〉〉), ·CCA(〈〈b, f〉〉)) = ·CCA(〈〈a + b, f〉〉).
(17) ·CA(f, +CA(g, h)) = +CA(·CA(f, g), ·CA(f, h)).
(18) ·CA(·CCA(〈〈a, f〉〉), g) = ·CCA(〈〈a, ·CA(f, g)〉〉).

2. Complex Linear Space of Complex Valued Functions

One can prove the following propositions:

(19) There exist f , g such that
(i) for every z such that z ∈ A holds if z = x1, then f(z) = 1C and if

z 6= x1, then f(z) = 0C, and
(ii) for every z such that z ∈ A holds if z = x1, then g(z) = 0C and if

z 6= x1, then g(z) = 1C.

(20) Suppose that
(i) x1 ∈ A,

(ii) x2 ∈ A,

(iii) x1 6= x2,

(iv) for every z such that z ∈ A holds if z = x1, then f(z) = 1C and if
z 6= x1, then f(z) = 0C, and
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(v) for every z such that z ∈ A holds if z = x1, then g(z) = 0C and if
z 6= x1, then g(z) = 1C.

Let given a, b. If +CA(·CCA(〈〈a, f〉〉), ·CCA(〈〈b, g〉〉)) = 0CA , then a = 0C and
b = 0C.

(21) If x1 ∈ A and x2 ∈ A and x1 6= x2, then there exist f , g such that for
all a, b such that +CA(·CCA(〈〈a, f〉〉), ·CCA(〈〈b, g〉〉)) = 0CA holds a = 0C and
b = 0C.

(22) Suppose that
(i) A = {x1, x2},
(ii) x1 6= x2,

(iii) for every z such that z ∈ A holds if z = x1, then f(z) = 1C and if
z 6= x1, then f(z) = 0C, and

(iv) for every z such that z ∈ A holds if z = x1, then g(z) = 0C and if
z 6= x1, then g(z) = 1C.

Let given h. Then there exist a, b such that h = +CA(·CCA(〈〈a, f〉〉), ·CCA(〈〈b,
g〉〉)).

(23) If A = {x1, x2} and x1 6= x2, then there exist f , g such that for every h

there exist a, b such that h = +CA(·CCA(〈〈a, f〉〉), ·CCA(〈〈b, g〉〉)).
(24) Suppose A = {x1, x2} and x1 6= x2. Then there exist f , g such that for

all a, b such that +CA(·CCA(〈〈a, f〉〉), ·CCA(〈〈b, g〉〉)) = 0CA holds a = 0C and
b = 0C and for every h there exist a, b such that h = +CA(·CCA(〈〈a, f〉〉),
·CCA(〈〈b, g〉〉)).

(25) 〈CA, 0CA , +CA , ·CCA〉 is a complex linear space.

Let us consider A. The functor ComplexVectSpace(A) yields a strict complex
linear space and is defined by:

(Def. 6) ComplexVectSpace(A) = 〈CA, 0CA ,+CA , ·CCA〉.
We now state the proposition

(26) There exists a strict complex linear space V and there exist vectors u,
v of V such that for all a, b such that a · u + b · v = 0V holds a = 0C and
b = 0C and for every vector w of V there exist a, b such that w = a·u+b·v.

Let us consider A. The functor CRing(A) yielding a strict double loop struc-
ture is defined by:

(Def. 7) CRing(A) = 〈CA, +CA , ·CA , 1CA , 0CA〉.
Let us consider A. Observe that CRing(A) is non empty.
We now state two propositions:

(27) Let x, y, z be elements of CRing(A). Then x+y = y+x and (x+y)+z =
x+(y+z) and x+0CRing(A) = x and there exists an element t of CRing(A)
such that x + t = 0CRing(A) and x · y = y · x and (x · y) · z = x · (y · z) and
x · 1CRing(A) = x and 1CRing(A) · x = x and x · (y + z) = x · y + x · z and
(y + z) · x = y · x + z · x.
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(28) CRing(A) is a commutative ring.

We introduce complex algebra structures which are extensions of double loop
structure and CLS structure and are systems
〈 a carrier, a multiplication, an addition, an external multiplication, a unity,

a zero 〉,
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from [:C, the
carrier :] into the carrier, and the unity and the zero are elements of the carrier.

Let us mention that there exists a complex algebra structure which is non
empty.

Let us consider A. The functor CAlgebra(A) yielding a strict complex algebra
structure is defined as follows:

(Def. 8) CAlgebra(A) = 〈CA, ·CA ,+CA , ·CCA , 1CA , 0CA〉.
Let us consider A. Observe that CAlgebra(A) is non empty.
Next we state the proposition

(29) Let x, y, z be elements of CAlgebra(A) and given a, b. Then x+y = y+x

and (x + y) + z = x + (y + z) and x + 0CAlgebra(A) = x and there exists an
element t of CAlgebra(A) such that x + t = 0CAlgebra(A) and x · y = y · x
and (x ·y) ·z = x · (y ·z) and x ·1CAlgebra(A) = x and x · (y+z) = x ·y+x ·z
and a·(x·y) = (a·x)·y and a·(x+y) = a·x+a·y and (a+b)·x = a·x+b·x
and (a · b) · x = a · (b · x).

Let I1 be a non empty complex algebra structure. We say that I1 is complex
algebra-like if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x, y, z be elements of I1 and given a, b. Then x · 1(I1) = x and
x · (y +z) = x ·y +x ·z and a · (x ·y) = (a ·x) ·y and a · (x+y) = a ·x+a ·y
and (a + b) · x = a · x + b · x and (a · b) · x = a · (b · x).

Let us note that there exists a non empty complex algebra structure which
is strict, Abelian, add-associative, right zeroed, right complementable, commu-
tative, associative, and complex algebra-like.

A complex algebra is an Abelian add-associative right zeroed right com-
plementable commutative associative complex algebra-like non empty complex
algebra structure.

One can prove the following proposition

(30) CAlgebra(A) is a complex algebra.
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One can prove the following propositions:

(1) Let X, Y , Z be complex linear spaces, f be a linear operator from X

into Y , and g be a linear operator from Y into Z. Then g · f is a linear
operator from X into Z.

(2) Let X, Y , Z be complex normed spaces, f be a bounded linear operator
from X into Y , and g be a bounded linear operator from Y into Z. Then

(i) g · f is a bounded linear operator from X into Z, and
(ii) for every vector x of X holds ‖(g ·f)(x)‖ ¬ (BdLinOpsNorm(Y, Z))(g) ·

(BdLinOpsNorm(X,Y ))(f) · ‖x‖ and (BdLinOpsNorm(X, Z))(g · f) ¬
(BdLinOpsNorm(Y, Z))(g) · (BdLinOpsNorm(X, Y ))(f).

Let X be a complex normed space and let f , g be bounded linear operators
from X into X. Then g · f is a bounded linear operator from X into X.

Let X be a complex normed space and let f , g be elements of
BdLinOps(X, X). The functor f + g yields an element of BdLinOps(X, X) and
is defined by:

(Def. 1) f + g = (Add (BdLinOps(X,X), CVSpLinOps(X, X)))(f, g).
Let X be a complex normed space and let f , g be elements of

BdLinOps(X, X). The functor g · f yields an element of BdLinOps(X, X) and
is defined as follows:
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(Def. 2) g · f = modetrans(g, X,X) ·modetrans(f, X, X).
Let X be a complex normed space, let f be an element of BdLinOps(X,X),

and let z be a complex number. The functor z · f yields an element of
BdLinOps(X, X) and is defined by:

(Def. 3) z · f = (Mult (BdLinOps(X, X), CVSpLinOps(X,X)))(z, f).
Let X be a complex normed space. The functor FuncMult(X) yields a binary

operation on BdLinOps(X, X) and is defined as follows:

(Def. 4) For all elements f , g of BdLinOps(X, X) holds (FuncMult(X))(f, g) =
f · g.

The following proposition is true

(3) For every complex normed space X holds idthe carrier of X is a bounded
linear operator from X into X.

Let X be a complex normed space. The functor FuncUnit(X) yielding an
element of BdLinOps(X, X) is defined by:

(Def. 5) FuncUnit(X) = idthe carrier of X .

The following propositions are true:

(4) Let X be a complex normed space and f , g, h be bounded linear opera-
tors from X into X. Then h = f · g if and only if for every vector x of X

holds h(x) = f(g(x)).
(5) For every complex normed space X and for all bounded linear operators

f , g, h from X into X holds f · (g · h) = (f · g) · h.

(6) Let X be a complex normed space and f be a bounded linear operator
from X into X. Then f · idthe carrier of X = f and idthe carrier of X · f = f.

(7) For every complex normed space X and for all elements f , g, h of
BdLinOps(X,X) holds f · (g · h) = (f · g) · h.

(8) For every complex normed space X and for every element f of
BdLinOps(X,X) holds f · FuncUnit(X) = f and FuncUnit(X) · f = f.

(9) For every complex normed space X and for all elements f , g, h of
BdLinOps(X,X) holds f · (g + h) = f · g + f · h.

(10) For every complex normed space X and for all elements f , g, h of
BdLinOps(X,X) holds (g + h) · f = g · f + h · f.

(11) Let X be a complex normed space, f , g be elements of BdLinOps(X,X),
and a, b be complex numbers. Then (a · b) · (f · g) = a · f · (b · g).

(12) Let X be a complex normed space, f , g be elements of BdLinOps(X,X),
and a be a complex number. Then a · (f · g) = (a · f) · g.

Let X be a complex normed space.
The functor RingOfBoundedLinearOperators(X) yields a double loop struc-

ture and is defined by:

(Def. 6) RingOfBoundedLinearOperators(X) = 〈BdLinOps(X,X),
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Add (BdLinOps(X, X), CVSpLinOps(X, X)), FuncMult(X), FuncUnit(X),
Zero (BdLinOps(X,X), CVSpLinOps(X, X))〉.

Let X be a complex normed space.
Note that RingOfBoundedLinearOperators(X) is non empty and strict.
Next we state two propositions:

(13) Let X be a complex normed space and x, y, z be elements of
RingOfBoundedLinearOperators(X). Then x + y = y + x and (x +
y) + z = x + (y + z) and x + 0RingOfBoundedLinearOperators(X) = x and
there exists an element t of RingOfBoundedLinearOperators(X) such that
x + t = 0RingOfBoundedLinearOperators(X) and (x · y) · z = x · (y · z) and
x · 1RingOfBoundedLinearOperators(X) = x and 1RingOfBoundedLinearOperators(X) ·
x = x and x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x.

(14) For every complex normed space X holds
RingOfBoundedLinearOperators(X) is a ring.

Let X be a complex normed space.
Observe that RingOfBoundedLinearOperators(X) is Abelian, add-associative,

right zeroed, right complementable, associative, left unital, right unital, and di-
stributive.

Let X be a complex normed space. The functor CAlgBdLinOps(X) yields a
complex algebra structure and is defined by:

(Def. 7) CAlgBdLinOps(X) = 〈BdLinOps(X, X), FuncMult(X), Add (BdLinOps
(X, X), CVSpLinOps(X,X)), Mult (BdLinOps(X,X), CVSpLinOps(X, X)),
FuncUnit(X), Zero (BdLinOps(X, X), CVSpLinOps(X, X))〉.

Let X be a complex normed space. Note that CAlgBdLinOps(X) is non
empty and strict.

The following proposition is true

(15) Let X be a complex normed space, x, y, z be elements of
CAlgBdLinOps(X), and a, b be complex numbers. Then x+y = y+x and
(x + y) + z = x + (y + z) and x + 0CAlgBdLinOps(X) = x and there exists
an element t of CAlgBdLinOps(X) such that x+ t = 0CAlgBdLinOps(X) and
(x·y)·z = x·(y ·z) and x·1CAlgBdLinOps(X) = x and 1CAlgBdLinOps(X) ·x = x

and x·(y+z) = x·y+x·z and (y+z)·x = y ·x+z ·x and a·(x·y) = (a·x)·y
and a ·(x+y) = a ·x+a ·y and (a+b) ·x = a ·x+b ·x and (a ·b) ·x = a ·(b ·x)
and (a · b) · (x · y) = a · x · (b · y).

A complex BL algebra is an Abelian add-associative right zeroed right com-
plementable associative complex algebra-like non empty complex algebra struc-
ture.

We now state the proposition

(16) For every complex normed space X holds CAlgBdLinOps(X) is a com-
plex BL algebra.
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Let us note that Complex-l1-Space is complete.
Let us mention that Complex-l1-Space is non trivial.
Let us note that there exists a complex Banach space which is non trivial.
The following two propositions are true:

(17) For every non trivial complex normed space X there exists a vector w

of X such that ‖w‖ = 1.

(18) For every non trivial complex normed space X holds
(BdLinOpsNorm(X, X))(idthe carrier of X) = 1.

We introduce normed complex algebra structures which are extensions of
complex algebra structure and complex normed space structure and are systems
〈 a carrier, a multiplication, an addition, an external multiplication, a unity,

a zero, a norm 〉,
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from [:C, the
carrier :] into the carrier, the unity and the zero are elements of the carrier, and
the norm is a function from the carrier into R.

One can check that there exists a normed complex algebra structure which
is non empty.

Let X be a complex normed space. The functor CNAlgBdLinOps(X) yields
a normed complex algebra structure and is defined by:

(Def. 8) CNAlgBdLinOps(X) = 〈BdLinOps(X, X), FuncMult(X),
Add (BdLinOps(X, X), CVSpLinOps(X,X)), Mult (BdLinOps(X,X),
CVSpLinOps(X,X)), FuncUnit(X), Zero (BdLinOps(X, X),
CVSpLinOps(X,X)), BdLinOpsNorm(X, X)〉.

Let X be a complex normed space. Note that CNAlgBdLinOps(X) is non
empty and strict.

The following propositions are true:

(19) Let X be a complex normed space, x, y, z be elements of
CNAlgBdLinOps(X), and a, b be complex numbers. Then x+y = y+x and
(x+y)+z = x+(y+z) and x+0CNAlgBdLinOps(X) = x and there exists an
element t of CNAlgBdLinOps(X) such that x+ t = 0CNAlgBdLinOps(X) and
(x·y)·z = x·(y·z) and x·1CNAlgBdLinOps(X) = x and 1CNAlgBdLinOps(X) ·x =
x and x·(y+z) = x·y+x·z and (y+z)·x = y·x+z ·x and a·(x·y) = (a·x)·y
and (a·b)·(x·y) = a·x·(b·y) and a·(x+y) = a·x+a·y and (a+b)·x = a·x+b·x
and (a · b) · x = a · (b · x) and 1C · x = x.

(20) Let X be a complex normed space. Then CNAlgBdLinOps(X) is com-
plex normed space-like, Abelian, add-associative, right zeroed, right com-
plementable, associative, complex algebra-like, and complex linear space-
like.

Let us observe that there exists a non empty normed complex algebra struc-
ture which is complex normed space-like, Abelian, add-associative, right zeroed,
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right complementable, associative, complex algebra-like, complex linear space-
like, and strict.

A normed complex algebra is a complex normed space-like Abelian add-
associative right zeroed right complementable associative complex algebra-like
complex linear space-like non empty normed complex algebra structure.

Let X be a complex normed space. One can check that CNAlgBdLinOps(X)
is complex normed space-like, Abelian, add-associative, right zeroed, right com-
plementable, associative, complex algebra-like, and complex linear space-like.

Let X be a non empty normed complex algebra structure. We say that X is
Banach Algebra-like1 if and only if:

(Def. 9) For all elements x, y of X holds ‖x · y‖ ¬ ‖x‖ · ‖y‖.
We say that X is Banach Algebra-like2 if and only if:

(Def. 10) ‖1X‖ = 1.

We say that X is Banach Algebra-like3 if and only if:

(Def. 11) For every complex number a and for all elements x, y of X holds a · (x ·
y) = x · (a · y).

Let X be a normed complex algebra. We say that X is Banach Algebra-like
if and only if the condition (Def. 12) is satisfied.

(Def. 12) X is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3,
left unital, left distributive, and complete.

One can verify that every normed complex algebra which is Banach Algebra-
like is also Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3,
left distributive, left unital, and complete and every normed complex algebra
which is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left
distributive, left unital, and complete is also Banach Algebra-like.

Let X be a non trivial complex Banach space. One can verify that
CNAlgBdLinOps(X) is Banach Algebra-like.

One can check that there exists a normed complex algebra which is Banach
Algebra-like.

A complex Banach algebra is a Banach Algebra-like normed complex algebra.
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The articles [2], [5], [1], [6], [3], and [4] provide the terminology and notation for
this paper.

In this paper t1, t2, t3, t4 are real numbers.
One can prove the following propositions:

(1) If cos t1 6= 0, then cosec t1 = sec t1
tan t1

.

(2) If sin t1 6= 0, then cos t1 = sin t1 · cot t1.

(3) If sin t2 6= 0 and sin t3 6= 0 and sin t4 6= 0, then sin(t2 + t3 + t4) =
sin t2 · sin t3 · sin t4 · ((cot t3 · cot t4 + cot t2 · cot t4 + cot t2 · cot t3)− 1).

(4) If sin t2 6= 0 and sin t3 6= 0 and sin t4 6= 0, then cos(t2 + t3 + t4) =
−sin t2 · sin t3 · sin t4 · ((cot t2 + cot t3 + cot t4)− cot t2 · cot t3 · cot t4).

(5) sin(2 · t1) = 2 · sin t1 · cos t1.

(6) If cos t1 6= 0, then sin(2 · t1) = 2·tan t1
1+(tan t1)2

.

(7) cos(2 · t1) = (cos t1)2 − (sin t1)2 and cos(2 · t1) = 2 · (cos t1)2 − 1 and
cos(2 · t1) = 1− 2 · (sin t1)2.

(8) If cos t1 6= 0, then cos(2 · t1) = 1−(tan t1)2

1+(tan t1)2
.

(9) If cos t1 6= 0, then tan(2 · t1) = 2·tan t1
1−(tan t1)2

.

(10) If sin t1 6= 0, then cot(2 · t1) = (cot t1)2−1
2·cot t1

.

(11) If cos t1 6= 0, then (sec t1)2 = 1 + (tan t1)2.

(12) cot t1 = 1
tan t1

.

243
c© 2004 University of Białystok

ISSN 1426–2630



244 yuzhong ding and xiquan liang

(13) If cos t1 6= 0 and sin t1 6= 0, then sec(2 · t1) = (sec t1)2

1−(tan t1)2
and sec(2 · t1) =

cot t1+tan t1
cot t1−tan t1

.

(14) If sin t1 6= 0, then (cosec t1)2 = 1 + (cot t1)2.

(15) If cos t1 6= 0 and sin t1 6= 0, then cosec(2 · t1) = sec t1·cosec t1
2 and cosec(2 ·

t1) = tan t1+cot t1
2 .

(16) sin(3 · t1) = −4 · (sin t1)3 + 3 · sin t1.

(17) cos(3 · t1) = 4 · (cos t1)3 − 3 · cos t1.

(18) If cos t1 6= 0, then tan(3 · t1) = 3·tan t1−(tan t1)3

1−3·(tan t1)2
.

(19) If sin t1 6= 0, then cot(3 · t1) = (cot t1)3−3·cot t1
3·(cot t1)2−1

.

(20) (sin t1)2 = 1−cos(2·t1)
2 .

(21) (cos t1)2 = 1+cos(2·t1)
2 .

(22) (sin t1)3 = 3·sin t1−sin(3·t1)
4 .

(23) (cos t1)3 = 3·cos t1+cos(3·t1)
4 .

(24) (sin t1)4 = (3−4·cos(2·t1))+cos(4·t1)
8 .

(25) (cos t1)4 = 3+4·cos(2·t1)+cos(4·t1)
8 .

(26) sin( t1
2 ) =

√
1−cos t1

2 or sin( t1
2 ) = −

√
1−cos t1

2 .

(27) cos( t1
2 ) =

√
1+cos t1

2 or cos( t1
2 ) = −

√
1+cos t1

2 .

(28) If sin( t1
2 ) 6= 0, then tan( t1

2 ) = 1−cos t1
sin t1

.

(29) If cos( t1
2 ) 6= 0, then tan( t1

2 ) = sin t1
1+cos t1

.

(30) tan( t1
2 ) =

√
1−cos t1
1+cos t1

or tan( t1
2 ) = −

√
1−cos t1
1+cos t1

.

(31) If cos( t1
2 ) 6= 0, then cot( t1

2 ) = 1+cos t1
sin t1

.

(32) If sin( t1
2 ) 6= 0, then cot( t1

2 ) = sin t1
1−cos t1

.

(33) cot( t1
2 ) =

√
1+cos t1
1−cos t1

or cot( t1
2 ) = −

√
1+cos t1
1−cos t1

.

(34) If sin( t1
2 ) 6= 0 and cos( t1

2 ) 6= 0 and 1 − (tan( t1
2 ))2 6= 0, then sec( t1

2 ) =√
2·sec t1
sec t1+1 or sec( t1

2 ) = −
√

2·sec t1
sec t1+1 .

(35) If sin( t1
2 ) 6= 0 and cos( t1

2 ) 6= 0 and 1 − (tan( t1
2 ))2 6= 0, then cosec( t1

2 ) =√
2·sec t1
sec t1−1 or cosec( t1

2 ) = −
√

2·sec t1
sec t1−1 .

Let us consider t1. The functor coth t1 yielding a real number is defined as
follows:

(Def. 1) coth t1 = cosh t1
sinh t1

.

Let us consider t1. The functor sech t1 yielding a real number is defined by:

(Def. 2) sech t1 = 1
cosh t1

.
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Let us consider t1. The functor cosech t1 yields a real number and is defined
as follows:

(Def. 3) cosech t1 = 1
sinh t1

.

We now state a number of propositions:

(36) coth t1 = exp t1+exp(−t1)
exp t1−exp(−t1) and sech t1 = 2

exp t1+exp(−t1) and cosech t1 =
2

exp t1−exp(−t1) .

(37) If exp t1 − exp(−t1) 6= 0, then tanh t1 · coth t1 = 1.

(38) (sech t1)2 + (tanh t1)2 = 1.

(39) If sinh t1 6= 0, then (coth t1)2 − (cosech t1)2 = 1.

(40) If sinh t2 6= 0 and sinh t3 6= 0, then coth(t2 + t3) = 1+coth t2·coth t3
coth t2+coth t3

.

(41) If sinh t2 6= 0 and sinh t3 6= 0, then coth(t2 − t3) = 1−coth t2·coth t3
coth t2−coth t3

.

(42) If sinh t2 6= 0 and sinh t3 6= 0, then coth t2 + coth t3 = sinh(t2+t3)
sinh t2·sinh t3

and

coth t2 − coth t3 = − sinh(t2−t3)
sinh t2·sinh t3

.

(43) sinh(3 · t1) = 3 · sinh t1 + 4 · (sinh t1)3.
(44) cosh(3 · t1) = 4 · (cosh t1)3 − 3 · cosh t1.

(45) If sinh t1 6= 0, then coth(2 · t1) = 1+(coth t1)2

2·coth t1
.

(46) If t1 > 0, then sinh t1  0.

(47) If t1 < 0, then sinh t1 ¬ 0.

(48) cosh( t1
2 ) =

√
cosh t1+1

2 .

(49) If sinh( t1
2 ) 6= 0, then tanh( t1

2 ) = cosh t1−1
sinh t1

.

(50) If cosh( t1
2 ) 6= 0, then tanh( t1

2 ) = sinh t1
cosh t1+1 .

(51) If sinh( t1
2 ) 6= 0, then coth( t1

2 ) = sinh t1
cosh t1−1 .

(52) If cosh( t1
2 ) 6= 0, then coth( t1

2 ) = cosh t1+1
sinh t1

.
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The papers [5], [4], [2], [3], and [1] provide the terminology and notation for this
paper.

We follow the rules: x, y, a, b, c, p, q are real numbers and m, n are natural
numbers.

We now state a number of propositions:

(1) If a 6= 0 and b
a < 0 and c

a > 0 and ∆(a, b, c)  0, then
−b+
√

∆(a,b,c)

2·a > 0

and
−b−
√

∆(a,b,c)

2·a > 0.

(2) If a 6= 0 and b
a > 0 and c

a > 0 and ∆(a, b, c)  0, then
−b+
√

∆(a,b,c)

2·a < 0

and
−b−
√

∆(a,b,c)

2·a < 0.

(3) If a 6= 0 and c
a < 0, then

−b+
√

∆(a,b,c)

2·a > 0 and
−b−
√

∆(a,b,c)

2·a < 0 or
−b+
√

∆(a,b,c)

2·a < 0 and
−b−
√

∆(a,b,c)

2·a > 0.

(4) If a > 0 and there exists m such that n = 2 ·m and m  1 and xn = a,

then x = n
√

a or x = − n
√

a.

(5) If a 6= 0 and Poly2(a, b, 0, x) = 0, then x = 0 or x = − b
a .

(6) If a 6= 0 and Poly2(a, 0, 0, x) = 0, then x = 0.

(7) If a 6= 0 and there exists m such that n = 2 ·m+1 and ∆(a, b, c)  0 and

Poly2(a, b, c, xn) = 0, then x =
n

√
−b+
√

∆(a,b,c)

2·a or x =
n

√
−b−
√

∆(a,b,c)

2·a .

(8) Suppose a 6= 0 and b
a < 0 and c

a > 0 and there exists m such that
n = 2 ·m and m  1 and ∆(a, b, c)  0 and Poly2(a, b, c, xn) = 0. Then
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x =
n

√
−b+
√

∆(a,b,c)

2·a or x = − n

√
−b+
√

∆(a,b,c)

2·a or x =
n

√
−b−
√

∆(a,b,c)

2·a or

x = − n

√
−b−
√

∆(a,b,c)

2·a .

(9) If a 6= 0 and there exists m such that n = 2·m+1 and Poly2(a, b, 0, xn) =

0, then x = 0 or x = n

√
− b

a .

(10) If a 6= 0 and b
a < 0 and there exists m such that n = 2 ·m and m  1

and Poly2(a, b, 0, xn) = 0, then x = 0 or x = n

√
− b

a or x = − n

√
− b

a .

(11) a3 + b3 = (a + b) · ((a2 − a · b) + b2) and a5 + b5 = (a + b) · ((((a4 − a3 ·
b) + a2 · b2)− a · b3) + b4).

(12) Suppose a 6= 0 and b2 − 2 · a · b − 3 · a2  0 and Poly3(a, b, b, a, x) = 0.

Then x = −1 or x = (a−b)+
√

b2−2·a·b−3·a2

2·a or x = a−b−√b2−2·a·b−3·a2

2·a .

Let a, b, c, d, e, f , x be real numbers. The functor Poly5(a, b, c, d, e, f, x) is
defined by:

(Def. 1) Poly5(a, b, c, d, e, f, x) = a · x5 + b · x4 + c · x3 + d · x2 + e · x + f.

We now state a number of propositions:

(13) Suppose a 6= 0 and (b2 + 2 · a · b + 5 · a2) − 4 · a · c > 0 and
Poly5(a, b, c, c, b, a, x) = 0. Let y1, y2 be real numbers. Suppose y1 =
(a−b)+

√
(b2+2·a·b+5·a2)−4·a·c

2·a and y2 = a−b−
√

(b2+2·a·b+5·a2)−4·a·c
2·a . Then x =

−1 or x = y1+
√

∆(1,−y1,1)

2 or x = y2+
√

∆(1,−y2,1)

2 or x = y1−
√

∆(1,−y1,1)

2 or

x = y2−
√

∆(1,−y2,1)

2 .

(14) Suppose x + y = p and x · y = q and p2 − 4 · q  0. Then x = p+
√

p2−4·q
2

and y = p−
√

p2−4·q
2 or x = p−

√
p2−4·q
2 and y = p+

√
p2−4·q
2 .

(15) Suppose xn + yn = p and xn · yn = q and p2 − 4 · q  0 and there exists

m such that n = 2 ·m + 1. Then x =
n

√
p+
√

p2−4·q
2 and y =

n

√
p−
√

p2−4·q
2

or x =
n

√
p−
√

p2−4·q
2 and y =

n

√
p+
√

p2−4·q
2 .

(16) Suppose xn+yn = p and xn ·yn = q and p2−4·q  0 and p > 0 and q > 0

and there exists m such that n = 2 ·m and m  1. Then x =
n

√
p+
√

p2−4·q
2

and y =
n

√
p−
√

p2−4·q
2 or x = − n

√
p+
√

p2−4·q
2 and y =

n

√
p−
√

p2−4·q
2

or x =
n

√
p+
√

p2−4·q
2 and y = − n

√
p−
√

p2−4·q
2 or x = − n

√
p+
√

p2−4·q
2

and y = − n

√
p−
√

p2−4·q
2 or x =

n

√
p−
√

p2−4·q
2 and y =

n

√
p+
√

p2−4·q
2

or x = − n

√
p−
√

p2−4·q
2 and y =

n

√
p+
√

p2−4·q
2 or x =

n

√
p−
√

p2−4·q
2 and

y = − n

√
p+
√

p2−4·q
2 or x = − n

√
p−
√

p2−4·q
2 and y = − n

√
p+
√

p2−4·q
2 .
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(18)1 Suppose xn + yn = a and xn − yn = b and there exists m such that
n = 2 ·m and m  1 and a > 0 and a + b > 0 and a− b > 0. Then

(i) x = n

√
a+b
2 and y = n

√
a−b
2 , or

(ii) x = n

√
a+b
2 and y = − n

√
a−b
2 , or

(iii) x = − n

√
a+b
2 and y = n

√
a−b
2 , or

(iv) x = − n

√
a+b
2 and y = − n

√
a−b
2 .

(19) If a ·xn+b ·yn = p and x ·y = 0 and there exists m such that n = 2 ·m+1

and a · b 6= 0, then x = 0 and y = n

√
p
b or x = n

√
p
a and y = 0.

(20) Suppose a · xn + b · yn = p and x · y = 0 and there exists m such that
n = 2 ·m and m  1 and p

b > 0 and p
a > 0 and a · b 6= 0. Then x = 0 and

y = n

√
p
b or x = 0 and y = − n

√
p
b or x = n

√
p
a and y = 0 or x = − n

√
p
a and

y = 0.

(21) If a ·xn = p and x · y = q and there exists m such that n = 2 ·m + 1 and

p · a 6= 0, then x = n

√
p
a and y = q · n

√
a
p .

(22) Suppose a · xn = p and x · y = q and there exists m such that n = 2 ·m
and m  1 and p

a > 0 and a 6= 0. Then x = n

√
p
a and y = q · n

√
a
p or

x = − n

√
p
a and y = −q · n

√
a
p .

(24)2 For all real numbers a, x such that a > 0 and a 6= 1 and ax = 1 holds
x = 0.

(25) For all real numbers a, x such that a > 0 and a 6= 1 and ax = a holds
x = 1.

(27)3 For all real numbers a, b, x such that a > 0 and a 6= 1 and x > 0 and
loga x = 0 holds x = 1.

(28) For all real numbers a, b, x such that a > 0 and a 6= 1 and x > 0 and
loga x = 1 holds x = a.
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The notation and terminology used here are introduced in the following papers:
[21], [9], [25], [1], [20], [14], [24], [22], [2], [5], [27], [6], [7], [18], [11], [19], [10],
[17], [26], [8], [15], [23], [12], [4], [3], [16], and [13].

1. Preliminaries

The scheme ExFunc3CondD deals with a non empty set A, three unary
functors F , G, and H yielding sets, and three unary predicates P, Q, R, and
states that:

There exists a function f such that dom f = A and for every
element c of A holds if P[c], then f(c) = F(c) and if Q[c], then
f(c) = G(c) and if R[c], then f(c) = H(c)

provided the parameters meet the following conditions:
• For every element c of A holds if P[c], then not Q[c] and if P[c],

then not R[c] and if Q[c], then not R[c], and
• For every element c of A holds P[c] or Q[c] or R[c].

Let n be a natural number. Observe that every element of En
T is function-like

and relation-like.
Let n be a natural number. Observe that every element of En

T is finite
sequence-like.

We now state a number of propositions:

(1) The carrier of [: I, I :] = [: [0, 1], [0, 1] :].

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102 and KBN grant 4 T11C 039 24.

2The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan.
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(2) For every real number x such that x ¬ 1
2 holds 2 · x− 1 ¬ 1− 2 · x.

(3) For every real number x such that x  1
2 holds 2 · x− 1  1− 2 · x.

(4) For all real numbers x, a, b, c, d such that a 6= b holds d−c
b−a · (x−a)+ c =

(1− x−a
b−a ) · c + x−a

b−a · d.

(5) For all real numbers a, b, x such that a ¬ x and x ¬ b holds x−a
b−a ∈ the

carrier of [0, 1]T.

(6) For every point x of I such that x ¬ 1
2 holds 2 · x is a point of I.

(7) For every point x of I such that x  1
2 holds 2 · x− 1 is a point of I.

(8) For all points p, q of I holds p · q is a point of I.
(9) For every point x of I holds 1

2 · x is a point of I.
(10) For every point x of I such that x  1

2 holds x− 1
4 is a point of I.

(12)3 idI is a path from 0I to 1I.
(13) For all points a, b, c, d of I such that a ¬ b and c ¬ d holds [: [a, b], [c, d] :]

is a compact non empty subset of [: I, I :].

2. Affine Maps

One can prove the following four propositions:

(14) Let S, T be subsets of E2
T. Suppose S = {p; p ranges over points of E2

T:
p2 ¬ 2 · p1 − 1} and T = {p; p ranges over points of E2

T: p2 ¬ p1}. Then
(AffineMap(1, 0, 1

2 , 1
2))◦S = T.

(15) Let S, T be subsets of E2
T. Suppose S = {p; p ranges over points of E2

T:
p2  2 · p1 − 1} and T = {p; p ranges over points of E2

T: p2  p1}. Then
(AffineMap(1, 0, 1

2 , 1
2))◦S = T.

(16) Let S, T be subsets of E2
T. Suppose S = {p; p ranges over points of E2

T:
p2  1− 2 · p1} and T = {p; p ranges over points of E2

T: p2  −p1}. Then
(AffineMap(1, 0, 1

2 ,−1
2))◦S = T.

(17) Let S, T be subsets of E2
T. Suppose S = {p; p ranges over points of E2

T:
p2 ¬ 1− 2 · p1} and T = {p; p ranges over points of E2

T: p2 ¬ −p1}. Then
(AffineMap(1, 0, 1

2 ,−1
2))◦S = T.

3. Real-Membered Structures

Let T be a 1-sorted structure. We say that T is real-membered if and only
if:

(Def. 1) The carrier of T is real-membered.

We now state the proposition

3The proposition (11) has been removed.
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(18) For every non empty 1-sorted structure T holds T is real-membered iff
every element of T is real.

Let us mention that I is real-membered.
One can verify that there exists a 1-sorted structure which is non empty

and real-membered and there exists a topological space which is non empty and
real-membered.

Let T be a real-membered 1-sorted structure. Note that every element of T

is real.
Let T be a real-membered topological structure. Note that every subspace

of T is real-membered.
Let S, T be real-membered non empty topological spaces and let p be an

element of [:S, T :]. One can check that p1 is real and p2 is real.
Let T be a non empty subspace of [: I, I :] and let x be a point of T . One can

check that x1 is real and x2 is real.
One can check that R1 is real-membered.

4. Closed Subsets of Euclidean Topological Spaces

The following propositions are true:

(19) {p; p ranges over points of E2
T: p2 ¬ 2 · p1 − 1} is a closed subset of E2

T.

(20) {p; p ranges over points of E2
T: p2  2 · p1 − 1} is a closed subset of E2

T.

(21) {p; p ranges over points of E2
T: p2 ¬ 1− 2 · p1} is a closed subset of E2

T.

(22) {p; p ranges over points of E2
T: p2  1− 2 · p1} is a closed subset of E2

T.

(23) {p; p ranges over points of E2
T: p2  1 − 2 · p1 ∧ p2  2 · p1 − 1} is a

closed subset of E2
T.

(24) There exists a map f from [:R1, R1 :] into E2
T such that for all real num-

bers x, y holds f(〈〈x, y〉〉) = 〈x, y〉.
(25) {p; p ranges over points of [:R1, R1 :]: p2 ¬ 1− 2 · p1} is a closed subset

of [:R1, R1 :].
(26) {p; p ranges over points of [:R1, R1 :]: p2 ¬ 2 · p1 − 1} is a closed subset

of [:R1, R1 :].
(27) {p; p ranges over points of [:R1, R1 :]: p2  1− 2 · p1 ∧ p2  2 · p1 − 1}

is a closed subset of [:R1, R1 :].
(28) {p; p ranges over points of [: I, I :]: p2 ¬ 1− 2 · p1} is a closed non empty

subset of [: I, I :].
(29) {p; p ranges over points of [: I, I :]: p2  1− 2 · p1 ∧ p2  2 · p1 − 1} is a

closed non empty subset of [: I, I :].
(30) {p; p ranges over points of [: I, I :]: p2 ¬ 2 · p1 − 1} is a closed non empty

subset of [: I, I :].
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(31) Let S, T be non empty topological spaces and p be a point of [:S, T :].
Then p1 is a point of S and p2 is a point of T .

(32) For all subsets A, B of [: I, I :] such that A = [: [0, 1
2 ], [0, 1] :] and B =

[: [12 , 1], [0, 1] :] holds Ω[: I, I :]¹A ∪ Ω[: I, I :]¹B = Ω[: I, I :].

(33) For all subsets A, B of [: I, I :] such that A = [: [0, 1
2 ], [0, 1] :] and B =

[: [12 , 1], [0, 1] :] holds Ω[: I, I :]¹A ∩ Ω[: I, I :]¹B = [: {1
2}, [0, 1] :].

5. Compact Spaces

Let T be a topological structure. Note that ∅T is compact.
Let T be a topological structure. Observe that there exists a subset of T

which is empty and compact.
Next we state three propositions:

(34) For every topological structure T holds ∅ is an empty compact subset of
T .

(35) Let T be a topological structure and a, b be real numbers. If a > b, then
[a, b] is an empty compact subset of T .

(36) For all points a, b, c, d of I holds [: [a, b], [c, d] :] is a compact subset of
[: I, I :].

6. Continuous Maps

Let a, b, c, d be real numbers. The functor L01(a, b, c, d) yielding a map from
[a, b]T into [c, d]T is defined by:

(Def. 2) L01(a, b, c, d) = L01(c[c,d]T , d[c,d]T) · P01(a, b, 0[0,1]T , 1[0,1]T).
The following propositions are true:

(37) For all real numbers a, b, c, d such that a < b and c < d holds
(L01(a, b, c, d))(a) = c and (L01(a, b, c, d))(b) = d.

(38) For all real numbers a, b, c, d such that a < b and c ¬ d holds
L01(a, b, c, d) is a continuous map from [a, b]T into [c, d]T.

(39) Let a, b, c, d be real numbers. Suppose a < b and c ¬ d. Let x be a real
number. If a ¬ x and x ¬ b, then (L01(a, b, c, d))(x) = d−c

b−a · (x− a) + c.

(40) Let f1, f2 be maps from [: I, I :] into I. Suppose f1 is continuous and f2

is continuous and for every point p of [: I, I :] holds f1(p) · f2(p) is a point
of I. Then there exists a map g from [: I, I :] into I such that

(i) for every point p of [: I, I :] and for all real numbers r1, r2 such that
f1(p) = r1 and f2(p) = r2 holds g(p) = r1 · r2, and

(ii) g is continuous.
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(41) Let f1, f2 be maps from [: I, I :] into I. Suppose f1 is continuous and f2

is continuous and for every point p of [: I, I :] holds f1(p) + f2(p) is a point
of I. Then there exists a map g from [: I, I :] into I such that

(i) for every point p of [: I, I :] and for all real numbers r1, r2 such that
f1(p) = r1 and f2(p) = r2 holds g(p) = r1 + r2, and

(ii) g is continuous.

(42) Let f1, f2 be maps from [: I, I :] into I. Suppose f1 is continuous and f2

is continuous and for every point p of [: I, I :] holds f1(p)− f2(p) is a point
of I. Then there exists a map g from [: I, I :] into I such that

(i) for every point p of [: I, I :] and for all real numbers r1, r2 such that
f1(p) = r1 and f2(p) = r2 holds g(p) = r1 − r2, and

(ii) g is continuous.

7. Paths

We follow the rules: T denotes a non empty topological space and a, b, c, d

denote points of T .
The following three propositions are true:

(43) For every path P from a to b such that P is continuous holds P ·
L01(1[0,1]T , 0[0,1]T) is a continuous map from I into T .

(44) Let X be a non empty topological structure, a, b be points of X,
and P be a path from a to b. If P (0) = a and P (1) = b, then
(P · L01(1[0,1]T , 0[0,1]T))(0) = b and (P · L01(1[0,1]T , 0[0,1]T))(1) = a.

(45) Let P be a path from a to b. Suppose P is continuous and P (0) = a and
P (1) = b. Then −P is continuous and (−P )(0) = b and (−P )(1) = a.

Let T be a topological structure and let a, b be points of T . We say that a,
b are connected if and only if:

(Def. 3) There exists a map f from I into T such that f is continuous and f(0) = a

and f(1) = b.

Let T be a non empty topological space and let a, b be points of T . Let us
notice that the predicate a, b are connected is reflexive and symmetric.

We now state several propositions:

(46) If a, b are connected and b, c are connected, then a, c are connected.

(47) For every arcwise connected topological structure T and for all points a,
b of T holds a, b are connected.

(48) For every path A from a to a holds A, A are homotopic.

(49) If a, b are connected, then for every path A from a to b holds A, A are
homotopic.

(50) If a, b are connected, then for every path A from a to b holds A = −−A.
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(51) Let T be a non empty arcwise connected topological space, a, b be points
of T , and A be a path from a to b. Then A = −−A.

(52) If a, b are connected, then every path from a to b is continuous.

8. Reexamination of a Path Concept

Let T be a non empty arcwise connected topological space, let a, b, c be
points of T , let P be a path from a to b, and let Q be a path from b to c. Then
P + Q can be characterized by the condition:

(Def. 4) For every point t of I holds if t ¬ 1
2 , then (P + Q)(t) = P (2 · t) and if

1
2 ¬ t, then (P + Q)(t) = Q(2 · t− 1).

Let T be a non empty arcwise connected topological space, let a, b be points
of T , and let P be a path from a to b. Then −P can be characterized by the
condition:

(Def. 5) For every point t of I holds (−P )(t) = P (1− t).

9. Reparametrizations

Let T be a non empty topological space, let a, b be points of T , let P be a
path from a to b, and let f be a continuous map from I into I. Let us assume
that f(0) = 0 and f(1) = 1 and a, b are connected. The functor RePar(P, f)
yields a path from a to b and is defined by:

(Def. 6) RePar(P, f) = P · f.

Next we state two propositions:

(53) Let P be a path from a to b and f be a continuous map from I into I.
Suppose f(0) = 0 and f(1) = 1 and a, b are connected. Then RePar(P, f),
P are homotopic.

(54) Let T be a non empty arcwise connected topological space, a, b be points
of T , P be a path from a to b, and f be a continuous map from I into I.
If f(0) = 0 and f(1) = 1, then RePar(P, f), P are homotopic.

The map 1stRP from I into I is defined as follows:

(Def. 7) For every point t of I holds if t ¬ 1
2 , then (1stRP)(t) = 2 · t and if t > 1

2 ,

then (1stRP)(t) = 1.
Let us note that 1stRP is continuous.
One can prove the following proposition

(55) (1stRP)(0) = 0 and (1stRP)(1) = 1.
The map 2ndRP from I into I is defined by:

(Def. 8) For every point t of I holds if t ¬ 1
2 , then (2ndRP)(t) = 0 and if t > 1

2 ,

then (2ndRP)(t) = 2 · t− 1.
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One can verify that 2ndRP is continuous.
One can prove the following proposition

(56) (2ndRP)(0) = 0 and (2ndRP)(1) = 1.
The map 3rdRP from I into I is defined by the condition (Def. 9).

(Def. 9) Let x be a point of I. Then
(i) if x ¬ 1

2 , then (3rdRP)(x) = 1
2 · x,

(ii) if x > 1
2 and x ¬ 3

4 , then (3rdRP)(x) = x− 1
4 , and

(iii) if x > 3
4 , then (3rdRP)(x) = 2 · x− 1.

Let us note that 3rdRP is continuous.
We now state four propositions:

(57) (3rdRP)(0) = 0 and (3rdRP)(1) = 1.
(58) Let P be a path from a to b and Q be a constant path from b to b. If a,

b are connected, then RePar(P, 1stRP) = P + Q.

(59) Let P be a path from a to b and Q be a constant path from a to a. If a,
b are connected, then RePar(P, 2ndRP) = Q + P.

(60) Let P be a path from a to b, Q be a path from b to c, and R be a path
from c to d. Suppose a, b are connected and b, c are connected and c, d

are connected. Then RePar(P + Q + R, 3rdRP) = P + (Q + R).

10. Decomposition of the Unit Square

The subset LowerLeftUnitTriangle of [: I, I :] is defined as follows:

(Def. 10) For every set x holds x ∈ LowerLeftUnitTriangle iff there exist points a,
b of I such that x = 〈〈a, b〉〉 and b ¬ 1− 2 · a.

We introduce IAA as a synonym of LowerLeftUnitTriangle.
The subset UpperUnitTriangle of [: I, I :] is defined by:

(Def. 11) For every set x holds x ∈ UpperUnitTriangle iff there exist points a, b

of I such that x = 〈〈a, b〉〉 and b  1− 2 · a and b  2 · a− 1.

We introduce IBB as a synonym of UpperUnitTriangle.
The subset LowerRightUnitTriangle of [: I, I :] is defined as follows:

(Def. 12) For every set x holds x ∈ LowerRightUnitTriangle iff there exist points
a, b of I such that x = 〈〈a, b〉〉 and b ¬ 2 · a− 1.

We introduce ICC as a synonym of LowerRightUnitTriangle.
The following propositions are true:

(61) IAA = {p; p ranges over points of [: I, I :]: p2 ¬ 1− 2 · p1}.
(62) IBB = {p; p ranges over points of [: I, I :]: p2  1−2 ·p1 ∧ p2  2 ·p1−1}.
(63) ICC = {p; p ranges over points of [: I, I :]: p2 ¬ 2 · p1 − 1}.

One can check the following observations:

∗ IAA is closed and non empty,
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∗ IBB is closed and non empty, and

∗ ICC is closed and non empty.

Next we state a number of propositions:

(64) IAA∪ IBB∪ ICC = [: [0, 1], [0, 1] :].
(65) IAA∩ IBB = {p; p ranges over points of [: I, I :]: p2 = 1− 2 · p1}.
(66) ICC∩ IBB = {p; p ranges over points of [: I, I :]: p2 = 2 · p1 − 1}.
(67) For every point x of [: I, I :] such that x ∈ IAA holds x1 ¬ 1

2 .

(68) For every point x of [: I, I :] such that x ∈ ICC holds x1  1
2 .

(69) For every point x of I holds 〈〈0, x〉〉 ∈ IAA .

(70) For every set s such that 〈〈0, s〉〉 ∈ IBB holds s = 1.

(71) For every set s such that 〈〈s, 1〉〉 ∈ ICC holds s = 1.

(72) 〈〈0, 1〉〉 ∈ IBB .

(73) For every point x of I holds 〈〈x, 1〉〉 ∈ IBB .

(74) 〈〈12 , 0〉〉 ∈ ICC and 〈〈1, 1〉〉 ∈ ICC .

(75) 〈〈12 , 0〉〉 ∈ IBB .

(76) For every point x of I holds 〈〈1, x〉〉 ∈ ICC .

(77) For every point x of I such that x  1
2 holds 〈〈x, 0〉〉 ∈ ICC .

(78) For every point x of I such that x ¬ 1
2 holds 〈〈x, 0〉〉 ∈ IAA .

(79) For every point x of I such that x < 1
2 holds 〈〈x, 0〉〉 /∈ IBB and 〈〈x,

0〉〉 /∈ ICC .

(80) IAA∩ ICC = {〈〈12 , 0〉〉}.

11. Properties of a Homotopy

We use the following convention: X denotes a non empty arcwise connected
topological space and a1, b1, c1, d1 denote points of X.

One can prove the following propositions:

(81) Let P be a path from a to b, Q be a path from b to c, and R be a path
from c to d. Suppose a, b are connected and b, c are connected and c, d

are connected. Then (P + Q) + R, P + (Q + R) are homotopic.

(82) Let P be a path from a1 to b1, Q be a path from b1 to c1, and R be a
path from c1 to d1. Then (P + Q) + R, P + (Q + R) are homotopic.

(83) Let P1, P2 be paths from a to b and Q1, Q2 be paths from b to c. Suppose
a, b are connected and b, c are connected and P1, P2 are homotopic and
Q1, Q2 are homotopic. Then P1 + Q1, P2 + Q2 are homotopic.

(84) Let P1, P2 be paths from a1 to b1 and Q1, Q2 be paths from b1 to c1.
Suppose P1, P2 are homotopic and Q1, Q2 are homotopic. Then P1 + Q1,

P2 + Q2 are homotopic.



algebraic properties of homotopies 259

(85) Let P , Q be paths from a to b. Suppose a, b are connected and P , Q are
homotopic. Then −P , −Q are homotopic.

(86) For all paths P , Q from a1 to b1 such that P , Q are homotopic holds
−P , −Q are homotopic.

(87) Let P , Q, R be paths from a to b. Suppose P , Q are homotopic and Q,
R are homotopic. Then P , R are homotopic.

(88) Let P be a path from a to b and Q be a constant path from b to b. If a,
b are connected, then P + Q, P are homotopic.

(89) For every path P from a1 to b1 and for every constant path Q from b1

to b1 holds P + Q, P are homotopic.

(90) Let P be a path from a to b and Q be a constant path from a to a. If a,
b are connected, then Q + P, P are homotopic.

(91) For every path P from a1 to b1 and for every constant path Q from a1

to a1 holds Q + P, P are homotopic.

(92) Let P be a path from a to b and Q be a constant path from a to a. If a,
b are connected, then P +−P , Q are homotopic.

(93) For every path P from a1 to b1 and for every constant path Q from a1

to a1 holds P +−P , Q are homotopic.

(94) Let P be a path from b to a and Q be a constant path from a to a. If b,
a are connected, then −P + P, Q are homotopic.

(95) For every path P from b1 to a1 and for every constant path Q from a1

to a1 holds −P + P, Q are homotopic.

(96) For all constant paths P , Q from a to a holds P , Q are homotopic.

Let T be a non empty topological space, let a, b be points of T , and let P , Q

be paths from a to b. Let us assume that P , Q are homotopic. A map from [: I,
I :] into T is said to be a homotopy between P and Q if it satisfies the conditions
(Def. 13).

(Def. 13)(i) It is continuous, and
(ii) for every point s of I holds it(s, 0) = P (s) and it(s, 1) = Q(s) and for

every point t of I holds it(0, t) = a and it(1, t) = b.
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Summary. This is the next article in a series devoted to the homotopy
theory (following [11] and [12]). The concept of fundamental groups of pointed
topological spaces has been introduced. Isomorphism of fundamental groups de-
fined with respect to different points belonging to the same component has been
stated. Triviality of fundamental group(s) of Rn has been shown.

MML Identifier: TOPALG 1.

The articles [22], [7], [26], [27], [19], [4], [6], [5], [28], [2], [21], [1], [18], [20], [16],
[8], [3], [15], [13], [17], [29], [9], [14], [24], [23], [10], [11], [25], and [12] provide
the terminology and notation for this paper.

1. Preliminaries

We adopt the following convention: p, q, x, y are real numbers and n is a
natural number.

Next we state a number of propositions:

(1) Let G, H be groups and h be a homomorphism from G to H. If h ·h−1 =
idH and h−1 · h = idG, then h is an isomorphism.

(2) For every subset X of I and for every point a of I such that X = ]a, 1]
holds Xc = [0, a].
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(3) For every subset X of I and for every point a of I such that X = [0, a[
holds Xc = [a, 1].

(4) For every subset X of I and for every point a of I such that X = ]a, 1]
holds X is open.

(5) For every subset X of I and for every point a of I such that X = [0, a[
holds X is open.

(6) For every element f of Rn holds x · −f = −x · f.

(7) For all elements f , g of Rn holds x · (f − g) = x · f − x · g.

(8) For every element f of Rn holds (x− y) · f = x · f − y · f.

(9) For all elements f , g, h, k of Rn holds (f +g)−(h+k) = (f−h)+(g−k).
(10) For every element f of Rn such that 0 ¬ x and x ¬ 1 holds |x · f | ¬ |f |.
(11) For every element f of Rn and for every point p of I holds |p · f | ¬ |f |.
(12) Let e1, e2, e3, e4, e5, e6 be points of En and p1, p2, p3, p4 be points of En

T.
Suppose e1 = p1 and e2 = p2 and e3 = p3 and e4 = p4 and e5 = p1+p3 and
e6 = p2 + p4 and ρ(e1, e2) < x and ρ(e3, e4) < y. Then ρ(e5, e6) < x + y.

(13) Let e1, e2, e5, e6 be points of En and p1, p2 be points of En
T. If e1 = p1

and e2 = p2 and e5 = y · p1 and e6 = y · p2 and ρ(e1, e2) < x and y 6= 0,

then ρ(e5, e6) < |y| · x.

(14) Let e1, e2, e3, e4, e5, e6 be points of En and p1, p2, p3, p4 be points of En
T.

Suppose e1 = p1 and e2 = p2 and e3 = p3 and e4 = p4 and e5 = x·p1+y ·p3

and e6 = x · p2 + y · p4 and ρ(e1, e2) < p and ρ(e3, e4) < q and x 6= 0 and
y 6= 0. Then ρ(e5, e6) < |x| · p + |y| · q.

(16)3 Let X be a non empty topological space and f , g be maps from X into
En

T. Suppose f is continuous and for every point p of X holds g(p) = y·f(p).
Then g is continuous.

(17) Let X be a non empty topological space and f1, f2, g be maps from X

into En
T. Suppose f1 is continuous and f2 is continuous and for every point

p of X holds g(p) = x · f1(p) + y · f2(p). Then g is continuous.

(18) Let F be a map from [: En
T, I :] into En

T. Suppose that for every point x

of En
T and for every point i of I holds F (x, i) = (1 − i) · x. Then F is

continuous.

(19) Let F be a map from [: En
T, I :] into En

T. Suppose that for every point x of
En

T and for every point i of I holds F (x, i) = i · x. Then F is continuous.

2. Paths

For simplicity, we follow the rules: X denotes a non empty topological space,
a, b, c, d, e, f denote points of X, T denotes a non empty arcwise connected

3The proposition (15) has been removed.
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topological space, and a1, b1, c1, d1, e1, f1 denote points of T .
One can prove the following propositions:

(20) Suppose a, b are connected and b, c are connected. Let A be a path from
a to b and B be a path from b to c. Then A, A + B +−B are homotopic.

(21) For every path A from a1 to b1 and for every path B from b1 to c1 holds
A, A + B +−B are homotopic.

(22) Suppose a, b are connected and c, b are connected. Let A be a path from
a to b and B be a path from c to b. Then A, A +−B + B are homotopic.

(23) For every path A from a1 to b1 and for every path B from c1 to b1 holds
A, A +−B + B are homotopic.

(24) Suppose a, b are connected and c, a are connected. Let A be a path from
a to b and B be a path from c to a. Then A, −B + B + A are homotopic.

(25) For every path A from a1 to b1 and for every path B from c1 to a1 holds
A, −B + B + A are homotopic.

(26) Suppose a, b are connected and a, c are connected. Let A be a path from
a to b and B be a path from a to c. Then A, B +−B + A are homotopic.

(27) For every path A from a1 to b1 and for every path B from a1 to c1 holds
A, B +−B + A are homotopic.

(28) Suppose a, b are connected and c, b are connected. Let A, B be paths
from a to b and C be a path from b to c. If A + C, B + C are homotopic,
then A, B are homotopic.

(29) Let A, B be paths from a1 to b1 and C be a path from b1 to c1. If A+C,

B + C are homotopic, then A, B are homotopic.

(30) Suppose a, b are connected and a, c are connected. Let A, B be paths
from a to b and C be a path from c to a. If C + A, C + B are homotopic,
then A, B are homotopic.

(31) Let A, B be paths from a1 to b1 and C be a path from c1 to a1. If C +A,

C + B are homotopic, then A, B are homotopic.

(32) Suppose a, b are connected and b, c are connected and c, d are connected
and d, e are connected. Let A be a path from a to b, B be a path from
b to c, C be a path from c to d, and D be a path from d to e. Then
A + B + C + D, A + (B + C) + D are homotopic.

(33) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path
from c1 to d1, and D be a path from d1 to e1. Then A + B + C + D,

A + (B + C) + D are homotopic.

(34) Suppose a, b are connected and b, c are connected and c, d are connected
and d, e are connected. Let A be a path from a to b, B be a path from
b to c, C be a path from c to d, and D be a path from d to e. Then
(A + B + C) + D, A + (B + C + D) are homotopic.
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(35) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path
from c1 to d1, and D be a path from d1 to e1. Then (A + B + C) + D,

A + (B + C + D) are homotopic.

(36) Suppose a, b are connected and b, c are connected and c, d are connected
and d, e are connected. Let A be a path from a to b, B be a path from
b to c, C be a path from c to d, and D be a path from d to e. Then
(A + (B + C)) + D, A + B + (C + D) are homotopic.

(37) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path
from c1 to d1, and D be a path from d1 to e1. Then (A + (B + C)) + D,

A + B + (C + D) are homotopic.

(38) Suppose a, b are connected and b, c are connected and b, d are connected.
Let A be a path from a to b, B be a path from d to b, and C be a path
from b to c. Then A +−B + B + C, A + C are homotopic.

(39) Let A be a path from a1 to b1, B be a path from d1 to b1, and C be a
path from b1 to c1. Then A +−B + B + C, A + C are homotopic.

(40) Suppose a, b are connected and a, c are connected and c, d are connected.
Let A be a path from a to b, B be a path from c to d, and C be a path
from a to c. Then A +−A + C + B +−B, C are homotopic.

(41) Let A be a path from a1 to b1, B be a path from c1 to d1, and C be a
path from a1 to c1. Then A +−A + C + B +−B, C are homotopic.

(42) Suppose a, b are connected and a, c are connected and d, c are connected.
Let A be a path from a to b, B be a path from c to d, and C be a path
from a to c. Then A + (−A + C + B) +−B, C are homotopic.

(43) Let A be a path from a1 to b1, B be a path from c1 to d1, and C be a
path from a1 to c1. Then A + (−A + C + B) +−B, C are homotopic.

(44) Suppose that
(i) a, b are connected,
(ii) b, c are connected,
(iii) c, d are connected,
(iv) d, e are connected, and
(v) a, f are connected.

Let A be a path from a to b, B be a path from b to c, C be a path from
c to d, D be a path from d to e, and E be a path from f to c. Then
(A + (B + C)) + D, A + B +−E + (E + C + D) are homotopic.

(45) Let A be a path from a1 to b1, B be a path from b1 to c1, C be a path
from c1 to d1, D be a path from d1 to e1, and E be a path from f1 to c1.
Then (A + (B + C)) + D, A + B +−E + (E + C + D) are homotopic.
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3. The Fundamental Group

Let T be a topological structure and let t be a point of T . A loop of t is a
path from t to t.

Let T be a non empty topological structure and let t be a point of T . The
functor Loops(t) is defined by:

(Def. 1) For every set x holds x ∈ Loops(t) iff x is a loop of t.

Let T be a non empty topological structure and let t be a point of T . Observe
that Loops(t) is non empty.

Let X be a non empty topological space and let a be a point of X. The
functor EqRel(X, a) yielding a binary relation on Loops(a) is defined by:

(Def. 2) For all loops P , Q of a holds 〈〈P, Q〉〉 ∈ EqRel(X, a) iff P , Q are homo-
topic.

Let X be a non empty topological space and let a be a point of X. One can
check that EqRel(X, a) is non empty, total, symmetric, and transitive.

We now state two propositions:

(46) For all loops P , Q of a holds Q ∈ [P ]EqRel(X,a) iff P , Q are homotopic.

(47) For all loops P , Q of a holds [P ]EqRel(X,a) = [Q]EqRel(X,a) iff P , Q are
homotopic.

Let X be a non empty topological space and let a be a point of X. The
functor FundamentalGroup(X, a) yielding a strict groupoid is defined by the
conditions (Def. 3).

(Def. 3)(i) The carrier of FundamentalGroup(X, a) = Classes EqRel(X, a), and
(ii) for all elements x, y of FundamentalGroup(X, a) there exist loops P ,

Q of a such that x = [P ]EqRel(X,a) and y = [Q]EqRel(X,a) and (the multi-
plication of FundamentalGroup(X, a))(x, y) = [P + Q]EqRel(X,a).

We introduce π1(X, a) as a synonym of FundamentalGroup(X, a).
Let X be a non empty topological space and let a be a point of X. One can

verify that π1(X, a) is non empty.
Next we state the proposition

(48) For every set x holds x ∈ the carrier of π1(X, a) iff there exists a loop P

of a such that x = [P ]EqRel(X,a).

Let X be a non empty topological space and let a be a point of X. Note
that π1(X, a) is associative and group-like.

Let T be a non empty topological space, let x0, x1 be points of T , and let P

be a path from x0 to x1. Let us assume that x0, x1 are connected. The functor
π1-iso(P ) yielding a map from π1(T, x1) into π1(T, x0) is defined by:

(Def. 4) For every loop Q of x1 holds (π1-iso(P ))([Q]EqRel(T,x1)) =
[P + Q +−P ]EqRel(T,x0).



266 artur korniłowicz et al.

For simplicity, we follow the rules: x0, x1 denote points of X, P , Q denote
paths from x0 to x1, y0, y1 denote points of T , and R, V denote paths from y0

to y1.
Next we state three propositions:

(49) If x0, x1 are connected and P , Q are homotopic, then π1-iso(P ) =
π1-iso(Q).

(50) If R, V are homotopic, then π1-iso(R) = π1-iso(V ).
(51) If x0, x1 are connected, then π1-iso(P ) is a homomorphism from

π1(X, x1) to π1(X, x0).
Let T be a non empty arcwise connected topological space, let x0, x1 be po-

ints of T , and let P be a path from x0 to x1. Then π1-iso(P ) is a homomorphism
from π1(T, x1) to π1(T, x0).

The following propositions are true:

(52) If x0, x1 are connected, then π1-iso(P ) is one-to-one.

(53) If x0, x1 are connected, then π1-iso(P ) is onto.

Let T be a non empty arcwise connected topological space, let x0, x1 be
points of T , and let P be a path from x0 to x1. One can verify that π1-iso(P ) is
one-to-one and onto.

One can prove the following propositions:

(54) If x0, x1 are connected, then (π1-iso(P ))−1 = π1-iso(−P ).
(55) (π1-iso(R))−1 = π1-iso(−R).
(56) If x0, x1 are connected, then for every homomorphism h from π1(X, x1)

to π1(X, x0) such that h = π1-iso(P ) holds h is an isomorphism.

(57) π1-iso(R) is an isomorphism.

(58) If x0, x1 are connected, then π1(X,x0) and π1(X,x1) are isomorphic.

(59) π1(T, y0) and π1(T, y1) are isomorphic.

4. Euclidean Topological Space

Let n be a natural number, let a, b be points of En
T, and let P , Q be paths

from a to b. The functor RealHomotopy(P, Q) yields a map from [: I, I :] into En
T

and is defined by:

(Def. 5) For all elements s, t of I holds (RealHomotopy(P,Q))(s, t) = (1 − t) ·
P (s) + t ·Q(s).

The following proposition is true

(60) For all points a, b of En
T and for all paths P , Q from a to b holds P , Q

are homotopic.

Let n be a natural number, let a, b be points of En
T, and let P , Q be paths

from a to b. Then RealHomotopy(P, Q) is a homotopy between P and Q.



the fundamental group 267

Let n be a natural number, let a, b be points of En
T, and let P , Q be paths

from a to b. One can check that every homotopy between P and Q is continuous.
Next we state the proposition

(61) For every point a of En
T and for every loop C of a holds the carrier of

π1(En
T, a) = {[C]EqRel(En

T,a)}.
Let n be a natural number and let a be a point of En

T. Note that π1(En
T, a)

is trivial.
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The articles [16], [19], [20], [2], [21], [4], [9], [3], [1], [11], [15], [5], [17], [18], [10],
[7], [8], [6], [13], [22], [12], and [14] provide the notation and terminology for this
paper.

We use the following convention: n is a natural number, x, X, X1 are sets,
and s, r, p are real numbers.

Let S, T be 1-sorted structures. A partial function from S to T is a partial
function from the carrier of S to the carrier of T .

For simplicity, we adopt the following rules: S, T denote real normed spaces,
f , f1, f2 denote partial functions from S to T , s1 denotes a sequence of S, x0,
x1, x2 denote points of S, and Y denotes a subset of S.

Let R1 be a real linear space and let S1 be a sequence of R1. The functor
−S1 yields a sequence of R1 and is defined as follows:

(Def. 1) For every n holds (−S1)(n) = −S1(n).
Next we state two propositions:

(1) For all sequences s2, s3 of S holds s2 − s3 = s2 +−s3.

(2) For every sequence s4 of S holds −s4 = (−1) · s4.

Let us consider S, T and let f be a partial function from S to T . The functor
‖f‖ yielding a partial function from the carrier of S to R is defined as follows:

(Def. 2) dom‖f‖ = dom f and for every point c of S such that c ∈ dom‖f‖ holds
‖f‖(c) = ‖fc‖.
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Let us consider S, x0. A subset of S is called a neighbourhood of x0 if:

(Def. 3) There exists a real number g such that 0 < g and {y; y ranges over points
of S: ‖y − x0‖ < g} ⊆ it.

The following two propositions are true:

(3) For every real number g such that 0 < g holds {y; y ranges over points
of S: ‖y − x0‖ < g} is a neighbourhood of x0.

(4) For every neighbourhood N of x0 holds x0 ∈ N.

Let us consider S and let X be a subset of S. We say that X is compact if
and only if the condition (Def. 4) is satisfied.

(Def. 4) Let s1 be a sequence of S. Suppose rng s1 ⊆ X. Then there exists a
sequence s5 of S such that s5 is a subsequence of s1 and convergent and
lim s5 ∈ X.

Let us consider S and let X be a subset of S. We say that X is closed if and
only if:

(Def. 5) For every sequence s1 of S such that rng s1 ⊆ X and s1 is convergent
holds lim s1 ∈ X.

Let us consider S and let X be a subset of S. We say that X is open if and
only if:

(Def. 6) Xc is closed.

Let us consider S, T , let us consider f , and let s4 be a sequence of S. Let
us assume that rng s4 ⊆ dom f. The functor f · s4 yields a sequence of T and is
defined as follows:

(Def. 7) f · s4 = (f qua function) ·(s4).
Let us consider S, let f be a partial function from the carrier of S to R, and

let s4 be a sequence of S. Let us assume that rng s4 ⊆ dom f. The functor f · s4

yields a sequence of real numbers and is defined as follows:

(Def. 8) f · s4 = (f qua function) ·(s4).
Let us consider S, T and let us consider f , x0. We say that f is continuous

in x0 if and only if:

(Def. 9) x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is conver-
gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).

Let us consider S, let f be a partial function from the carrier of S to R, and
let us consider x0. We say that f is continuous in x0 if and only if:

(Def. 10) x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is conver-
gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).

The scheme SeqPointNormSpChoice deals with a non empty normed struc-
ture A and a binary predicate P, and states that:

There exists a sequence s1 ofA such that for every natural number
n holds P[n, s1(n)]
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provided the following condition is met:
• For every natural number n there exists a point r of A such that
P[n, r].

The following propositions are true:

(5) For every sequence s4 of S and for every partial function h from S to T

such that rng s4 ⊆ dom h holds s4(n) ∈ dom h.

(6) For every sequence s4 of S and for every set x holds x ∈ rng s4 iff there
exists n such that x = s4(n).

(7) For all sequences s4, s2 of S such that s2 is a subsequence of s4 holds
rng s2 ⊆ rng s4.

(8) For all f , s1 such that rng s1 ⊆ dom f and for every n holds (f ·s1)(n) =
fs1(n).

(9) Let f be a partial function from the carrier of S to R and given s1. If
rng s1 ⊆ dom f, then for every n holds (f · s1)(n) = fs1(n).

(10) Let h be a partial function from S to T , s4 be a sequence of S, and N1 be
an increasing sequence of naturals. If rng s4 ⊆ dom h, then (h · s4) ·N1 =
h · (s4 ·N1).

(11) Let h be a partial function from the carrier of S to R, s4 be a sequence of
S, and N1 be an increasing sequence of naturals. If rng s4 ⊆ dom h, then
(h · s4) ·N1 = h · (s4 ·N1).

(12) Let h be a partial function from S to T and s2, s3 be sequences of S. If
rng s2 ⊆ dom h and s3 is a subsequence of s2, then h · s3 is a subsequence
of h · s2.

(13) Let h be a partial function from the carrier of S to R and s2, s3 be
sequences of S. If rng s2 ⊆ dom h and s3 is a subsequence of s2, then h · s3

is a subsequence of h · s2.

(14) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every

x1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds ‖fx1 − fx0‖ < r.

(15) Let f be a partial function from the carrier of S to R. Then f is conti-
nuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every

x1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds |fx1 − fx0 | < r.

(16) Let given f , x0. Then f is continuous in x0 if and only if the following
conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N2 of fx0 there exists a neighbourhood N of x0

such that for every x1 such that x1 ∈ dom f and x1 ∈ N holds fx1 ∈ N2.
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(17) Let given f , x0. Then f is continuous in x0 if and only if the following
conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N2 of fx0 there exists a neighbourhood N of

x0 such that f◦N ⊆ N2.

(18) If x0 ∈ dom f and there exists a neighbourhood N of x0 such that
dom f ∩N = {x0}, then f is continuous in x0.

(19) Let h1, h2 be partial functions from S to T and s4 be a sequence of S.
If rng s4 ⊆ dom h1 ∩ dom h2, then (h1 + h2) · s4 = h1 · s4 + h2 · s4 and
(h1 − h2) · s4 = h1 · s4 − h2 · s4.

(20) Let h be a partial function from S to T , s4 be a sequence of S, and r be
a real number. If rng s4 ⊆ dom h, then (r h) · s4 = r · (h · s4).

(21) Let h be a partial function from S to T and s4 be a sequence of S. If
rng s4 ⊆ dom h, then ‖h · s4‖ = ‖h‖ · s4 and −h · s4 = (−h) · s4.

(22) If f1 is continuous in x0 and f2 is continuous in x0, then f1 + f2 is
continuous in x0 and f1 − f2 is continuous in x0.

(23) If f is continuous in x0, then r f is continuous in x0.

(24) If f is continuous in x0, then ‖f‖ is continuous in x0 and−f is continuous
in x0.

Let us consider S, T and let us consider f , X. We say that f is continuous
on X if and only if:

(Def. 11) X ⊆ dom f and for every x0 such that x0 ∈ X holds f¹X is continuous
in x0.

Let us consider S, let f be a partial function from the carrier of S to R, and
let us consider X. We say that f is continuous on X if and only if:

(Def. 12) X ⊆ dom f and for every x0 such that x0 ∈ X holds f¹X is continuous
in x0.

One can prove the following propositions:

(25) Let given X, f . Then f is continuous on X if and only if the following
conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every s1 such that rng s1 ⊆ X and s1 is convergent and lim s1 ∈ X

holds f · s1 is convergent and flim s1 = lim(f · s1).
(26) f is continuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for all x0, r such that x0 ∈ X and 0 < r there exists s such that 0 < s

and for every x1 such that x1 ∈ X and ‖x1−x0‖ < s holds ‖fx1−fx0‖ < r.

(27) Let f be a partial function from the carrier of S to R. Then f is conti-
nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
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(ii) for all x0, r such that x0 ∈ X and 0 < r there exists s such that 0 < s

and for every x1 such that x1 ∈ X and ‖x1−x0‖ < s holds |fx1−fx0 | < r.

(28) f is continuous on X iff f¹X is continuous on X.

(29) Let f be a partial function from the carrier of S to R. Then f is conti-
nuous on X if and only if f¹X is continuous on X.

(30) If f is continuous on X and X1 ⊆ X, then f is continuous on X1.

(31) If x0 ∈ dom f, then f is continuous on {x0}.
(32) For all X, f1, f2 such that f1 is continuous on X and f2 is continuous

on X holds f1 + f2 is continuous on X and f1 − f2 is continuous on X.

(33) Let given X, X1, f1, f2. Suppose f1 is continuous on X and f2 is continu-
ous on X1. Then f1 +f2 is continuous on X ∩X1 and f1−f2 is continuous
on X ∩X1.

(34) For all r, X, f such that f is continuous on X holds r f is continuous
on X.

(35) If f is continuous on X, then ‖f‖ is continuous on X and −f is conti-
nuous on X.

(36) Suppose f is total and for all x1, x2 holds fx1+x2 = fx1 + fx2 and there
exists x0 such that f is continuous in x0. Then f is continuous on the
carrier of S.

(37) For every f such that dom f is compact and f is continuous on dom f

holds rng f is compact.

(38) Let f be a partial function from the carrier of S to R. If dom f is compact
and f is continuous on dom f, then rng f is compact.

(39) If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is
compact.

(40) Let f be a partial function from the carrier of S to R. Suppose dom f 6= ∅
and dom f is compact and f is continuous on dom f. Then there exist
x1, x2 such that x1 ∈ dom f and x2 ∈ dom f and fx1 = sup rng f and
fx2 = inf rng f.

(41) Let given f . Suppose dom f 6= ∅ and dom f is compact and f is con-
tinuous on dom f. Then there exist x1, x2 such that x1 ∈ dom f and
x2 ∈ dom f and ‖f‖x1 = sup rng‖f‖ and ‖f‖x2 = inf rng‖f‖.

(42) ‖f‖¹X = ‖f¹X‖.
(43) Let given f , Y . Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f

is continuous on Y . Then there exist x1, x2 such that x1 ∈ Y and x2 ∈ Y

and ‖f‖x1 = sup(‖f‖◦Y ) and ‖f‖x2 = inf(‖f‖◦Y ).
(44) Let f be a partial function from the carrier of S to R and given Y .

Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on Y .
Then there exist x1, x2 such that x1 ∈ Y and x2 ∈ Y and fx1 = sup(f◦Y )
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and fx2 = inf(f◦Y ).
Let us consider S, T and let us consider X, f . We say that f is Lipschitzian

on X if and only if:

(Def. 13) X ⊆ dom f and there exists r such that 0 < r and for all x1, x2 such
that x1 ∈ X and x2 ∈ X holds ‖fx1 − fx2‖ ¬ r · ‖x1 − x2‖.

Let us consider S, let us consider X, and let f be a partial function from
the carrier of S to R. We say that f is Lipschitzian on X if and only if:

(Def. 14) X ⊆ dom f and there exists r such that 0 < r and for all x1, x2 such
that x1 ∈ X and x2 ∈ X holds |fx1 − fx2 | ¬ r · ‖x1 − x2‖.

The following propositions are true:

(45) If f is Lipschitzian on X and X1 ⊆ X, then f is Lipschitzian on X1.

(46) If f1 is Lipschitzian on X and f2 is Lipschitzian on X1, then f1 + f2 is
Lipschitzian on X ∩X1.

(47) If f1 is Lipschitzian on X and f2 is Lipschitzian on X1, then f1 − f2 is
Lipschitzian on X ∩X1.

(48) If f is Lipschitzian on X, then p f is Lipschitzian on X.

(49) If f is Lipschitzian on X, then −f is Lipschitzian on X and ‖f‖ is
Lipschitzian on X.

(50) If X ⊆ dom f and f is a constant on X, then f is Lipschitzian on X.

(51) idY is Lipschitzian on Y .

(52) If f is Lipschitzian on X, then f is continuous on X.

(53) Let f be a partial function from the carrier of S to R. If f is Lipschitzian
on X, then f is continuous on X.

(54) For every f such that there exists a point r of T such that rng f = {r}
holds f is continuous on dom f.

(55) If X ⊆ dom f and f is a constant on X, then f is continuous on X.

(56) For every partial function f from S to S such that for every x0 such that
x0 ∈ dom f holds fx0 = x0 holds f is continuous on dom f.

(57) For every partial function f from S to S such that f = iddom f holds f

is continuous on dom f.

(58) For every partial function f from S to S such that Y ⊆ dom f and
f¹Y = idY holds f is continuous on Y .

(59) Let f be a partial function from S to S, r be a real number, and p be a
point of S. Suppose X ⊆ dom f and for every x0 such that x0 ∈ X holds
fx0 = r · x0 + p. Then f is continuous on X.

(60) Let f be a partial function from the carrier of S to R. If for every x0

such that x0 ∈ dom f holds fx0 = ‖x0‖, then f is continuous on dom f.

(61) Let f be a partial function from the carrier of S to R. If X ⊆ dom f and
for every x0 such that x0 ∈ X holds fx0 = ‖x0‖, then f is continuous on X.
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The notation and terminology used in this paper are introduced in the following
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1. The Uniform Continuity of Functions on Normed Linear Spaces

For simplicity, we follow the rules: X, X1 are sets, s, r, p are real numbers,
S, T are real normed spaces, f , f1, f2 are partial functions from S to T , x1, x2

are points of S, and Y is a subset of S.
Let us consider X, S, T and let us consider f . We say that f is uniformly

continuous on X if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) X ⊆ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for all x1,

x2 such that x1 ∈ X and x2 ∈ X and ‖x1−x2‖ < s holds ‖fx1 − fx2‖ < r.

Let us consider X, S and let f be a partial function from the carrier of S

to R. We say that f is uniformly continuous on X if and only if the conditions
(Def. 2) are satisfied.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan.
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(Def. 2)(i) X ⊆ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for all x1,

x2 such that x1 ∈ X and x2 ∈ X and ‖x1 − x2‖ < s holds |fx1 − fx2 | < r.

The following propositions are true:

(1) If f is uniformly continuous on X and X1 ⊆ X, then f is uniformly
continuous on X1.

(2) If f1 is uniformly continuous on X and f2 is uniformly continuous on
X1, then f1 + f2 is uniformly continuous on X ∩X1.

(3) If f1 is uniformly continuous on X and f2 is uniformly continuous on
X1, then f1 − f2 is uniformly continuous on X ∩X1.

(4) If f is uniformly continuous on X, then p f is uniformly continuous on
X.

(5) If f is uniformly continuous on X, then −f is uniformly continuous on
X.

(6) If f is uniformly continuous on X, then ‖f‖ is uniformly continuous on
X.

(7) If f is uniformly continuous on X, then f is continuous on X.

(8) Let f be a partial function from the carrier of S to R. If f is uniformly
continuous on X, then f is continuous on X.

(9) If f is Lipschitzian on X, then f is uniformly continuous on X.

(10) For all f , Y such that Y is compact and f is continuous on Y holds f is
uniformly continuous on Y .

(11) If Y ⊆ dom f and Y is compact and f is uniformly continuous on Y ,
then f◦Y is compact.

(12) Let f be a partial function from the carrier of S to R and given Y .
Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is uniformly
continuous on Y . Then there exist x1, x2 such that x1 ∈ Y and x2 ∈ Y

and fx1 = sup(f◦Y ) and fx2 = inf(f◦Y ).
(13) If X ⊆ dom f and f is a constant on X, then f is uniformly continuous

on X.

2. The Contraction Mapping Principle on Normed Linear Spaces

Let M be a real Banach space. A function from the carrier of M into the
carrier of M is said to be a contraction of M if:

(Def. 3) There exists a real number L such that 0 < L and L < 1 and for all
points x, y of M holds ‖it(x)− it(y)‖ ¬ L · ‖x− y‖.

The following two propositions are true:
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(14) Let X be a real Banach space and f be a function from X into X.
Suppose f is a contraction of X. Then there exists a point x3 of X such
that f(x3) = x3 and for every point x of X such that f(x) = x holds
x3 = x.

(15) Let X be a real Banach space and f be a function from X into X. Given
a natural number n0 such that fn0 is a contraction of X. Then there exists
a point x3 of X such that f(x3) = x3 and for every point x of X such that
f(x) = x holds x3 = x.
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The articles [22], [24], [25], [5], [6], [3], [2], [21], [11], [1], [23], [4], [15], [16], [17],
[14], [12], [13], [19], [18], [10], [8], [9], [7], and [20] provide the notation and
terminology for this paper.

1. Basic Properties of Sequences of Norm Space

Let X be a non empty complex normed space structure and let s1 be a se-
quence of X. The functor (

∑κ
α=0(s1)(α))κ∈N yielding a sequence of X is defined

as follows:

(Def. 1) (
∑κ

α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds
(
∑κ

α=0(s1)(α))κ∈N(n + 1) = (
∑κ

α=0(s1)(α))κ∈N(n) + s1(n + 1).
One can prove the following proposition

(1) Let X be an add-associative right zeroed right complementable non
empty complex normed space structure and s1 be a sequence of X. Sup-
pose that for every natural number n holds s1(n) = 0X . Let m be a natural
number. Then (

∑κ
α=0(s1)(α))κ∈N(m) = 0X .

Let X be a complex normed space and let s1 be a sequence of X. We say
that s1 is summable if and only if:

(Def. 2) (
∑κ

α=0(s1)(α))κ∈N is convergent.

Let X be a complex normed space. One can verify that there exists a sequ-
ence of X which is summable.

Let X be a complex normed space and let s1 be a sequence of X. The functor∑
s1 yields an element of X and is defined by:
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(Def. 3)
∑

s1 = lim((
∑κ

α=0(s1)(α))κ∈N).

Let X be a complex normed space and let s1 be a sequence of X. We say
that s1 is norm-summable if and only if:

(Def. 4) ‖s1‖ is summable.

The following propositions are true:

(2) For every complex normed space X and for every sequence s1 of X and
for every natural number m holds 0 ¬ ‖s1‖(m).

(3) For every complex normed space X and for all elements x, y, z of X

holds ‖x− y‖ = ‖(x− z) + (z − y)‖.
(4) Let X be a complex normed space and s1 be a sequence of X. Suppose

s1 is convergent. Let s be a real number. Suppose 0 < s. Then there exists
a natural number n such that for every natural number m if n ¬ m, then
‖s1(m)− s1(n)‖ < s.

(5) Let X be a complex normed space and s1 be a sequence of X. Then s1 is
Cauchy sequence by norm if and only if for every real number p such that
p > 0 there exists a natural number n such that for every natural number
m such that n ¬ m holds ‖s1(m)− s1(n)‖ < p.

(6) Let X be a complex normed space and s1 be a sequence of X. Suppose
that for every natural number n holds s1(n) = 0X . Let m be a natural
number. Then (

∑κ
α=0‖s1‖(α))κ∈N(m) = 0.

Let X be a complex normed space and let s1 be a sequence of X. Let us
observe that s1 is constant if and only if:

(Def. 5) There exists an element r of X such that for every natural number n

holds s1(n) = r.

Let X be a complex normed space, let s1 be a sequence of X, and let k

be a natural number. The functor s1 ↑ k yielding a sequence of X is defined as
follows:

(Def. 6) For every natural number n holds (s1 ↑ k)(n) = s1(n + k).

Let X be a complex normed space and let s1, s2 be sequences of X. We say
that s1 is a subsequence of s2 if and only if:

(Def. 7) There exists an increasing sequence N1 of naturals such that s1 = s2 ·N1.

Next we state a number of propositions:

(7) For every complex normed space X and for every sequence s1 of X holds
s1 ↑ 0 = s1.

(8) For every complex normed space X and for every sequence s1 of X and
for all natural numbers k, m holds s1 ↑ k ↑m = s1 ↑m ↑ k.

(9) For every complex normed space X and for every sequence s1 of X and
for all natural numbers k, m holds s1 ↑ k ↑m = s1 ↑ (k + m).
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(10) Let X be a complex normed space and s1, s2 be sequences of X. If s2 is
a subsequence of s1 and s1 is convergent, then s2 is convergent.

(11) Let X be a complex normed space and s1, s2 be sequences of X. If s2 is
a subsequence of s1 and s1 is convergent, then lim s2 = lim s1.

(12) Let X be a complex normed space, s1 be a sequence of X, and k be a
natural number. Then s1 ↑ k is a subsequence of s1.

(13) Let X be a complex normed space, s1, s2 be sequences of X, and k

be a natural number. If s1 is convergent, then s1 ↑ k is convergent and
lim(s1 ↑ k) = lim s1.

(14) Let X be a complex normed space and s1, s2 be sequences of X. Suppose
s1 is convergent and there exists a natural number k such that s1 = s2 ↑k.

Then s2 is convergent.

(15) Let X be a complex normed space and s1, s2 be sequences of X. Suppose
s1 is convergent and there exists a natural number k such that s1 = s2 ↑k.

Then lim s2 = lim s1.

(16) For every complex normed space X and for every sequence s1 of X such
that s1 is constant holds s1 is convergent.

(17) Let X be a complex normed space and s1 be a sequence of X. If for
every natural number n holds s1(n) = 0X , then s1 is norm-summable.

Let X be a complex normed space. Observe that there exists a sequence of
X which is norm-summable.

The following three propositions are true:

(18) Let X be a complex normed space and s be a sequence of X. If s is
summable, then s is convergent and lim s = 0X .

(19) For every complex normed space X and for all sequences s3, s4 of X

holds (
∑κ

α=0(s3)(α))κ∈N + (
∑κ

α=0(s4)(α))κ∈N = (
∑κ

α=0(s3 + s4)(α))κ∈N.

(20) For every complex normed space X and for all sequences s3, s4 of X

holds (
∑κ

α=0(s3)(α))κ∈N − (
∑κ

α=0(s4)(α))κ∈N = (
∑κ

α=0(s3 − s4)(α))κ∈N.

Let X be a complex normed space and let s1 be a norm-summable sequence
of X. Observe that ‖s1‖ is summable.

Let X be a complex normed space. One can check that every sequence of X

which is summable is also convergent.
The following two propositions are true:

(21) Let X be a complex normed space and s2, s5 be sequences of X. If s2 is
summable and s5 is summable, then s2+s5 is summable and

∑
(s2+s5) =∑

s2 +
∑

s5.

(22) Let X be a complex normed space and s2, s5 be sequences of X. If s2 is
summable and s5 is summable, then s2−s5 is summable and

∑
(s2−s5) =∑

s2 −
∑

s5.
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Let X be a complex normed space and let s2, s5 be summable sequences of
X. One can check that s2 + s5 is summable and s2 − s5 is summable.

The following propositions are true:

(23) For every complex normed space X and for every sequence s1 of X

and for every complex number z holds (
∑κ

α=0(z · s1)(α))κ∈N = z ·
(
∑κ

α=0(s1)(α))κ∈N.

(24) Let X be a complex normed space, s1 be a summable sequence of X, and
z be a complex number. Then z · s1 is summable and

∑
(z · s1) = z ·∑ s1.

Let X be a complex normed space, let z be a complex number, and let s1

be a summable sequence of X. One can check that z · s1 is summable.
Next we state two propositions:

(25) Let X be a complex normed space and s, s3 be sequences of X. If for
every natural number n holds s3(n) = s(0), then (

∑κ
α=0(s ↑ 1)(α))κ∈N =

(
∑κ

α=0 s(α))κ∈N ↑ 1− s3.

(26) Let X be a complex normed space and s be a sequence of X. If s is
summable, then for every natural number n holds s ↑ n is summable.

Let X be a complex normed space, let s1 be a summable sequence of X, and
let n be a natural number. Observe that s1 ↑ n is summable.

We now state the proposition

(27) Let X be a complex normed space and s1 be a sequence of X. Then
(
∑κ

α=0‖s1‖(α))κ∈N is upper bounded if and only if s1 is norm-summable.

Let X be a complex normed space and let s1 be a norm-summable sequence
of X. Note that (

∑κ
α=0‖s1‖(α))κ∈N is upper bounded.

The following propositions are true:

(28) Let X be a complex Banach space and s1 be a sequence of X. Then s1

is summable if and only if for every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n ¬ m holds ‖(∑κ

α=0(s1)(α))κ∈N(m)− (
∑κ

α=0(s1)(α))κ∈N(n)‖ < p.

(29) Let X be a complex normed space, s be a sequence of X, and
n, m be natural numbers. If n ¬ m, then ‖(∑κ

α=0 s(α))κ∈N(m) −
(
∑κ

α=0 s(α))κ∈N(n)‖ ¬ |(∑κ
α=0‖s‖(α))κ∈N(m)− (

∑κ
α=0‖s‖(α))κ∈N(n)|.

(30) For every complex Banach space X and for every sequence s1 of X such
that s1 is norm-summable holds s1 is summable.

(31) Let X be a complex normed space, r1 be a sequence of real numbers,
and s5 be a sequence of X. Suppose r1 is summable and there exists a
natural number m such that for every natural number n such that m ¬ n

holds ‖s5(n)‖ ¬ r1(n). Then s5 is norm-summable.

(32) Let X be a complex normed space and s2, s5 be sequences of X. Suppose
for every natural number n holds 0 ¬ ‖s2‖(n) and ‖s2‖(n) ¬ ‖s5‖(n) and
s5 is norm-summable. Then s2 is norm-summable and

∑‖s2‖ ¬
∑‖s5‖.



series on complex banach algebra 285

(33) Let X be a complex normed space and s1 be a sequence of X. Suppose
that

(i) for every natural number n holds ‖s1‖(n) > 0, and
(ii) there exists a natural number m such that for every natural number n

such that n  m holds ‖s1‖(n+1)
‖s1‖(n)  1.

Then s1 is not norm-summable.

(34) Let X be a complex normed space, s1 be a sequence of X, and r1 be
a sequence of real numbers. Suppose for every natural number n holds
r1(n) = n

√
‖s1‖(n) and r1 is convergent and lim r1 < 1. Then s1 is norm-

summable.

(35) Let X be a complex normed space, s1 be a sequence of X, and r1 be a
sequence of real numbers. Suppose that

(i) for every natural number n holds r1(n) = n
√
‖s1‖(n), and

(ii) there exists a natural number m such that for every natural number n

such that m ¬ n holds r1(n)  1.

Then ‖s1‖ is not summable.

(36) Let X be a complex normed space, s1 be a sequence of X, and r1 be
a sequence of real numbers. Suppose for every natural number n holds
r1(n) = n

√
‖s1‖(n) and r1 is convergent and lim r1 > 1. Then s1 is not

norm-summable.

(37) Let X be a complex normed space, s1 be a sequence of X, and r1 be
a sequence of real numbers. Suppose ‖s1‖ is non-increasing and for every
natural number n holds r1(n) = 2n · ‖s1‖(2n). Then s1 is norm-summable
if and only if r1 is summable.

(38) Let X be a complex normed space, s1 be a sequence of X, and p be a
real number. Suppose p > 1 and for every natural number n such that
n  1 holds ‖s1‖(n) = 1

np . Then s1 is norm-summable.

(39) Let X be a complex normed space, s1 be a sequence of X, and p be a
real number. Suppose p ¬ 1 and for every natural number n such that
n  1 holds ‖s1‖(n) = 1

np . Then s1 is not norm-summable.

(40) Let X be a complex normed space, s1 be a sequence of X, and r1 be
a sequence of real numbers. Suppose for every natural number n holds
s1(n) 6= 0X and r1(n) = ‖s1‖(n+1)

‖s1‖(n) and r1 is convergent and lim r1 < 1.

Then s1 is norm-summable.

(41) Let X be a complex normed space and s1 be a sequence of X. Suppose
that

(i) for every natural number n holds s1(n) 6= 0X , and
(ii) there exists a natural number m such that for every natural number n

such that n  m holds ‖s1‖(n+1)
‖s1‖(n)  1.

Then s1 is not norm-summable.
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Let X be a complex Banach space. One can check that every sequence of X

which is norm-summable is also summable.

2. Basic Properties of Sequence of Banach Algebra

The scheme ExNCBCASeq deals with a non empty normed complex algebra
structure A and a unary functor F yielding a point of A, and states that:

There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)

for all values of the parameters.
We now state the proposition

(42) Let X be a complex Banach algebra, x, y, z be elements of X, and a, b

be complex numbers. Then x+y = y +x and (x+y)+z = x+(y +z) and
x + 0X = x and there exists an element t of X such that x + t = 0X and
(x · y) · z = x · (y · z) and 1C · x = x and 0C · x = 0X and a · 0X = 0X and
(−1C) · x = −x and x ·1X = x and 1X ·x = x and x · (y + z) = x · y + x · z
and (y + z) · x = y · x + z · x and a · (x · y) = (a · x) · y and a · (x + y) =
a · x + a · y and (a + b) · x = a · x + b · x and (a · b) · x = a · (b · x) and
(a · b) · (x · y) = a · x · (b · y) and a · (x · y) = x · (a · y) and 0X · x = 0X and
x · 0X = 0X and x · (y− z) = x · y− x · z and (y− z) · x = y · x− z · x and
(x+y)−z = x+(y−z) and (x−y)+z = x−(y−z) and x−y−z = x−(y+z)
and x+y = (x−z)+(z+y) and x−y = (x−z)+(z−y) and x = (x−y)+y

and x = y − (y − x) and ‖x‖ = 0 iff x = 0X and ‖a · x‖ = |a| · ‖x‖ and
‖x + y‖ ¬ ‖x‖ + ‖y‖ and ‖x · y‖ ¬ ‖x‖ · ‖y‖ and ‖1X‖ = 1 and X is
complete.

Let X be a non empty normed complex algebra structure, let S be a sequence
of X, and let a be an element of X. The functor a · S yields a sequence of X

and is defined by:

(Def. 8) For every natural number n holds (a · S)(n) = a · S(n).
Let X be a non empty normed complex algebra structure, let S be a sequence

of X, and let a be an element of X. The functor S · a yields a sequence of X

and is defined by:

(Def. 9) For every natural number n holds (S · a)(n) = S(n) · a.

Let X be a non empty normed complex algebra structure and let s2, s5 be
sequences of X. The functor s2 · s5 yielding a sequence of X is defined by:

(Def. 10) For every natural number n holds (s2 · s5)(n) = s2(n) · s5(n).
Let X be a complex Banach algebra and let x be an element of X. Let

us assume that x is invertible. The functor x−1 yields an element of X and is
defined as follows:

(Def. 11) x · x−1 = 1X and x−1 · x = 1X .
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Let X be a complex Banach algebra and let z be an element of X. The
functor (zκ)κ∈N yielding a sequence of X is defined as follows:

(Def. 12) (zκ)κ∈N(0) = 1X and for every natural number n holds (zκ)κ∈N(n+1) =
(zκ)κ∈N(n) · z.

Let X be a complex Banach algebra, let z be an element of X, and let n be
a natural number. The functor zn

N yielding an element of X is defined as follows:

(Def. 13) zn
N = (zκ)κ∈N(n).

The following propositions are true:

(43) For every complex Banach algebra X and for every element z of X holds
z0
N = 1X .

(44) For every complex Banach algebra X and for every element z of X such
that ‖z‖ < 1 holds (zκ)κ∈N is summable and norm-summable.

(45) Let X be a complex Banach algebra and x be a point of X. If ‖1X−x‖ <

1, then ((1X−x)κ)κ∈N is summable and ((1X−x)κ)κ∈N is norm-summable.

(46) For every complex Banach algebra X and for every point x of X such
that ‖1X − x‖ < 1 holds x is invertible and x−1 =

∑
(((1X − x)κ)κ∈N).
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Summary. This article is an extension of [18].

MML Identifier: CLOPBAN4.

The papers [23], [24], [4], [5], [2], [20], [21], [9], [1], [22], [13], [15], [16], [12], [10],
[11], [17], [14], [25], [3], [7], [6], [19], and [8] provide the notation and terminology
for this paper.

For simplicity, we adopt the following convention: X denotes a complex
Banach algebra, w, z, z1, z2 denote elements of X, k, l, m, n denote natural
numbers, s1, s2, s3, s, s′ denote sequences of X, and r1 denotes a sequence of
real numbers.

Let X be a non empty normed complex algebra structure and let x, y be
elements of X. We say that x, y are commutative if and only if:

(Def. 1) x · y = y · x.

Let us note that the predicate x, y are commutative is symmetric.
One can prove the following propositions:

(1) If s2 is convergent and s3 is convergent and lim(s2 − s3) = 0X , then
lim s2 = lim s3.

(2) For every z such that for every natural number n holds s(n) = z holds
lim s = z.

(3) If s is convergent and s′ is convergent, then s · s′ is convergent.

(4) If s is convergent, then z · s is convergent.

(5) If s is convergent, then s · z is convergent.

(6) If s is convergent, then lim(z · s) = z · lim s.

(7) If s is convergent, then lim(s · z) = lim s · z.
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(8) If s is convergent and s′ is convergent, then lim(s · s′) = lim s · lim s′.
(9) (

∑κ
α=0(z ·s1)(α))κ∈N = z ·(∑κ

α=0(s1)(α))κ∈N and (
∑κ

α=0(s1 ·z)(α))κ∈N =
(
∑κ

α=0(s1)(α))κ∈N · z.

(10) ‖(∑κ
α=0(s1)(α))κ∈N(k)‖ ¬ (

∑κ
α=0‖s1‖(α))κ∈N(k).

(11) If for every n such that n ¬ m holds s2(n) = s3(n), then
(
∑κ

α=0(s2)(α))κ∈N(m) = (
∑κ

α=0(s3)(α))κ∈N(m).
(12) If for every n holds ‖s1(n)‖ ¬ r1(n) and r1 is convergent and lim r1 = 0,

then s1 is convergent and lim s1 = 0X .

Let us consider X, z. The functor z ExpSeq yields a sequence of X and is
defined as follows:

(Def. 2) For every n holds z ExpSeq(n) = 1C
n!C
· zn
N.

The scheme ExNormSpace CASE deals with a non empty complex Banach
algebra A and a binary functor F yielding a point of A, and states that:

For every k there exists a sequence s1 of A such that for every n

holds if n ¬ k, then s1(n) = F(k, n) and if n > k, then s1(n) = 0A
for all values of the parameters.

Let us consider X, s1. The functor Shift s1 yielding a sequence of X is defined
by:

(Def. 3) (Shift s1)(0) = 0X and for every natural number k holds (Shift s1)(k +
1) = s1(k).

Let us consider n, X, z, w. The functor Expan(n, z, w) yielding a sequence
of X is defined by:

(Def. 4) For every natural number k holds if k ¬ n, then (Expan(n, z, w))(k) =
(Coef n)(k) · zk

N · wn−′k
N and if n < k, then (Expan(n, z, w))(k) = 0X .

Let us consider n, X, z, w. The functor Expan e(n, z, w) yields a sequence
of X and is defined as follows:

(Def. 5) For every natural number k holds if k ¬ n, then (Expan e(n, z, w))(k) =
(Coef e n)(k) · zk

N · wn−′k
N and if n < k, then (Expan e(n, z, w))(k) = 0X .

Let us consider n, X, z, w. The functor Alfa(n, z, w) yielding a sequence of
X is defined by:

(Def. 6) For every natural number k holds if k ¬ n, then (Alfa(n, z, w))(k) =
z ExpSeq(k) · (

∑κ
α=0 w ExpSeq(α))κ∈N(n −′ k) and if n < k, then

(Alfa(n, z, w))(k) = 0X .

Let us consider X, z, w, n. The functor Conj(n, z, w) yields a sequence of X

and is defined as follows:

(Def. 7) For every natural number k holds if k ¬ n, then (Conj(n, z, w))(k) =
z ExpSeq(k) ·((∑κ

α=0 w ExpSeq(α))κ∈N(n)−(
∑κ

α=0 w ExpSeq(α))κ∈N(n−′
k)) and if n < k, then (Conj(n, z, w))(k) = 0X .

Next we state several propositions:
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(13) z ExpSeq(n + 1) = 1C
(n+1)+0i · z · z ExpSeq(n) and z ExpSeq(0) = 1X and

‖z ExpSeq(n)‖ ¬ ‖z‖ExpSeq(n).
(14) If 0 < k, then (Shift s1)(k) = s1(k −′ 1).
(15) (

∑κ
α=0(s1)(α))κ∈N(k) = (

∑κ
α=0(Shift s1)(α))κ∈N(k) + s1(k).

(16) For all z, w such that z, w are commutative holds (z + w)n
N =

(
∑κ

α=0(Expan(n, z, w))(α))κ∈N(n).
(17) Expan e(n, z, w) = 1C

n!C
· Expan(n, z, w).

(18) For all z, w such that z, w are commutative holds 1C
n!C
· (z + w)n

N =
(
∑κ

α=0(Expan e(n, z, w))(α))κ∈N(n).
(19) 0X ExpSeq is norm-summable and

∑
(0X ExpSeq) = 1X .

Let us consider X and let z be an element of X. One can check that z ExpSeq
is norm-summable.

We now state a number of propositions:

(20) z ExpSeq(0) = 1X and (Expan(0, z, w))(0) = 1X .

(21) If l ¬ k, then (Alfa(k + 1, z, w))(l) = (Alfa(k, z, w))(l) + (Expan e(k +
1, z, w))(l).

(22) (
∑κ

α=0(Alfa(k +1, z, w))(α))κ∈N(k) = (
∑κ

α=0(Alfa(k, z, w))(α))κ∈N(k)+
(
∑κ

α=0(Expan e(k + 1, z, w))(α))κ∈N(k).
(23) z ExpSeq(k) = (Expan e(k, z, w))(k).
(24) For all z, w such that z, w are commutative holds (

∑κ
α=0 z +

w ExpSeq(α))κ∈N(n) = (
∑κ

α=0(Alfa(n, z, w))(α))κ∈N(n).
(25) For all z, w such that z, w are commutative holds

(
∑κ

α=0 z ExpSeq(α))κ∈N(k) · (∑κ
α=0 w ExpSeq(α))κ∈N(k)− (

∑κ
α=0 z+

w ExpSeq(α))κ∈N(k) = (
∑κ

α=0(Conj(k, z, w))(α))κ∈N(k).
(26) 0 ¬ ‖z‖ExpSeq(n).
(27) ‖(∑κ

α=0 z ExpSeq(α))κ∈N(k)‖ ¬ (
∑κ

α=0‖z‖ExpSeq(α))κ∈N(k) and
(
∑κ

α=0‖z‖ExpSeq(α))κ∈N(k) ¬∑
(‖z‖ExpSeq) and

‖(∑κ
α=0 z ExpSeq(α))κ∈N(k)‖ ¬∑

(‖z‖ExpSeq).
(28) 1 ¬∑

(‖z‖ExpSeq).
(29) |(∑κ

α=0‖z‖ExpSeq(α))κ∈N(n)| = (
∑κ

α=0‖z‖ExpSeq(α))κ∈N(n) and if
n ¬ m, then |(∑κ

α=0‖z‖ExpSeq(α))κ∈N(m)−(
∑κ

α=0‖z‖ExpSeq(α))κ∈N(n)|
= (

∑κ
α=0‖z‖ExpSeq(α))κ∈N(m)− (

∑κ
α=0‖z‖ExpSeq(α))κ∈N(n).

(30) |(∑κ
α=0‖Conj(k, z, w)‖(α))κ∈N(n)| = (

∑κ
α=0‖Conj(k, z, w)‖(α))κ∈N(n).

(31) For every real number p such that p > 0 there exists n such that for
every k such that n ¬ k holds |(∑κ

α=0‖Conj(k, z, w)‖(α))κ∈N(k)| < p.

(32) For every s1 such that for every k holds s1(k) =
(
∑κ

α=0(Conj(k, z, w))(α))κ∈N(k) holds s1 is convergent and lim s1 = 0X .

Let us consider X. The functor exp X yields a function from the carrier of
X into the carrier of X and is defined by:
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(Def. 8) For every element z of the carrier of X holds (exp X)(z) =
∑

(z ExpSeq).
Let us consider X, z. The functor exp z yielding an element of X is defined

as follows:

(Def. 9) exp z = (exp X)(z).
The following propositions are true:

(33) For every z holds exp z =
∑

(z ExpSeq).
(34) Let given z1, z2. Suppose z1, z2 are commutative. Then exp(z1 + z2) =

exp z1 ·exp z2 and exp(z2+z1) = exp z2 ·exp z1 and exp(z1+z2) = exp(z2+
z1) and exp z1, exp z2 are commutative.

(35) For all z1, z2 such that z1, z2 are commutative holds z1·exp z2 = exp z2·z1.

(36) exp(0X) = 1X .

(37) exp z · exp(−z) = 1X and exp(−z) · exp z = 1X .

(38) exp z is invertible and (exp z)−1 = exp(−z) and exp(−z) is invertible
and (exp(−z))−1 = exp z.

(39) For every z and for all complex numbers s, t holds s · z, t · z are commu-
tative.

(40) Let given z and s, t be complex numbers. Then exp(s · z) · exp(t · z) =
exp((s+t) ·z) and exp(t ·z) ·exp(s ·z) = exp((t+s) ·z) and exp((s+t) ·z) =
exp((t + s) · z) and exp(s · z), exp(t · z) are commutative.
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Summary. The triviality of the fundamental group of subspaces of En
T and

R1 have been shown.

MML Identifier: TOPALG 2.

The notation and terminology used in this paper have been introduced in the
following articles: [20], [6], [23], [1], [17], [24], [4], [5], [3], [2], [19], [11], [16], [22],
[21], [18], [14], [8], [7], [15], [13], [9], [10], and [12].

1. Convex subspaces of En
T

In this paper n denotes a natural number and a, b denote real numbers.
Let us consider n. One can verify that there exists a subset of En

T which is
non empty and convex.

Let n be a natural number and let T be a subspace of En
T. We say that T is

convex if and only if:

(Def. 1) ΩT is a convex subset of En
T.

Let n be a natural number. Note that every non empty subspace of En
T which

is convex is also arcwise connected.
Let n be a natural number. One can verify that there exists a subspace of

En
T which is strict, non empty, and convex.

The following proposition is true

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.
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(1) Let X be a non empty topological space, Y be a non empty subspace of
X, x1, x2 be points of X, y1, y2 be points of Y , and f be a path from y1

to y2. Suppose x1 = y1 and x2 = y2 and y1, y2 are connected. Then f is a
path from x1 to x2.

Let n be a natural number, let T be a non empty convex subspace of
En

T, let a, b be points of T , and let P , Q be paths from a to b. The functor
ConvexHomotopy(P, Q) yielding a map from [: I, I :] into T is defined as follows:

(Def. 2) For all elements s, t of I and for all points a1, b1 of En
T such that a1 = P (s)

and b1 = Q(s) holds (ConvexHomotopy(P,Q))(s, t) = (1− t) · a1 + t · b1.

Next we state the proposition

(2) Let T be a non empty convex subspace of En
T, a, b be points of T , and

P , Q be paths from a to b. Then P , Q are homotopic.

Let n be a natural number, let T be a non empty convex subspace of En
T, let a,

b be points of T , and let P , Q be paths from a to b. Then ConvexHomotopy(P, Q)
is a homotopy between P and Q.

Let n be a natural number, let T be a non empty convex subspace of En
T, let

a, b be points of T , and let P , Q be paths from a to b. Note that every homotopy
between P and Q is continuous.

We now state the proposition

(3) Let T be a non empty convex subspace of En
T, a be a point of T , and C

be a loop of a. Then the carrier of π1(T, a) = {[C]EqRel(T,a)}.
Let n be a natural number, let T be a non empty convex subspace of En

T,
and let a be a point of T . Observe that π1(T, a) is trivial.

2. Convex subspaces of R1

We now state the proposition

(4) Proj(|[a]|, 1) = a.

One can verify that every subspace of R1 is real-membered.
Next we state three propositions:

(5) If a ¬ b, then [a, b] = {(1 − l) · a + l · b; l ranges over real numbers:
0 ¬ l ∧ l ¬ 1}.

(6) Let F be a map from [:R1, I :] into R1. Suppose that for every point x

of R1 and for every point i of I holds F (x, i) = (1 − i) · x. Then F is
continuous.

(7) Let F be a map from [:R1, I :] into R1. Suppose that for every point x of
R1 and for every point i of I holds F (x, i) = i · x. Then F is continuous.

Let P be a subset of R1. We say that P is convex if and only if:

(Def. 3) For all points a, b of R1 such that a ∈ P and b ∈ P holds [a, b] ⊆ P.
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One can check that there exists a subset of R1 which is non empty and
convex and every subset of R1 which is empty is also convex.

We now state four propositions:

(8) [a, b] is a convex subset of R1.

(9) ]a, b[ is a convex subset of R1.

(10) [a, b[ is a convex subset of R1.

(11) ]a, b] is a convex subset of R1.

Let T be a subspace of R1. We say that T is convex if and only if:

(Def. 4) ΩT is a convex subset of R1.

Let us note that there exists a subspace of R1 which is strict, non empty,
and convex.
R1 is a strict convex subspace of R1.
The following proposition is true

(12) For every non empty convex subspace T of R1 and for all points a, b of
T holds [a, b] ⊆ the carrier of T .

Let us note that every non empty subspace of R1 which is convex is also
arcwise connected.

One can prove the following propositions:

(13) If a ¬ b, then [a, b]T is convex.

(14) I is convex.

(15) If a ¬ b, then [a, b]T is arcwise connected.

Let T be a non empty convex subspace of R1, let a, b be points of T , and let
P , Q be paths from a to b. The functor R1Homotopy(P, Q) yields a map from
[: I, I :] into T and is defined by:

(Def. 5) For all elements s, t of I holds (R1Homotopy(P, Q))(s, t) = (1 − t) ·
P (s) + t ·Q(s).

Next we state the proposition

(16) Let T be a non empty convex subspace of R1, a, b be points of T , and
P , Q be paths from a to b. Then P , Q are homotopic.

Let T be a non empty convex subspace of R1, let a, b be points of T , and
let P , Q be paths from a to b. Then R1Homotopy(P, Q) is a homotopy between
P and Q.

Let T be a non empty convex subspace of R1, let a, b be points of T , and
let P , Q be paths from a to b. Note that every homotopy between P and Q is
continuous.

The following proposition is true

(17) Let T be a non empty convex subspace of R1, a be a point of T , and C

be a loop of a. Then the carrier of π1(T, a) = {[C]EqRel(T,a)}.
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Let T be a non empty convex subspace of R1 and let a be a point of T .
Observe that π1(T, a) is trivial.

One can prove the following four propositions:

(18) If a ¬ b, then for all points x, y of [a, b]T and for all paths P , Q from x

to y holds P , Q are homotopic.

(19) If a ¬ b, then for every point x of [a, b]T and for every loop C of x holds
the carrier of π1([a, b]T, x) = {[C]EqRel([a, b]T,x)}.

(20) For all points x, y of I and for all paths P , Q from x to y holds P , Q

are homotopic.

(21) For every point x of I and for every loop C of x holds the carrier of
π1(I, x) = {[C]EqRel(I,x)}.

Let x be a point of I. Observe that π1(I, x) is trivial.
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The terminology and notation used in this paper are introduced in the following
papers: [17], [19], [1], [4], [16], [8], [14], [2], [3], [5], [18], [13], [7], [9], [6], [15],
[11], [12], and [10].

1. Preliminaries

For simplicity, we follow the rules: n denotes a natural number, a, b, r denote
real numbers, x, y, z denote points of En

T, and e denotes a point of En.
The following propositions are true:

(1) x− y − z = x− z − y.

(2) If x + y = x + z, then y = z.

(3) If n is non empty, then x 6= x + 1.REAL n.

(4) For every set x such that x = (1 − r) · y + r · z holds x = y iff r = 0 or
y = z and x = z iff r = 1 or y = z.

(5) For every finite sequence f of elements of R holds |f |2 =
∑

2f.

(6) For every non empty metric space M and for all points z1, z2, z3 of M

such that z1 6= z2 and z1 ∈ Ball(z3, r) and z2 ∈ Ball(z3, r) holds r > 0.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.
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2. Subsets of En
T

Let n be a natural number, let x be a point of En
T, and let r be a real number.

The functor Ball(x, r) yields a subset of En
T and is defined by:

(Def. 1) Ball(x, r) = {p; p ranges over points of En
T: |p− x| < r}.

The functor Ball(x, r) yielding a subset of En
T is defined by:

(Def. 2) Ball(x, r) = {p; p ranges over points of En
T: |p− x| ¬ r}.

The functor Sphere(x, r) yielding a subset of En
T is defined as follows:

(Def. 3) Sphere(x, r) = {p; p ranges over points of En
T: |p− x| = r}.

We now state a number of propositions:

(7) y ∈ Ball(x, r) iff |y − x| < r.

(8) y ∈ Ball(x, r) iff |y − x| ¬ r.

(9) y ∈ Sphere(x, r) iff |y − x| = r.

(10) If y ∈ Ball(0En
T
, r), then |y| < r.

(11) If y ∈ Ball(0En
T
, r), then |y| ¬ r.

(12) If y ∈ Sphere((0En
T
), r), then |y| = r.

(13) If x = e, then Ball(e, r) = Ball(x, r).
(14) If x = e, then Ball(e, r) = Ball(x, r).
(15) If x = e, then Sphere(e, r) = Sphere(x, r).
(16) Ball(x, r) ⊆ Ball(x, r).
(17) Sphere(x, r) ⊆ Ball(x, r).
(18) Ball(x, r) ∪ Sphere(x, r) = Ball(x, r).
(19) Ball(x, r) misses Sphere(x, r).

Let us consider n, x and let r be a non positive real number. One can check
that Ball(x, r) is empty.

Let us consider n, x and let r be a positive real number. Note that Ball(x, r)
is non empty.

One can prove the following propositions:

(20) If Ball(x, r) is non empty, then r > 0.

(21) If Ball(x, r) is empty, then r ¬ 0.

Let us consider n, x and let r be a negative real number. Observe that
Ball(x, r) is empty.

Let us consider n, x and let r be a non negative real number. Observe that
Ball(x, r) is non empty.

The following three propositions are true:

(22) If Ball(x, r) is non empty, then r  0.

(23) If Ball(x, r) is empty, then r < 0.
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(24) If a + b = 1 and |a| + |b| = 1 and b 6= 0 and x ∈ Ball(z, r) and y ∈
Ball(z, r), then a · x + b · y ∈ Ball(z, r).

Let us consider n, x, r. One can check the following observations:

∗ Ball(x, r) is open and Bounded,

∗ Ball(x, r) is closed and Bounded, and

∗ Sphere(x, r) is closed and Bounded.

Let us consider n, x, r. Observe that Ball(x, r) is convex and Ball(x, r) is
convex.

Let n be a natural number and let f be a map from En
T into En

T. We say that
f is homogeneous if and only if:

(Def. 4) For every real number r and for every point x of En
T holds f(r·x) = r·f(x).

We say that f is additive if and only if:

(Def. 5) For all points x, y of En
T holds f(x + y) = f(x) + f(y).

Let us consider n. One can verify that (En
T) 7−→ 0En

T
is homogeneous and

additive.
Let us consider n. Observe that there exists a map from En

T into En
T which

is homogeneous, additive, and continuous.
Let a, c be real numbers. One can check that AffineMap(a, 0, c, 0) is homo-

geneous and additive.
One can prove the following proposition

(25) For every homogeneous additive map f from En
T into En

T and for every
convex subset X of En

T holds f◦X is convex.

In the sequel p, q are points of En
T.

Let n be a natural number and let p, q be points of En
T. The functor HL(p, q)

yields a subset of En
T and is defined by:

(Def. 6) HL(p, q) = {(1− l) · p + l · q; l ranges over real numbers: 0 ¬ l}.
One can prove the following proposition

(26) For every set x holds x ∈ HL(p, q) iff there exists a real number l such
that x = (1− l) · p + l · q and 0 ¬ l.

Let us consider n, p, q. One can verify that HL(p, q) is non empty.
The following propositions are true:

(27) p ∈ HL(p, q).
(28) q ∈ HL(p, q).
(29) HL(p, p) = {p}.
(30) If x ∈ HL(p, q), then HL(p, x) ⊆ HL(p, q).
(31) If x ∈ HL(p, q) and x 6= p, then HL(p, q) = HL(p, x).
(32) L(p, q) ⊆ HL(p, q).

Let us consider n, p, q. Note that HL(p, q) is convex.
One can prove the following propositions:
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(33) If y ∈ Sphere(x, r) and z ∈ Ball(x, r), then L(y, z) ∩ Sphere(x, r) = {y}.
(34) If y ∈ Sphere(x, r) and z ∈ Sphere(x, r), then L(y, z)\{y, z} ⊆ Ball(x, r).
(35) If y ∈ Sphere(x, r) and z ∈ Sphere(x, r), then L(y, z) ∩ Sphere(x, r) =
{y, z}.

(36) If y ∈ Sphere(x, r) and z ∈ Sphere(x, r), then HL(y, z) ∩ Sphere(x, r) =
{y, z}.

(37) If y 6= z and y ∈ Ball(x, r), then there exists a point e of En
T such that

{e} = HL(y, z) ∩ Sphere(x, r).
(38) If y 6= z and y ∈ Sphere(x, r) and z ∈ Ball(x, r), then there exists a

point e of En
T such that e 6= y and {y, e} = HL(y, z) ∩ Sphere(x, r).

Let us consider n, x and let r be a negative real number. Observe that
Sphere(x, r) is empty.

Let n be a non empty natural number, let x be a point of En
T, and let r be

a non negative real number. Observe that Sphere(x, r) is non empty.
Next we state two propositions:

(39) If Sphere(x, r) is non empty, then r  0.

(40) If n is non empty and Sphere(x, r) is empty, then r < 0.

3. Subsets of E2
T

In the sequel s, t are points of E2
T.

The following propositions are true:

(41) (a · s + b · t)1 = a · s1 + b · t1.

(42) (a · s + b · t)2 = a · s2 + b · t2.

(43) t ∈ Circle(a, b, r) iff |t− [a, b]| = r.

(44) t ∈ ClosedInsideOfCircle(a, b, r) iff |t− [a, b]| ¬ r.

(45) t ∈ InsideOfCircle(a, b, r) iff |t− [a, b]| < r.

Let a, b be real numbers and let r be a positive real number. Observe that
InsideOfCircle(a, b, r) is non empty.

Let a, b be real numbers and let r be a non negative real number. Observe
that ClosedInsideOfCircle(a, b, r) is non empty.

We now state a number of propositions:

(46) Circle(a, b, r) ⊆ ClosedInsideOfCircle(a, b, r).
(47) For every point x of E2 such that x = [a, b] holds Ball(x, r) =

ClosedInsideOfCircle(a, b, r).
(48) For every point x of E2 such that x = [a, b] holds Ball(x, r) =

InsideOfCircle(a, b, r).
(49) For every point x of E2 such that x = [a, b] holds Sphere(x, r) =

Circle(a, b, r).
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(50) Ball([a, b], r) = InsideOfCircle(a, b, r).
(51) Ball([a, b], r) = ClosedInsideOfCircle(a, b, r).
(52) Sphere([a, b], r) = Circle(a, b, r).
(53) InsideOfCircle(a, b, r) ⊆ ClosedInsideOfCircle(a, b, r).
(54) InsideOfCircle(a, b, r) misses Circle(a, b, r).
(55) InsideOfCircle(a, b, r) ∪ Circle(a, b, r) = ClosedInsideOfCircle(a, b, r).
(56) If s ∈ Sphere((0E2T), r), then (s1)2 + (s2)2 = r2.

(57) If s 6= t and s ∈ ClosedInsideOfCircle(a, b, r) and t ∈
ClosedInsideOfCircle(a, b, r), then r > 0.

(58) If s 6= t and s ∈ InsideOfCircle(a, b, r), then there exists a point e of E2
T

such that {e} = HL(s, t) ∩ Circle(a, b, r).
(59) If s ∈ Circle(a, b, r) and t ∈ InsideOfCircle(a, b, r), then L(s, t) ∩

Circle(a, b, r) = {s}.
(60) If s ∈ Circle(a, b, r) and t ∈ Circle(a, b, r), then L(s, t) \ {s, t} ⊆

InsideOfCircle(a, b, r).
(61) If s ∈ Circle(a, b, r) and t ∈ Circle(a, b, r), then L(s, t) ∩Circle(a, b, r) =
{s, t}.

(62) If s ∈ Circle(a, b, r) and t ∈ Circle(a, b, r), then HL(s, t)∩Circle(a, b, r) =
{s, t}.

(63) If s 6= t and s ∈ Circle(a, b, r) and t ∈ ClosedInsideOfCircle(a, b, r),
then there exists a point e of E2

T such that e 6= s and {s, e} = HL(s, t) ∩
Circle(a, b, r).

Let a, b, r be real numbers. Observe that InsideOfCircle(a, b, r) is convex
and ClosedInsideOfCircle(a, b, r) is convex.
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University of Białystok

Adam Grabowski1

University of Białystok

Summary. We formalized some basic properties of the Fibonacci num-
bers using definitions and lemmas from [7] and [23], e.g. Cassini’s and Catalan’s
identities. We also showed the connections between Fibonacci numbers and Py-
thagorean triples as defined in [31]. The main result of this article is a proof of
Carmichael’s Theorem on prime divisors of prime-generated Fibonacci numbers.
According to it, if we look at the prime factors of a Fibonacci number generated
by a prime number, none of them have appeared as a factor in any earlier Fi-
bonacci number. We plan to develop the full proof of the Carmichael Theorem
following [33].

MML Identifier: FIB NUM2.

The papers [26], [3], [4], [30], [24], [1], [28], [29], [2], [18], [13], [27], [32], [9], [10],
[7], [12], [8], [17], [21], [19], [22], [25], [6], [20], [11], [23], [15], [31], [14], [16], and
[5] provide the terminology and notation for this paper.

1. Preliminaries

In this paper n, k, r, m, i, j denote natural numbers.
We now state a number of propositions:

(1) For every non empty natural number n holds (n−′ 1) + 2 = n + 1.

(2) For every odd integer n and for every non empty real number m holds
(−m)n = −mn.

(3) For every odd integer n holds (−1)n = −1.

(4) For every even integer n and for every non empty real number m holds
(−m)n = mn.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(5) For every even integer n holds (−1)n = 1.

(6) For every non empty real number m and for every integer n holds ((−1) ·
m)n = (−1)n ·mn.

(7) For every non empty real number a holds ak+m = ak · am.

(8) For every non empty real number k and for every odd integer m holds
(km)n = km·n.

(9) ((−1)−n)2 = 1.

(10) For every non empty real number a holds a−k · a−m = a−k−m.

(11) (−1)−2·n = 1.

(12) For every non empty real number a holds ak · a−k = 1.

Let n be an odd integer. One can verify that −n is odd.
Let n be an even integer. Note that −n is even.
One can prove the following two propositions:

(13) (−1)−n = (−1)n.

(14) For all natural numbers k, m, m1, n1 such that k | m and k | n holds
k | m ·m1 + n · n1.

One can check that there exists a set which is finite, non empty, and natural-
membered and has non empty elements.

Let f be a function from N into N and let A be a finite natural-membered
set with non empty elements. Note that f¹A is finite subsequence-like.

One can prove the following proposition

(15) For every finite subsequence p holds rng Seq p ⊆ rng p.

Let f be a function from N into N and let A be a finite natural-membered
set with non empty elements. The functor Prefix(f,A) yields a finite sequence
of elements of N and is defined as follows:

(Def. 1) Prefix(f, A) = Seq(f¹A).
The following proposition is true

(16) For every natural number k such that k 6= 0 holds if k + m ¬ n, then
m < n.

Let us mention that N is lower bounded.
Let us mention that {1, 2, 3} is natural-membered and has non empty ele-

ments.
Let us note that {1, 2, 3, 4} is natural-membered and has non empty ele-

ments.
The following propositions are true:

(17) For all sets x, y such that 0 < i and i < j holds {〈〈i, x〉〉, 〈〈j, y〉〉} is a finite
subsequence.

(18) For all sets x, y and for every finite subsequence q such that i < j and
q = {〈〈i, x〉〉, 〈〈j, y〉〉} holds Seq q = 〈x, y〉.
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Let n be a natural number. Observe that Seg n has non empty elements.
Let A be a set with non empty elements. Note that every subset of A has

non empty elements.
Let A be a set with non empty elements and let B be a set. Observe that

A ∩B has non empty elements and B ∩A has non empty elements.
We now state four propositions:

(19) For every natural number k and for every set a such that k  1 holds
{〈〈k, a〉〉} is a finite subsequence.

(20) Let i, k be natural numbers, y be a set, and f be a finite subsequence.
If f = {〈〈1, y〉〉}, then Shifti f = {〈〈1 + i, y〉〉}.

(21) Let q be a finite subsequence and k, n be natural numbers. Suppose
dom q ⊆ Seg k and n > k. Then there exists a finite sequence p such that
q ⊆ p and dom p = Seg n.

(22) For every finite subsequence q there exists a finite sequence p such that
q ⊆ p.

2. Fibonacci Numbers

In this article we present several logical schemes. The scheme Fib Ind 1
concerns a unary predicate P, and states that:

For every non empty natural number k holds P[k]
provided the parameters have the following properties:
• P[1],
• P[2], and
• For every non empty natural number k such that P[k] and P[k+1]

holds P[k + 2].
The scheme Fib Ind 2 concerns a unary predicate P, and states that:

For every non trivial natural number k holds P[k]
provided the parameters meet the following conditions:
• P[2],
• P[3], and
• For every non trivial natural number k such that P[k] and P[k+1]

holds P[k + 2].
Next we state a number of propositions:

(23) Fib(2) = 1.
(24) Fib(3) = 2.
(25) Fib(4) = 3.
(26) Fib(n + 2) = Fib(n) + Fib(n + 1).
(27) Fib(n + 3) = Fib(n + 2) + Fib(n + 1).
(28) Fib(n + 4) = Fib(n + 2) + Fib(n + 3).
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(29) Fib(n + 5) = Fib(n + 3) + Fib(n + 4).
(30) Fib(n + 2) = Fib(n + 3)− Fib(n + 1).
(31) Fib(n + 1) = Fib(n + 2)− Fib(n).
(32) Fib(n) = Fib(n + 2)− Fib(n + 1).

3. Cassini’s and Catalan’s Identities

The following propositions are true:

(33) Fib(n) · Fib(n + 2)− Fib(n + 1)2 = (−1)n+1.

(34) For every non empty natural number n holds Fib(n−′ 1) · Fib(n + 1)−
Fib(n)2 = (−1)n.

(35) τ > 0.

(36) τ = (−τ)−1.

(37) (−τ)(−1)·n = ((−τ)−1)n.

(38) − 1
τ = τ .

(39) ((τ r)2 − 2 · (−1)r) + (τ−r)2 = (τ r − τ r)2.

(40) For all non empty natural numbers n, r such that r ¬ n holds Fib(n)2−
Fib(n + r) · Fib(n−′ r) = (−1)n−′r · Fib(r)2.

(41) Fib(n)2 + Fib(n + 1)2 = Fib(2 · n + 1).
(42) For every non empty natural number k holds Fib(n + k) = Fib(k) ·

Fib(n + 1) + Fib(k −′ 1) · Fib(n).
(43) For every non empty natural number n holds Fib(n) | Fib(n · k).
(44) For every non empty natural number k such that k | n holds Fib(k) |

Fib(n).
(45) Fib(n) ¬ Fib(n + 1).
(46) For every natural number n such that n > 1 holds Fib(n) < Fib(n + 1).
(47) For all natural numbers m, n such that m  n holds Fib(m)  Fib(n).
(48) For every natural number k such that k > 1 holds if k < n, then Fib(k) <

Fib(n).
(49) Fib(k) = 1 iff k = 1 or k = 2.

(50) Let k, n be natural numbers. Suppose n > 1 and k 6= 0 and k 6= 1 and
k 6= 1 and n 6= 2 or k 6= 2 and n 6= 1. Then Fib(k) = Fib(n) if and only if
k = n.

(51) Let n be a natural number. Suppose n > 1 and n 6= 4. Suppose n is non
prime. Then there exists a non empty natural number k such that k 6= 1
and k 6= 2 and k 6= n and k | n.

(52) For every natural number n such that n > 1 and n 6= 4 holds if Fib(n)
is prime, then n is prime.
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4. Sequence of Fibonacci Numbers

The function FIB from N into N is defined as follows:

(Def. 2) For every natural number k holds FIB(k) = Fib(k).
The subset Neven of N is defined by:

(Def. 3) Neven = {2 · k : k ranges over natural numbers}.
The subset Nodd of N is defined as follows:

(Def. 4) Nodd = {2 · k + 1 : k ranges over natural numbers}.
One can prove the following two propositions:

(53) For every natural number k holds 2 · k ∈ Neven and 2 · k + 1 /∈ Neven.

(54) For every natural number k holds 2 · k + 1 ∈ Nodd and 2 · k /∈ Nodd.

Let n be a natural number. The functor EvenFibs(n) yielding a finite sequ-
ence of elements of N is defined by:

(Def. 5) EvenFibs(n) = Prefix(FIB,Neven ∩ Seg n).
The functor OddFibs(n) yields a finite sequence of elements of N and is defined
by:

(Def. 6) OddFibs(n) = Prefix(FIB,Nodd ∩ Seg n).
We now state a number of propositions:

(55) EvenFibs(0) = ∅.
(56) Seq(FIB ¹{2}) = 〈1〉.
(57) EvenFibs(2) = 〈1〉.
(58) EvenFibs(4) = 〈1, 3〉.
(59) For every natural number k holds Neven ∩ Seg(2 · k + 2) ∪ {2 · k + 4} =

Neven ∩ Seg(2 · k + 4).
(60) For every natural number k holds FIB ¹(Neven∩Seg(2 ·k+2))∪{〈〈2 ·k+4,

FIB(2 · k + 4)〉〉} = FIB ¹(Neven ∩ Seg(2 · k + 4)).
(61) For every natural number n holds EvenFibs(2 · n + 2) = EvenFibs(2 ·

n) a 〈Fib(2 · n + 2)〉.
(62) OddFibs(1) = 〈1〉.
(63) OddFibs(3) = 〈1, 2〉.
(64) For every natural number k holds Nodd ∩ Seg(2 · k + 3) ∪ {2 · k + 5} =

Nodd ∩ Seg(2 · k + 5).
(65) For every natural number k holds FIB ¹(Nodd∩Seg(2 ·k+3))∪{〈〈2 ·k+5,

FIB(2 · k + 5)〉〉} = FIB ¹(Nodd ∩ Seg(2 · k + 5)).
(66) For every natural number n holds OddFibs(2 · n + 3) = OddFibs(2 · n +

1) a 〈Fib(2 · n + 3)〉.
(67) For every natural number n holds

∑
EvenFibs(2·n+2) = Fib(2·n+3)−1.

(68) For every natural number n holds
∑

OddFibs(2 ·n + 1) = Fib(2 ·n + 2).
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5. Carmichael’s Theorem on Prime Divisors

One can prove the following three propositions:

(69) For every natural number n holds Fib(n) and Fib(n + 1) are relative
prime.

(70) For every non empty natural number n and for every natural number m

such that m 6= 1 holds if m | Fib(n), then m - Fib(n−′ 1).
(71) Let n be a non empty natural number. Suppose m is prime and n is

prime and m | Fib(n). Let r be a natural number. If r < n and r 6= 0,

then m - Fib(r).

6. Fibonacci Numbers and Pythagorean Triples

We now state the proposition

(72) For every non empty natural number n holds {Fib(n) · Fib(n + 3), 2 ·
Fib(n+1) ·Fib(n+2), Fib(n+1)2 + Fib(n+2)2} is a Pythagorean triple.
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Summary. The Marriage Theorem, as credited to Philip Hall [7], gives the
necessary and sufficient condition allowing us to select a distinct element from
each of a finite collection {Ai} of n finite subsets. This selection, called a set of
different representatives (SDR), exists if and only if the marriage condition (or
Hall condition) is satisfied:

∀J⊆{1,...,n}|
[
i∈J

Ai|  |J |.

The proof which is given in this article (according to Richard Rado, 1967) is
based on the lemma that for finite sequences with non-trivial elements which
satisfy Hall property there exists a reduction (see Def. 5) such that Hall property
again holds (see Th. 29 for details).

MML Identifier: HALLMAR1.

The notation and terminology used here are introduced in the following papers:
[9], [5], [10], [11], [4], [8], [2], [6], [1], and [3].

1. Preliminaries

One can prove the following proposition

(1) For all finite sets X, Y holds card(X∪Y )+card(X∩Y ) = card X+card Y.

In this article we present several logical schemes. The scheme Regr11 deals
with a natural number A and a unary predicate P, and states that:

For every natural number k such that 1 ¬ k and k ¬ A holds
P[k]

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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provided the parameters meet the following conditions:
• P[A] and A  2, and
• For every natural number k such that 1 ¬ k and k < A and
P[k + 1] holds P[k].

The scheme Regr2 concerns a unary predicate P, and states that:
P[1]

provided the parameters meet the following requirements:
• There exists a natural number n such that n > 1 and P[n], and
• For every natural number k such that k  1 and P[k + 1] holds
P[k].

Let F be a non empty set. One can check that there exists a finite sequence
of elements of 2F which is non empty and non-empty.

We now state the proposition

(2) Let F be a non empty set, f be a non-empty finite sequence of elements
of 2F , and i be a natural number. If i ∈ dom f, then f(i) 6= ∅.

Let F be a finite set, let A be a finite sequence of elements of 2F , and let i

be a natural number. Note that A(i) is finite.

2. Union of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2F , and let J be a
set. The functor

⋃
J A yields a set and is defined as follows:

(Def. 1) For every set x holds x ∈ ⋃
J A iff there exists a set j such that j ∈ J

and j ∈ dom A and x ∈ A(j).

Next we state two propositions:

(3) For every set F and for every finite sequence A of elements of 2F and
for every set J holds

⋃
J A ⊆ F.

(4) Let F be a finite set, A be a finite sequence of elements of 2F , and J , K

be sets. If J ⊆ K, then
⋃

J A ⊆ ⋃
K A.

Let F be a finite set, let A be a finite sequence of elements of 2F , and let J

be a set. One can verify that
⋃

J A is finite.
The following propositions are true:

(5) Let F be a finite set, A be a finite sequence of elements of 2F , and i be
a natural number. If i ∈ dom A, then

⋃
{i}A = A(i).

(6) Let F be a finite set, A be a finite sequence of elements of 2F , and i, j be
natural numbers. If i ∈ dom A and j ∈ dom A, then

⋃
{i,j}A = A(i)∪A(j).

(7) Let J be a set, F be a finite set, A be a finite sequence of elements of
2F , and i be a natural number. If i ∈ J and i ∈ dom A, then A(i) ⊆ ⋃

J A.
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(8) Let J be a set, F be a finite set, i be a natural number, and A be a
finite sequence of elements of 2F . If i ∈ J and i ∈ dom A, then

⋃
J A =⋃

J\{i}A ∪A(i).
(9) Let J1, J2 be sets, F be a finite set, i be a natural number, and A be

a finite sequence of elements of 2F . If i ∈ dom A, then
⋃
{i}∪J1∪J2

A =
A(i) ∪⋃

J1∪J2
A.

(10) Let F be a finite set, A be a finite sequence of elements of 2F , i be a
natural number, and x, y be sets. If x 6= y and x ∈ A(i) and y ∈ A(i),
then (A(i) \ {x}) ∪ (A(i) \ {y}) = A(i).

3. Cut Operation for Finite Sequences

Let F be a finite set, let A be a finite sequence of elements of 2F , let i be
a natural number, and let x be a set. The functor Cut(A, i, x) yielding a finite
sequence of elements of 2F is defined by the conditions (Def. 2).

(Def. 2)(i) dom Cut(A, i, x) = dom A, and
(ii) for every natural number k such that k ∈ dom Cut(A, i, x) holds if i = k,

then (Cut(A, i, x))(k) = A(k) \ {x} and if i 6= k, then (Cut(A, i, x))(k) =
A(k).

The following propositions are true:

(11) Let F be a finite set, A be a finite sequence of elements of 2F , i be
a natural number, and x be a set. If i ∈ dom A and x ∈ A(i), then
card(Cut(A, i, x))(i) = card A(i)− 1.

(12) Let F be a finite set, A be a finite sequence of elements of 2F , i be a
natural number, and x, J be sets. Then

⋃
J\{i}Cut(A, i, x) =

⋃
J\{i}A.

(13) Let F be a finite set, A be a finite sequence of elements of 2F , i be a
natural number, and x, J be sets. If i /∈ J, then

⋃
J A =

⋃
J Cut(A, i, x).

(14) Let F be a finite set, A be a finite sequence of elements of 2F , i be
a natural number, and x, J be sets. If i ∈ dom Cut(A, i, x) and J ⊆
dom Cut(A, i, x) and i ∈ J, then

⋃
J Cut(A, i, x) =

⋃
J\{i}A∪ (A(i)\{x}).

4. System of Different Representatives and Hall Property

Let F be a finite set, let X be a finite sequence of elements of 2F , and let A

be a set. We say that A is a system of different representatives of X if and only
if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequence f of elements of F such that f = A and
dom X = dom f and for every natural number i such that i ∈ dom f holds
f(i) ∈ X(i) and f is one-to-one.
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Let F be a finite set and let A be a finite sequence of elements of 2F . We
say that A satisfies Hall condition if and only if:

(Def. 4) For every finite set J such that J ⊆ dom A holds card J ¬ card
⋃

J A.

Next we state four propositions:

(15) Let F be a finite set and A be a non empty finite sequence of elements
of 2F . If A satisfies Hall condition, then A is non-empty.

(16) Let F be a finite set, A be a finite sequence of elements of 2F , and i

be a natural number. If i ∈ dom A and A satisfies Hall condition, then
card A(i)  1.

(17) Let F be a non empty finite set and A be a non empty finite sequence of
elements of 2F . Suppose for every natural number i such that i ∈ dom A

holds card A(i) = 1 and A satisfies Hall condition. Then there exists a set
which is a system of different representatives of A.

(18) Let F be a finite set and A be a finite sequence of elements of 2F such
that there exists a set which is a system of different representatives of A.
Then A satisfies Hall condition.

5. Reductions and Singlifications of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2F , and let i be a
natural number. A finite sequence of elements of 2F is said to be a reduction of
A at i-th position if:

(Def. 5) dom it = dom A and for every natural number j such that j ∈ dom A

and j 6= i holds A(j) = it(j) and it(i) ⊆ A(i).
Let F be a set and let A be a finite sequence of elements of 2F . A finite

sequence of elements of 2F is said to be a reduction of A if:

(Def. 6) dom it = dom A and for every natural number i such that i ∈ dom A

holds it(i) ⊆ A(i).
Let F be a set, let A be a finite sequence of elements of 2F , and let i be a

natural number. Let us assume that i ∈ dom A and A(i) 6= ∅. A reduction of A

is called a singlification of A at i-th position if:

(Def. 7) it(i) = 1.

One can prove the following propositions:

(19) Let F be a finite set, A be a finite sequence of elements of 2F , and i be a
natural number. Then every reduction of A at i-th position is a reduction
of A.

(20) Let F be a finite set, A be a finite sequence of elements of 2F , i be
a natural number, and x be a set. If i ∈ dom A and x ∈ A(i), then
Cut(A, i, x) is a reduction of A at i-th position.
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(21) Let F be a finite set, A be a finite sequence of elements of 2F , i be
a natural number, and x be a set. If i ∈ dom A and x ∈ A(i), then
Cut(A, i, x) is a reduction of A.

(22) Let F be a finite set, A be a finite sequence of elements of 2F , and B be
a reduction of A. Then every reduction of B is a reduction of A.

(23) Let F be a non empty finite set, A be a non-empty finite sequence of
elements of 2F , i be a natural number, and B be a singlification of A at
i-th position. If i ∈ dom A, then B(i) 6= ∅.

(24) Let F be a non empty finite set, A be a non-empty finite sequence of
elements of 2F , i, j be natural numbers, B be a singlification of A at i-th
position, and C be a singlification of B at j-th position. Suppose i ∈ dom A

and j ∈ dom A and C(i) 6= ∅ and B(j) 6= ∅. Then C is a singlification of
A at j-th position and a singlification of A at i-th position.

(25) Let F be a set, A be a finite sequence of elements of 2F , and i be a
natural number. Then A is a reduction of A at i-th position.

(26) For every set F holds every finite sequence A of elements of 2F is a
reduction of A.

Let F be a non empty set and let A be a finite sequence of elements of 2F .
Let us assume that A is non-empty. A reduction of A is called a singlification
of A if:

(Def. 8) For every natural number i such that i ∈ dom A holds it(i) = 1.

We now state the proposition

(27) Let F be a non empty finite set, A be a non empty non-empty finite
sequence of elements of 2F , and f be a function. Then f is a singlification
of A if and only if the following conditions are satisfied:

(i) dom f = dom A, and
(ii) for every natural number i such that i ∈ dom A holds f is a singlification

of A at i-th position.

Let F be a non empty finite set, let A be a non empty finite sequence of
elements of 2F , and let k be a natural number. Note that every singlification of
A at k-th position is non empty.

Let F be a non empty finite set and let A be a non empty finite sequence of
elements of 2F . One can check that every singlification of A is non empty.

6. Rado’s Proof of the Hall Marriage Theorem

One can prove the following propositions:

(28) Let F be a non empty finite set, A be a non empty finite sequence of
elements of 2F , X be a set, and B be a reduction of A. Suppose X is a
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system of different representatives of B. Then X is a system of different
representatives of A.

(29) Let F be a finite set and A be a finite sequence of elements of 2F . Suppose
A satisfies Hall condition. Let i be a natural number. If card A(i)  2,

then there exists a set x such that x ∈ A(i) and Cut(A, i, x) satisfies Hall
condition.

(30) Let F be a finite set, A be a finite sequence of elements of 2F , and i be
a natural number. If i ∈ dom A and A satisfies Hall condition, then there
exists a singlification of A at i-th position which satisfies Hall condition.

(31) Let F be a non empty finite set and A be a non empty finite sequ-
ence of elements of 2F . If A satisfies Hall condition, then there exists a
singlification of A which satisfies Hall condition.

(32) Let F be a non empty finite set and A be a non empty finite sequence
of elements of 2F . Then there exists a set which is a system of different
representatives of A if and only if A satisfies Hall condition.
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Summary. In this article, the basic properties of the differentiable func-
tions on normed linear spaces are described.
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The notation and terminology used in this paper are introduced in the following
papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8],
[9], [25], [13], [15], [16], [17], [12], [14], and [2].

For simplicity, we adopt the following rules: n, k denote natural numbers, x,
X, Z denote sets, g, r denote real numbers, S denotes a real normed space, r1

denotes a sequence of real numbers, s1, s2 denote sequences of S, x0 denotes a
point of S, and Y denotes a subset of S.

Next we state several propositions:

(1) For every point x0 of S and for all neighbourhoods N1, N2 of x0 there
exists a neighbourhood N of x0 such that N ⊆ N1 and N ⊆ N2.

(2) Let X be a subset of S. Suppose X is open. Let r be a point of S. If
r ∈ X, then there exists a neighbourhood N of r such that N ⊆ X.

(3) Let X be a subset of S. Suppose X is open. Let r be a point of S. If
r ∈ X, then there exists g such that 0 < g and {y; y ranges over points of
S: ‖y − r‖ < g} ⊆ X.

(4) Let X be a subset of S. Suppose that for every point r of S such that
r ∈ X there exists a neighbourhood N of r such that N ⊆ X. Then X is
open.

(5) Let X be a subset of S. Then for every point r of S such that r ∈ X

there exists a neighbourhood N of r such that N ⊆ X if and only if X is
open.
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Let S be a zero structure and let f be a sequence of S. We say that f is
non-zero if and only if:

(Def. 1) rng f ⊆ (the carrier of S) \ {0S}.
We introduce f is non-zero as a synonym of f is non-zero.

We now state two propositions:

(6) s1 is non-zero iff for every x such that x ∈ N holds s1(x) 6= 0S .

(7) s1 is non-zero iff for every n holds s1(n) 6= 0S .

Let R1 be a real linear space, let S be a sequence of R1, and let a be a
sequence of real numbers. The functor a S yields a sequence of R1 and is defined
as follows:

(Def. 2) For every n holds (a S)(n) = a(n) · S(n).
Let R1 be a real linear space, let z be a point of R1, and let a be a sequence

of real numbers. The functor a · z yields a sequence of R1 and is defined by:

(Def. 3) For every n holds (a · z)(n) = a(n) · z.

Next we state a number of propositions:

(8) For all sequences r2, r3 of real numbers holds (r2 + r3) s1 = r2 s1 + r3 s1.

(9) For every sequence r1 of real numbers and for all sequences s2, s3 of S

holds r1 (s2 + s3) = r1 s2 + r1 s3.

(10) For every sequence r1 of real numbers holds r · (r1 s1) = r1 (r · s1).
(11) For all sequences r2, r3 of real numbers holds (r2− r3) s1 = r2 s1− r3 s1.

(12) For every sequence r1 of real numbers and for all sequences s2, s3 of S

holds r1 (s2 − s3) = r1 s2 − r1 s3.

(13) If r1 is convergent and s1 is convergent, then r1 s1 is convergent.

(14) If r1 is convergent and s1 is convergent, then lim(r1 s1) = lim r1 · lim s1.

(15) (s1 + s2) ↑ k = s1 ↑ k + s2 ↑ k.

(16) (s1 − s2) ↑ k = s1 ↑ k − s2 ↑ k.

(17) If s1 is non-zero, then s1 ↑ k is non-zero.

(18) s1 ↑ k is a subsequence of s1.

(19) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(20) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

Let us consider S and let I1 be a sequence of S. We say that I1 is convergent
to 0 if and only if:

(Def. 4) I1 is non-zero and convergent and lim I1 = 0S .

The following propositions are true:

(21) Let X be a real normed space and s1 be a sequence of X. Suppose s1

is constant. Then s1 is convergent and for every natural number k holds
lim s1 = s1(k).
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(22) For every real number r such that 0 < r and for every n holds s1(n) =
1

n+r · x0 holds s1 is convergent.

(23) For every real number r such that 0 < r and for every n holds s1(n) =
1

n+r · x0 holds lim s1 = 0S .

(24) Let a be a convergent to 0 sequence of real numbers and z be a point of
S. If z 6= 0S , then a · z is convergent to 0.

(25) For every point r of S holds r ∈ Y iff r ∈ the carrier of S iff Y = the
carrier of S.

For simplicity, we adopt the following rules: S, T denote non trivial real
normed spaces, f , f1, f2 denote partial functions from S to T , s4, s1 denote
sequences of S, and x0 denotes a point of S.

Let S be a non trivial real normed space. Note that there exists a sequence
of S which is convergent to 0.

Let us consider S. Note that there exists a sequence of S which is constant.
In the sequel h is a convergent to 0 sequence of S and c is a constant sequence

of S.
Let us consider S, T and let I1 be a partial function from S to T . We say

that I1 is rest-like if and only if:

(Def. 5) I1 is total and for every h holds ‖h‖−1 (I1 · h) is convergent and
lim(‖h‖−1 (I1 · h)) = 0T .

Let us consider S, T . Observe that there exists a partial function from S to
T which is rest-like.

Let us consider S, T . A rest of S, T is a rest-like partial function from S to
T .

We now state two propositions:

(26) Let R be a partial function from S to T . Suppose R is total. Then R

is rest-like if and only if for every real number r such that r > 0 there
exists a real number d such that d > 0 and for every point z of S such
that z 6= 0S and ‖z‖ < d holds ‖z‖−1 · ‖Rz‖ < r.

(27) For every rest R of S, T and for every convergent to 0 sequence s of S

holds R · s is convergent and lim(R · s) = 0T .

In the sequel R, R2, R3 are rests of S, T and L is a point of
RNormSpaceOfBoundedLinearOperators(S, T ).

Next we state several propositions:

(28) rng(s1 ↑ n) ⊆ rng s1.

(29) For every partial function h from S to T and for every sequence s1 of S

such that rng s1 ⊆ dom h holds (h · s1) ↑ n = h · (s1 ↑ n).
(30) Let h1, h2 be partial functions from S to T and s1 be a sequence of S.

If h1 is total and h2 is total, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and
(h1 − h2) · s1 = h1 · s1 − h2 · s1.
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(31) Let h be a partial function from S to T , s1 be a sequence of S, and r be
a real number. If h is total, then (r h) · s1 = r · (h · s1).

(32) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and
(ii) for every sequence s4 of S such that rng s4 ⊆ dom f and s4 is convergent

and lim s4 = x0 and for every n holds s4(n) 6= x0 holds f · s4 is convergent
and fx0 = lim(f · s4).

(33) For all R2, R3 holds R2 + R3 is a rest of S, T and R2 − R3 is a rest of
S, T .

(34) For all r, R holds r R is a rest of S, T .

Let us consider S, T , let f be a partial function from S to T , and let x0 be
a point of S. We say that f is differentiable in x0 if and only if the condition
(Def. 6) is satisfied.

(Def. 6) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exist L, R such that for every point x of S such that x ∈ N holds fx−fx0 =
L(x− x0) + Rx−x0 .

Let us consider S, T , let f be a partial function from S to T , and let x0 be
a point of S. Let us assume that f is differentiable in x0. The functor f ′(x0)
yielding a point of RNormSpaceOfBoundedLinearOperators(S, T ) is defined by
the condition (Def. 7).

(Def. 7) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exists R such that for every point x of S such that x ∈ N holds fx−fx0 =
f ′(x0)(x− x0) + Rx−x0 .

Let us consider X, let us consider S, T , and let f be a partial function from
S to T . We say that f is differentiable on X if and only if:

(Def. 8) X ⊆ dom f and for every point x of S such that x ∈ X holds f¹X is
differentiable in x.

Next we state three propositions:

(35) Let f be a partial function from S to T . If f is differentiable on X, then
X is a subset of the carrier of S.

(36) Let f be a partial function from S to T and Z be a subset of S. Suppose Z

is open. Then f is differentiable on Z if and only if the following conditions
are satisfied:

(i) Z ⊆ dom f, and
(ii) for every point x of S such that x ∈ Z holds f is differentiable in x.

(37) Let f be a partial function from S to T and Y be a subset of S. If f is
differentiable on Y , then Y is open.

Let us consider S, T , let f be a partial function from S to T , and let X

be a set. Let us assume that f is differentiable on X. The functor f ′¹X yielding
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a partial function from S to RNormSpaceOfBoundedLinearOperators(S, T ) is
defined by:

(Def. 9) dom(f ′¹X) = X and for every point x of S such that x ∈ X holds (f ′¹X)x =
f ′(x).

One can prove the following proposition

(38) Let f be a partial function from S to T and Z be a subset of S. Suppose
Z is open and Z ⊆ dom f and there exists a point r of T such that
rng f = {r}. Then f is differentiable on Z and for every point x of S such
that x ∈ Z holds (f ′¹Z)x = 0RNormSpaceOfBoundedLinearOperators(S,T ).

Let us consider S and let us consider h, n. Observe that h ↑ n is convergent
to 0.

Let us consider S and let us consider c, n. Observe that c ↑ n is constant.
The following propositions are true:

(39) Let x0 be a point of S and N be a neighbourhood of x0. Suppose f is
differentiable in x0 and N ⊆ dom f. Let h be a convergent to 0 sequence
of S and given c. If rng c = {x0} and rng(h+ c) ⊆ N, then f · (h+ c)−f · c
is convergent and lim(f · (h + c)− f · c) = 0T .

(40) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-
rentiable in x0. Then f1 + f2 is differentiable in x0 and (f1 + f2)′(x0) =
f1
′(x0) + f2

′(x0).
(41) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-

rentiable in x0. Then f1 − f2 is differentiable in x0 and (f1 − f2)′(x0) =
f1
′(x0)− f2

′(x0).
(42) For all r, f , x0 such that f is differentiable in x0 holds r f is differentiable

in x0 and (r f)′(x0) = r · f ′(x0).
(43) Let f be a partial function from S to S and Z be a subset of S. Suppose

Z is open and Z ⊆ dom f and f¹Z = idZ . Then f is differentiable on Z

and for every point x of S such that x ∈ Z holds (f ′¹Z)x = idthe carrier of S .

(44) Let Z be a subset of S. Suppose Z is open. Let given f1, f2. Suppose
Z ⊆ dom(f1 + f2) and f1 is differentiable on Z and f2 is differentiable on
Z. Then f1 + f2 is differentiable on Z and for every point x of S such that
x ∈ Z holds ((f1 + f2)′¹Z)x = f1

′(x) + f2
′(x).

(45) Let Z be a subset of S. Suppose Z is open. Let given f1, f2. Suppose
Z ⊆ dom(f1 − f2) and f1 is differentiable on Z and f2 is differentiable on
Z. Then f1− f2 is differentiable on Z and for every point x of S such that
x ∈ Z holds ((f1 − f2)′¹Z)x = f1

′(x)− f2
′(x).

(46) Let Z be a subset of S. Suppose Z is open. Let given r, f . Suppose
Z ⊆ dom(r f) and f is differentiable on Z. Then r f is differentiable on Z

and for every point x of S such that x ∈ Z holds ((r f)′¹Z)x = r · f ′(x).
(47) Let Z be a subset of S. Suppose Z is open. Suppose Z ⊆ dom f and f
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is a constant on Z. Then f is differentiable on Z and for every point x of
S such that x ∈ Z holds (f ′¹Z)x = 0RNormSpaceOfBoundedLinearOperators(S,T ).

(48) Let f be a partial function from S to S, r be a real number, p be a point
of S, and Z be a subset of S. Suppose Z is open. Suppose Z ⊆ dom f

and for every point x of S such that x ∈ Z holds fx = r · x + p. Then f

is differentiable on Z and for every point x of S such that x ∈ Z holds
(f ′¹Z)x = r · FuncUnit(S).

(49) For every point x0 of S such that f is differentiable in x0 holds f is
continuous in x0.

(50) If f is differentiable on X, then f is continuous on X.

(51) For every subset Z of S such that Z is open holds if f is differentiable
on X and Z ⊆ X, then f is differentiable on Z.

(52) Suppose f is differentiable in x0. Then there exists a neighbourhood N

of x0 such that
(i) N ⊆ dom f, and
(ii) there exists R such that R0S = 0T and R is continuous in 0S and for

every point x of S such that x ∈ N holds fx−fx0 = f ′(x0)(x−x0)+Rx−x0 .
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Summary. The recursive definition of Fibonacci sequences [3] is a good
starting point for various variants and generalizations. We can here point out e.g.
Lucas (with 2 and 1 as opening values) and the so-called generalized Fibonacci
numbers (starting with arbitrary integers a and b).

In this paper, we introduce Lucas and G-numbers and we state their basic
properties analogous to those proven in [10] and [5].

MML Identifier: FIB NUM3.

The papers [15], [14], [11], [2], [6], [1], [13], [12], [8], [9], [4], [7], [3], and [10]
provide the notation and terminology for this paper.

1. Preliminaries

In this paper a, b, k, n denote natural numbers.
The following propositions are true:

(1) For every real number a and for every natural number n such that an = 0
holds a = 0.

(2) For every non negative real number a holds
√

a · √a = a.

(3) For every non empty real number a holds a2 = (−a)2.
(4) For every non empty natural number k holds (k−′ 1) + 2 = (k + 2)−′ 1.

(5) (a + b)2 = a · a + a · b + a · b + b · b.
(6) For every non empty real number a holds (an)2 = a2·n.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(7) For all real numbers a, b holds (a + b) · (a− b) = a2 − b2.

(8) For all non empty real numbers a, b holds (a · b)n = an · bn.

Let us mention that τ is positive and τ is negative.
The following propositions are true:

(9) For every natural number n holds τn + τn+1 = τn+2.

(10) For every natural number n holds τn + τn+1 = τn+2.

2. Lucas Numbers

Let n be a natural number. The functor Luc(n) yielding a natural number
is defined by the condition (Def. 1).

(Def. 1) There exists a function L from N into [:N, N :] such that Luc(n) = L(n)1
and L(0) = 〈〈2, 1〉〉 and for every natural number n holds L(n+1) = 〈〈L(n)2,

L(n)1 + L(n)2〉〉.
The following propositions are true:

(11) Luc(0) = 2 and Luc(1) = 1 and for every natural number n holds Luc(n+
1 + 1) = Luc(n) + Luc(n + 1).

(12) For every natural number n holds Luc(n + 2) = Luc(n) + Luc(n + 1).
(13) For every natural number n holds Luc(n+1)+Luc(n+2) = Luc(n+3).
(14) Luc(2) = 3.
(15) Luc(3) = 4.
(16) Luc(4) = 7.
(17) For every natural number k holds Luc(k)  k.

(18) For every non empty natural number m holds Luc(m + 1)  Luc(m).
Let n be a natural number. Note that Luc(n) is positive.
Next we state a number of propositions:

(19) For every natural number n holds 2 · Luc(n + 2) = Luc(n) + Luc(n + 3).
(20) For every natural number n holds Luc(n + 1) = Fib(n) + Fib(n + 2).
(21) For every natural number n holds Luc(n) = τn + τn.

(22) For every natural number n holds 2 ·Luc(n)+Luc(n+1) = 5 ·Fib(n+1).
(23) For every natural number n holds Luc(n + 3)− 2 · Luc(n) = 5 · Fib(n).
(24) For every natural number n holds Luc(n) + Fib(n) = 2 · Fib(n + 1).
(25) For every natural number n holds 3 · Fib(n) + Luc(n) = 2 · Fib(n + 2).
(26) For all natural numbers n, m holds 2 · Luc(n + m) = Luc(n) · Luc(m) +

5 · Fib(n) · Fib(m).
(27) For every natural number n holds Luc(n + 3) · Luc(n) = Luc(n + 2)2 −

Luc(n + 1)2.
(28) For every natural number n holds Fib(2 · n) = Fib(n) · Luc(n).
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(29) For every natural number n holds 2 ·Fib(2 ·n+1) = Luc(n+1) ·Fib(n)+
Luc(n) · Fib(n + 1).

(30) For every natural number n holds 5 · Fib(n)2 − Luc(n)2 = 4 · (−1)n+1.

(31) For every natural number n holds Fib(2 · n + 1) = Fib(n + 1) · Luc(n +
1)− Fib(n) · Luc(n).

3. Generalized Fibonacci Numbers

Let a, b, n be natural numbers. The functor GFib(a, b, n) yielding a natural
number is defined by the condition (Def. 2).

(Def. 2) There exists a function L from N into [:N, N :] such that GFib(a, b, n) =
L(n)1 and L(0) = 〈〈a, b〉〉 and for every natural number n holds L(n+1) =
〈〈L(n)2, L(n)1 + L(n)2〉〉.

Next we state a number of propositions:

(32) For all natural numbers a, b holds GFib(a, b, 0) = a and GFib(a, b, 1) = b

and for every natural number n holds GFib(a, b, n+1+1) = GFib(a, b, n)+
GFib(a, b, n + 1).

(33) (GFib(a, b, k + 1) + GFib(a, b, k + 1 + 1))2 = GFib(a, b, k + 1)2 + 2 ·
GFib(a, b, k + 1) ·GFib(a, b, k + 1 + 1) + GFib(a, b, k + 1 + 1)2.

(34) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a, b, n + 1) =
GFib(a, b, n + 2).

(35) For all natural numbers a, b, n holds GFib(a, b, n+1)+GFib(a, b, n+2) =
GFib(a, b, n + 3).

(36) For all natural numbers a, b, n holds GFib(a, b, n+2)+GFib(a, b, n+3) =
GFib(a, b, n + 4).

(37) For every natural number n holds GFib(0, 1, n) = Fib(n).
(38) For every natural number n holds GFib(2, 1, n) = Luc(n).
(39) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a, b, n + 3) =

2 ·GFib(a, b, n + 2).
(40) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a, b, n + 4) =

3 ·GFib(a, b, n + 2).
(41) For all natural numbers a, b, n holds GFib(a, b, n + 3)−GFib(a, b, n) =

2 ·GFib(a, b, n + 1).
(42) For all non empty natural numbers a, b, n holds GFib(a, b, n) =

GFib(a, b, 0) · Fib(n−′ 1) + GFib(a, b, 1) · Fib(n).
(43) For all natural numbers n, m holds Fib(m) ·Luc(n) + Luc(m) ·Fib(n) =

GFib(Fib(0), Luc(0), n + m).
(44) For every natural number n holds Luc(n) + Luc(n + 3) = 2 · Luc(n + 2).
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(45) For all natural numbers a, n holds GFib(a, a, n) = GFib(a,a,0)
2 · (Fib(n) +

Luc(n)).
(46) For all natural numbers a, b, n holds GFib(b, a+b, n) = GFib(a, b, n+1).
(47) For all natural numbers a, b, n holds GFib(a, b, n + 2) · GFib(a, b, n) −

GFib(a, b, n + 1)2 = (−1)n · (GFib(a, b, 2)2 −GFib(a, b, 1) ·GFib(a, b, 3)).
(48) For all natural numbers a, b, k, n holds GFib(GFib(a, b, k), GFib(a, b, k+

1), n) = GFib(a, b, n + k).
(49) For all natural numbers a, b, n holds GFib(a, b, n + 1) = a · Fib(n) + b ·

Fib(n + 1).
(50) For all natural numbers a, b, n holds GFib(0, b, n) = b · Fib(n).
(51) For all natural numbers a, b, n holds GFib(a, 0, n + 1) = a · Fib(n).
(52) For all natural numbers a, b, c, d, n holds GFib(a, b, n)+GFib(c, d, n) =

GFib(a + c, b + d, n).
(53) For all natural numbers a, b, k, n holds GFib(k · a, k · b, n) = k ·

GFib(a, b, n).

(54) For all natural numbers a, b, n holds GFib(a, b, n) = (a·−τ+b)·τn+(a·τ−b)·τn
√

5
.

(55) For all natural numbers a, n holds GFib(2 · a + 1, 2 · a + 1, n + 1) =
(2 · a + 1) · Fib(n + 2).
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Summary. The article contains the formalization of the addition opera-
tor on relational structures as defined by A. Wroński [8] (as a generalization of
Troelstra’s sum or Jaśkowski’s star addition). The ordering relation of A⊗ B is
given by

¬A⊗B =¬A ∪ ¬B ∪ (¬A ◦ ¬B),

where the carrier is defined as the set-theoretical union of carriers of A and B.
Main part – Section 3 – is devoted to the Mizar translation of Theorem 1 (iv–xiii),
p. 66 of [8].

MML Identifier: LATSUM 1.

The terminology and notation used in this paper are introduced in the following
articles: [4], [6], [7], [5], [2], [3], and [1].

1. Preliminaries

One can prove the following proposition

(1) Let x, y, A, B be sets. Suppose x ∈ A∪B and y ∈ A∪B. Then x ∈ A\B
and y ∈ A \B or x ∈ B and y ∈ B or x ∈ A \B and y ∈ B or x ∈ B and
y ∈ A \B.

Let R, S be relational structures. The predicate R ≈ S is defined by the
condition (Def. 1).

(Def. 1) Let x, y be sets. Suppose x ∈ (the carrier of R) ∩ (the carrier of S) and
y ∈ (the carrier of R) ∩ (the carrier of S). Then 〈〈x, y〉〉 ∈ the internal
relation of R if and only if 〈〈x, y〉〉 ∈ the internal relation of S.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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2. The Wroński’s Operation

Let R, S be relational structures. The functor R⊗S yields a strict relational
structure and is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of R⊗ S = (the carrier of R) ∪ (the carrier of S), and
(ii) the internal relation of R ⊗ S = (the internal relation of R) ∪ (the

internal relation of S)∪ (the internal relation of R) · (the internal relation
of S).

Let R be a relational structure and let S be a non empty relational structure.
Observe that R⊗ S is non empty.

Let R be a non empty relational structure and let S be a relational structure.
Observe that R⊗ S is non empty.

One can prove the following two propositions:

(2) Let R, S be relational structures. Then
(i) the internal relation of R ⊆ the internal relation of R⊗ S, and
(ii) the internal relation of S ⊆ the internal relation of R⊗ S.

(3) For all relational structures R, S such that R is reflexive and S is reflexive
holds R⊗ S is reflexive.

3. Properties of the Addition

Next we state a number of propositions:

(4) Let R, S be relational structures and a, b be sets. Suppose that
(i) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S,

(ii) a ∈ the carrier of R,
(iii) b ∈ the carrier of R,
(iv) R ≈ S, and
(v) R is transitive.

Then 〈〈a, b〉〉 ∈ the internal relation of R.

(5) Let R, S be relational structures and a, b be sets. Suppose that
(i) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S,

(ii) a ∈ the carrier of S,
(iii) b ∈ the carrier of S,
(iv) R ≈ S, and
(v) S is transitive.

Then 〈〈a, b〉〉 ∈ the internal relation of S.

(6) Let R, S be relational structures and a, b be sets. Then
(i) if 〈〈a, b〉〉 ∈ the internal relation of R, then 〈〈a, b〉〉 ∈ the internal relation

of R⊗ S, and
(ii) if 〈〈a, b〉〉 ∈ the internal relation of S, then 〈〈a, b〉〉 ∈ the internal relation

of R⊗ S.
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(7) Let R, S be non empty relational structures and x be an element of
R⊗ S. Then x ∈ the carrier of R or x ∈ (the carrier of S) \ (the carrier of
R).

(8) Let R, S be non empty relational structures, x, y be elements of R, and
a, b be elements of R ⊗ S. Suppose x = a and y = b and R ≈ S and R is
transitive. Then x ¬ y if and only if a ¬ b.

(9) Let R, S be non empty relational structures, a, b be elements of R⊗ S,

and c, d be elements of S. Suppose a = c and b = d and R ≈ S and S is
transitive. Then a ¬ b if and only if c ¬ d.

(10) Let R, S be antisymmetric reflexive transitive non empty relational
structures with l.u.b.’s and x be a set. If x ∈ the carrier of R, then x

is an element of R⊗ S.

(11) Let R, S be antisymmetric reflexive transitive non empty relational
structures with l.u.b.’s and x be a set. If x ∈ the carrier of S, then x

is an element of R⊗ S.

(12) Let R, S be non empty relational structures and x be a set. Suppose
x ∈ (the carrier of R) ∩ (the carrier of S). Then x is an element of R.

(13) Let R, S be non empty relational structures and x be a set. Suppose
x ∈ (the carrier of R) ∩ (the carrier of S). Then x is an element of S.

(14) Let R, S be antisymmetric reflexive transitive non empty relational
structures with l.u.b.’s and x, y be elements of R ⊗ S. Suppose x ∈ the
carrier of R and y ∈ the carrier of S and R ≈ S. Then x ¬ y if and only if
there exists an element a of R⊗ S such that a ∈ (the carrier of R) ∩ (the
carrier of S) and x ¬ a and a ¬ y.

(15) Let R, S be non empty relational structures, a, b be elements of R, and
c, d be elements of S. Suppose a = c and b = d and R ≈ S and R is
transitive and S is transitive. Then a ¬ b if and only if c ¬ d.

(16) Let R be an antisymmetric reflexive transitive non empty relational
structure with l.u.b.’s, D be a lower directed subset of R, and x, y be
elements of R. If x ∈ D and y ∈ D, then x t y ∈ D.

(17) Let R, S be relational structures and a, b be sets. Suppose that
(i) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,
(ii) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S, and
(iii) a ∈ the carrier of S.

Then b ∈ the carrier of S.

(18) Let R, S be relational structures and a, b be elements of R⊗S. Suppose
(the carrier of R) ∩ (the carrier of S) is an upper subset of R and a ¬ b

and a ∈ the carrier of S. Then b ∈ the carrier of S.

(19) Let R, S be antisymmetric reflexive transitive non empty relational
structures with l.u.b.’s, x, y be elements of R, and a, b be elements of
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S. Suppose that
(i) (the carrier of R) ∩ (the carrier of S) is a lower directed subset of S,
(ii) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,
(iii) R ≈ S,

(iv) x = a, and
(v) y = b.

Then x t y = a t b.

(20) Let R, S be lower-bounded antisymmetric reflexive transitive non empty
relational structures with l.u.b.’s. Suppose (the carrier of R)∩ (the carrier
of S) is a non empty lower directed subset of S. Then ⊥S ∈ the carrier of
R.

(21) Let R, S be relational structures and a, b be sets. Suppose that
(i) (the carrier of R) ∩ (the carrier of S) is a lower subset of S,
(ii) 〈〈a, b〉〉 ∈ the internal relation of R⊗ S, and
(iii) b ∈ the carrier of R.

Then a ∈ the carrier of R.

(22) Let x, y be sets and R, S be relational structures. Suppose 〈〈x, y〉〉 ∈ the
internal relation of R⊗ S and (the carrier of R) ∩ (the carrier of S) is an
upper subset of R. Then

(i) x ∈ the carrier of R and y ∈ the carrier of R, or
(ii) x ∈ the carrier of S and y ∈ the carrier of S, or
(iii) x ∈ (the carrier of R)\(the carrier of S) and y ∈ (the carrier of S)\(the

carrier of R).

(23) Let R, S be relational structures and a, b be elements of R⊗S. Suppose
(the carrier of R)∩ (the carrier of S) is a lower subset of S and a ¬ b and
b ∈ the carrier of R. Then a ∈ the carrier of R.

(24) Let R, S be relational structures. Suppose that
(i) R ≈ S,

(ii) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,
(iii) (the carrier of R) ∩ (the carrier of S) is a lower subset of S,
(iv) R is transitive and antisymmetric, and
(v) S is transitive and antisymmetric.

Then R⊗ S is antisymmetric.

(25) Let R, S be relational structures. Suppose that
(i) (the carrier of R) ∩ (the carrier of S) is an upper subset of R,
(ii) (the carrier of R) ∩ (the carrier of S) is a lower subset of S,
(iii) R ≈ S,

(iv) R is transitive, and
(v) S is transitive.

Then R⊗ S is transitive.
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Summary. In this paper we define a discrete subset family of a topological
space and basis sigma locally finite and sigma discrete. First, we prove an au-
xiliary fact for discrete family and sigma locally finite and sigma discrete basis.
We also show the necessary condition for the Nagata Smirnov theorem: every
metrizable space is T3 and has a sigma locally finite basis. Also, we define a suf-
ficient condition for a T3 topological space to be T4. We introduce the concept of
pseudo metric.

MML Identifier: NAGATA 1.

The terminology and notation used in this paper have been introduced in the
following articles: [9], [27], [28], [32], [20], [5], [12], [8], [21], [15], [2], [17], [14],
[18], [19], [6], [10], [11], [24], [23], [4], [33], [1], [3], [25], [16], [26], [7], [13], [29],
[31], [34], [30], and [22].

In this paper T , T1 denote non empty topological spaces and P1 denotes a
non empty metric structure.

Let T be a topological space and let F be a family of subsets of T . We say
that F is discrete if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let p be a point of T . Then there exists an open subset O of T such that
p ∈ O and for all subsets A, B of T such that A ∈ F and B ∈ F holds if
O meets A and O meets B, then A = B.

Let T be a non empty topological space. Note that there exists a family of
subsets of T which is discrete.

Let us consider T . One can check that there exists a family of subsets of T

which is empty and discrete.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102 and KBN grant 4 T11C 039 24.
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For simplicity, we adopt the following convention: F , G, H denote families
of subsets of T , A, B denote subsets of T , O, U denote open subsets of T , p

denotes a point of T , and x, X denote sets.
The following propositions are true:

(1) For every F such that there exists A such that F = {A} holds F is
discrete.

(2) For all F , G such that F ⊆ G and G is discrete holds F is discrete.

(3) For all F , G such that F is discrete holds F ∩G is discrete.

(4) For all F , G such that F is discrete holds F \G is discrete.

(5) For all F , G, H such that F is discrete and G is discrete and F eG = H

holds H is discrete.

(6) For all F , A, B such that F is discrete and A ∈ F and B ∈ F holds
A = B or A misses B.

(7) If F is discrete, then for every p there exists O such that p ∈ O and
{O} e F \ {∅} is trivial.

(8) F is discrete if and only if the following conditions are satisfied:
(i) for every p there exists O such that p ∈ O and {O}e F \ {∅} is trivial,

and
(ii) for all A, B such that A ∈ F and B ∈ F holds A = B or A misses B.

Let us consider T and let F be a discrete family of subsets of T . Observe
that clf F is discrete.

Next we state three propositions:

(9) For every F such that F is discrete and for all A, B such that A ∈ F

and B ∈ F holds A ∩B = A ∩B.

(10) For every F such that F is discrete holds
⋃

F =
⋃

clf F.

(11) For every F such that F is discrete holds F is locally finite.

Let T be a topological space. A family sequence of T is a function from N
into 22the carrier of T

.
In the sequel U1 denotes a family sequence of T , r denotes a real number, n

denotes a natural number, and f denotes a function.
Let us consider T , U1, n. Then U1(n) is a family of subsets of T .
Let us consider T , U1. Then

⋃
U1 is a family of subsets of T .

Let T be a non empty topological space and let U1 be a family sequence of
T . We say that U1 is sigma-discrete if and only if:

(Def. 2) For every natural number n holds U1(n) is discrete.

Let T be a non empty topological space. Note that there exists a family
sequence of T which is sigma-discrete.

Let T be a non empty topological space and let U1 be a family sequence of
T . We say that U1 is sigma-locally-finite if and only if:
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(Def. 3) For every natural number n holds U1(n) is locally finite.

Let us consider T and let F be a family of subsets of T . We say that F is
sigma-discrete if and only if:

(Def. 4) There exists a sigma-discrete family sequence f of T such that F =
⋃

f.

Let X be a set. We introduce X is uncountable as an antonym of X is
countable.

One can verify that every set which is uncountable is also non empty.
Let T be a non empty topological space. One can check that there exists a

family sequence of T which is sigma-locally-finite.
Next we state two propositions:

(12) For every U1 such that U1 is sigma-discrete holds U1 is sigma-locally-
finite.

(13) Let A be an uncountable set. Then there exists a family F of subsets of
{[:A, A :]}top such that F is locally finite and F is not sigma-discrete.

Let T be a non empty topological space and let U1 be a family sequence of
T . We say that U1 is Basis-sigma-discrete if and only if:

(Def. 5) U1 is sigma-discrete and
⋃

U1 is a basis of T .

Let T be a non empty topological space and let U1 be a family sequence of
T . We say that U1 is Basis-sigma-locally finite if and only if:

(Def. 6) U1 is sigma-locally-finite and
⋃

U1 is a basis of T .

The following propositions are true:

(14) Let r be a real number. Suppose P1 is a non empty metric space. Let x

be an element of P1. Then Ω(P1) \ Ball(x, r) ∈ the open set family of P1.

(15) For every T such that T is metrizable holds T is a T3 space and a T1

space.

(16) For every T such that T is metrizable holds there exists a family sequence
of T which is Basis-sigma-locally finite.

(17) For every function U from N into 2the carrier of T such that for every n

holds U(n) is open holds
⋃

U is open.

(18) Suppose that for all A, U such that A is closed and U is open and A ⊆ U

there exists a function W from N into 2the carrier of T such that A ⊆ ⋃
W

and
⋃

W ⊆ U and for every n holds W (n) ⊆ U and W (n) is open. Then
T is a T4 space.

(19) Let given T . Suppose T is a T3 space. Let B1 be a family sequence of T .
Suppose

⋃
B1 is a basis of T . Let U be a subset of T and p be a point of

T . Suppose U is open and p ∈ U. Then there exists a subset O of T such
that p ∈ O and O ⊆ U and O ∈ ⋃

B1.

(20) For every T such that T is a T3 space and a T1 space and there exists
a family sequence of T which is Basis-sigma-locally finite holds T is a T4
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space.

Let us consider T and let F , G be real maps of T . The functor F +G yielding
a real map of T is defined as follows:

(Def. 7) For every element t of T holds (F + G)(t) = F (t) + G(t).
Next we state four propositions:

(21) Let f be a real map of T . Suppose f is continuous. Let F be a real map
of [:T, T :]. Suppose that for all elements x, y of the carrier of T holds
F (〈〈x, y〉〉) = |f(x)− f(y)|. Then F is continuous.

(22) For all real maps F , G of T such that F is continuous and G is continuous
holds F + G is continuous.

(23) Let A1 be a binary operation on Rthe carrier of T . Suppose that for all real
maps f1, f2 of T holds A1(f1, f2) = f1 + f2. Then A1 is commutative and
associative and has a unity.

(24) Let A1 be a binary operation on Rthe carrier of T . Suppose that for all
real maps f1, f2 of T holds A1(f1, f2) = f1 + f2. Let m′1 be an element of
Rthe carrier of T . If m′1 is a unity w.r.t. A1, then m′1 is continuous.

Let T , T1 be non empty topological spaces, let S1 be a function from the
carrier of T into 2the carrier of T , and let F1 be a function from the carrier of T

into (the carrier of T1)the carrier of T . The functor F1 ≈ S1 yields a map from T

into T1 and is defined by:

(Def. 8) For every point p of T holds (F1 ≈ S1)(p) = F1(p)(p).
The following propositions are true:

(25) Let A1 be a binary operation on Rthe carrier of T . Suppose that for all real
maps f1, f2 of T holds A1(f1, f2) = f1 + f2. Let F be a finite sequence
of elements of Rthe carrier of T . Suppose that for every n such that 0 6= n

and n ¬ len F holds F (n) is a continuous real map of T . Then A1 � F is
a continuous real map of T .

(26) Let F be a function from the carrier of T into (the carrier of
T1)the carrier of T . Suppose that for every point p of T holds F (p) is a con-
tinuous map from T into T1. Let S be a function from the carrier of T

into 2the carrier of T . Suppose that for every point p of T holds p ∈ S(p)
and S(p) is open and for all points p, q of T such that p ∈ S(q) holds
F (p)(p) = F (q)(p). Then F ≈ S is continuous.

In the sequel m denotes a function from [: the carrier of T , the carrier of T :]
into R.

Let us consider X, r and let f be a function from X into R. The functor
min(r, f) yielding a function from X into R is defined as follows:

(Def. 9) For every x such that x ∈ X holds (min(r, f))(x) = min(r, f(x)).
One can prove the following proposition
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(27) For every real number r and for every real map f of T such that f is
continuous holds min(r, f) is continuous.

Let X be a set and let f be a function from [:X, X :] into R. We say that f

is a pseudometric of if and only if:

(Def. 10) f is Reflexive, symmetric, and triangle.

One can prove the following propositions:

(28) Let f be a function from [:X, X :] into R. Then f is a pseudometric of
if and only if for all elements a, b, c of X holds f(a, a) = 0 and f(a,

c) ¬ f(a, b) + f(c, b).
(29) For every function f from [:X, X :] into R such that f is a pseudometric

of and for all elements x, y of X holds f(x, y)  0.

(30) For all r, m such that r > 0 and m is a pseudometric of holds min(r,m)
is a pseudometric of.

(31) For all r, m such that r > 0 and m is a metric of the carrier of T holds
min(r,m) is a metric of the carrier of T .
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Summary. In this article we formalize theorems from Chapter 1 of [7].
Our article covers Theorems 1.5.4, 1.5.5 (inequality on indices), 1.5.6 (equality of
indices), Lemma 1.6.1 and several other supporting theorems needed to complete
the formalization.

MML Identifier: GROUP 8.

The articles [1], [12], [5], [19], [20], [3], [4], [13], [16], [6], [14], [15], [10], [8], [17],
[18], [11], [2], and [9] provide the terminology and notation for this paper.

For simplicity, we adopt the following rules: G is a strict group, a, b, x, y, z

are elements of the carrier of G, H, K are strict subgroups of G, p is a natural
number, and A is a subset of the carrier of G.

We now state a number of propositions:

(1) If p is prime and ord(G) = p and G is finite, then there exists a such
that ord(a) = p.

(2) Let a1, a2 be elements of the carrier of H and b1, b2 be elements of the
carrier of G. If a1 = b1 and a2 = b2, then a1 · a2 = b1 · b2.

(3) Let a be an element of the carrier of H and b be an element of the carrier
of G. If a = b, then for every natural number n holds an = bn.

(4) Let a be an element of the carrier of H and b be an element of the carrier
of G. If a = b, then for every integer i holds ai = bi.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.

2The author visited the University of Białystok as a guest.
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(5) Let a be an element of the carrier of H and b be an element of the carrier
of G. If a = b and G is finite, then ord(a) = ord(b).

(6) For every element h of the carrier of G such that h ∈ H holds H ·h ⊆ the
carrier of H.

(7) For every a such that a 6= 1G holds gr({a}) 6= {1}G.

(8) For every integer m holds (1G)m = 1G.

(9) For every integer m holds am·ord(a) = 1G.

(10) For every a such that a is not of order 0 and for every integer m holds
am = am mod ord(a).

(11) If b is not of order 0, then gr({b}) is finite.

(12) If b is of order 0, then b−1 is of order 0.

(13) b is of order 0 iff for every integer n such that bn = 1G holds n = 0.

(14) Let given G. Given a such that a 6= 1G. Then for every H holds H = G

or H = {1}G if and only if the following conditions are satisfied:
(i) G is a cyclic group and finite, and
(ii) there exists a natural number p such that ord(G) = p and p is prime.

(15) Let x, y, z be elements of the carrier of G and A be a subset of the
carrier of G. Then z ∈ x · A · y if and only if there exists an element a of
the carrier of G such that z = x · a · y and a ∈ A.

(16) For every non empty subset A of G and for every element x of the carrier

of G holds A = x−1 ·A · x.

Let us consider G, H, K. The functor DoubleCosets(H, K) yielding a family
of subsets of the carrier of G is defined as follows:

(Def. 1) A ∈ DoubleCosets(H, K) iff there exists a such that A = H · a ·K.

We now state two propositions:

(17) z ∈ H · x ·K iff there exist elements g, h of the carrier of G such that
z = g · x · h and g ∈ H and h ∈ K.

(18) For all H, K holds H ·x ·K = H · y ·K or it is not true that there exists
z such that z ∈ H · x ·K and z ∈ H · y ·K.

In the sequel B, A denote strict subgroups of G and D denotes a strict
subgroup of A.

Let us consider G, A. Observe that the left cosets of A is non empty.
Let us consider G and let H be a subgroup of G. We introduce [G : H]N as

a synonym of |• : H|N.
Next we state several propositions:

(19) If G = A tB and D = A ∩B and G is finite, then [G : B]N  [A : D]N.

(20) If G is finite, then [G : H]N > 0.

(21) Let G be a strict group. Suppose G is finite. Let C be a strict subgroup
of G and A, B be strict subgroups of C. Suppose C = A tB. Let D be a
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strict subgroup of A. Suppose D = A∩B. Let E be a strict subgroup of B.
Suppose E = A∩B. Let F be a strict subgroup of C. Suppose F = A∩B.

Suppose the left cosets of B is finite and the left cosets of A is finite and
[A : C]N and [B : C]N are relative prime. Then [B : C]N = [D : A]N and
[A : C]N = [E : B]N.

(22) For every element a of the carrier of G such that a ∈ H and for every
integer j holds aj ∈ H.

(23) For every strict group G such that G 6= {1}G there exists an element b

of the carrier of G such that b 6= 1G.

(24) Let G be a strict group and a be an element of the carrier of G. Suppose
G = gr({a}) and G 6= {1}G. Let H be a strict subgroup of G. If H 6= {1}G,

then there exists a natural number k such that 0 < k and ak ∈ H.

(25) Let G be a strict cyclic group. Suppose G 6= {1}G. Let H be a strict
subgroup of G. If H 6= {1}G, then H is a cyclic group.
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Summary. In this paper, we define Catalan sequence (starting from 0) and
prove some of its basic properties. The Catalan numbers (0, 1, 1, 2, 5, 14, 42, . . .)
arise in a number of problems in combinatorics. They can be computed e.g. using
the formula

Cn =

�
2n
n

�

n + 1
,

their recursive definition is also well known:

C1 = 1, Cn = Σn−1
i=1 CiCn−i, n  2.

Among other things, the Catalan numbers describe the number of ways in which
parentheses can be placed in a sequence of numbers to be multiplied, two at a
time.

MML Identifier: CATALAN1.

The articles [2], [3], [4], [1], [5], [8], [6], and [7] provide the terminology and
notation for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For every natural number n such that n > 1 holds n−′ 1 ¬ 2 · n−′ 3.

(2) For every natural number n such that n  1 holds n−′ 1 ¬ 2 · n−′ 2.

(3) For every natural number n such that n > 1 holds n < 2 · n−′ 1.

(4) For every natural number n such that n > 1 holds (n−′ 2) + 1 = n−′ 1.

(5) For every natural number n such that n > 1 holds 4·n·n−2·n
n+1 > 1.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(6) For every natural number n such that n > 1 holds (2·n−′2)!·n·(n+1) <

(2 · n)!.
(7) For every natural number n holds 2 · (2− 3

n+1) < 4.

2. Definition of Catalan Numbers

Let n be a natural number. The functor Catalan(n) yields a real number
and is defined as follows:

(Def. 1) Catalan(n) =
(2·n−′2

n−′1 )
n .

The following propositions are true:

(8) For every natural number n such that n > 1 holds Catalan(n) =
(2·n−′2)!
(n−′1)!·n! .

(9) For every natural number n such that n > 1 holds Catalan(n) = 4 ·(
2·n−′3
n−′1

)− (
2·n−′1
n−′1

)
.

(10) Catalan(0) = 0.
(11) Catalan(1) = 1.
(12) Catalan(2) = 1.
(13) For every natural number n holds Catalan(n) is an integer.

(14) For every natural number k such that k  1 holds Catalan(k + 1) =
(2·k)!

k!·(k+1)! .

3. Basic Properties of Catalan Numbers

We now state several propositions:

(15) For every natural number n such that n > 1 holds Catalan(n) <

Catalan(n + 1).
(16) For every natural number n holds Catalan(n) ¬ Catalan(n + 1).
(17) For every natural number n holds Catalan(n)  0.

(18) For every natural number n holds Catalan(n) is a natural number.

(19) For every natural number n such that n > 0 holds Catalan(n + 1) =
2 · (2− 3

n+1) · Catalan(n).
Let n be a natural number. Note that Catalan(n) is natural.
Next we state the proposition

(20) For every natural number n such that n > 0 holds Catalan(n) > 0.

Let n be a non empty natural number. One can verify that Catalan(n) is
non empty.

One can prove the following proposition
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(21) For every natural number n such that n > 0 holds Catalan(n + 1) <

4 · Catalan(n).
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Summary. We formalized another axiomatization of Boolean algebras.
The classical one is introduced in [9], “the fourth set of postulates” due to Hun-
tington [3] ([2] in Mizar) and the single axiom in terms of disjunction and ne-
gation is codified recently in [7]. In this article, we aimed at the description of
Boolean algebras using Sheffer stroke according to [6], namely by the following
three axioms:

(x|x)|(x|x) = x

x|(y|(y|y)) = x|x
(x|(y|z))|(x|(y|z)) = ((y|y)|x)|((z|z)|x)

(¹ is used instead of | in the translation of our Mizar article). Since Sheffer in his
original paper proved its equivalence and Huntington’s “first set of postulates”,
we have also introduced this axiomatization of BAs.

MML Identifier: SHEFFER1.

The terminology and notation used here are introduced in the following articles:
[8], [9], [5], [1], [4], and [2].

1. Preliminaries

The following two propositions are true:

(1) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of L. Then (a+ b)c =
ac ∗ bc.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(2) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of L. Then (a ∗ b)c =
ac + bc.

2. Huntington’s First Axiomatization of Boolean Algebras

Let I1 be a non empty lattice structure. We say that I1 is upper-bounded’
if and only if:

(Def. 1) There exists an element c of I1 such that for every element a of I1 holds
c u a = a and a u c = a.

Let L be a non empty lattice structure. Let us assume that L is upper-
bounded’. The functor >′L yields an element of L and is defined by:

(Def. 2) For every element a of L holds >′L u a = a and a u >′L = a.

Let I1 be a non empty lattice structure. We say that I1 is lower-bounded’ if
and only if:

(Def. 3) There exists an element c of I1 such that for every element a of I1 holds
c t a = a and a t c = a.

Let L be a non empty lattice structure. Let us assume that L is lower-
bounded’. The functor ⊥′L yields an element of L and is defined as follows:

(Def. 4) For every element a of L holds ⊥′L t a = a and a t ⊥′L = a.

Let I1 be a non empty lattice structure. We say that I1 is distributive’ if
and only if:

(Def. 5) For all elements a, b, c of I1 holds a t (b u c) = (a t b) u (a t c).
Let L be a non empty lattice structure and let a, b be elements of L. We say

that a is a complement’ of b if and only if:

(Def. 6) b t a = >′L and a t b = >′L and b u a = ⊥′L and a u b = ⊥′L.

Let I1 be a non empty lattice structure. We say that I1 is complemented’ if
and only if:

(Def. 7) For every element b of I1 holds there exists an element of I1 which is a
complement’ of b.

Let L be a non empty lattice structure and let x be an element of L. Let
us assume that L is complemented’, distributive, upper-bounded’, and meet-
commutative. The functor xc′ yields an element of L and is defined as follows:

(Def. 8) xc′ is a complement’ of x.

Let us mention that there exists a non empty lattice structure which is
Boolean, join-idempotent, upper-bounded’, complemented’, distributive’, lower-
bounded’, and lattice-like.

Next we state several propositions:
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(3) Let L be a complemented’ join-commutative meet-commutative distri-
butive upper-bounded’ distributive’ non empty lattice structure and x be
an element of L. Then x t xc′ = >′L.

(4) Let L be a complemented’ join-commutative meet-commutative distri-
butive upper-bounded’ distributive’ non empty lattice structure and x be
an element of L. Then x u xc′ = ⊥′L.

(5) Let L be a complemented’ join-commutative meet-commutative join-
idempotent distributive upper-bounded’ distributive’ non empty lattice
structure and x be an element of L. Then x t >′L = >′L.

(6) Let L be a complemented’ join-commutative meet-commutative join-
idempotent distributive upper-bounded’ lower-bounded’ distributive’ non
empty lattice structure and x be an element of L. Then x u ⊥′L = ⊥′L.

(7) Let L be a join-commutative meet-absorbing meet-commutative join-
absorbing join-idempotent distributive non empty lattice structure and x,
y, z be elements of L. Then (x t y t z) u x = x.

(8) Let L be a join-commutative meet-absorbing meet-commutative join-
absorbing join-idempotent distributive’ non empty lattice structure and
x, y, z be elements of L. Then (x u y u z) t x = x.

Let G be a non empty u-semi lattice structure. We say that G is meet-
idempotent if and only if:

(Def. 9) For every element x of G holds x u x = x.

Next we state a number of propositions:

(9) Every complemented’ join-commutative meet-commutative distributive
upper-bounded’ lower-bounded’ distributive’ non empty lattice structure
is meet-idempotent.

(10) Every complemented’ join-commutative meet-commutative distributive
upper-bounded’ lower-bounded’ distributive’ non empty lattice structure
is join-idempotent.

(11) Every complemented’ join-commutative meet-commutative
join-idempotent distributive upper-bounded’ distributive’ non empty lat-
tice structure is meet-absorbing.

(12) Every complemented’ join-commutative upper-bounded’
meet-commutative join-idempotent distributive distributive’ lower-
bounded’ non empty lattice structure is join-absorbing.

(13) Every complemented’ join-commutative meet-commutative upper-
bounded’ lower-bounded’ join-idempotent distributive distributive’ non
empty lattice structure is upper-bounded.

(14) Every Boolean lattice-like non empty lattice structure is upper-bounded’.

(15) Every complemented’ join-commutative meet-commutative upper-
bounded’ lower-bounded’ join-idempotent distributive distributive’ non
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empty lattice structure is lower-bounded.

(16) Every Boolean lattice-like non empty lattice structure is lower-bounded’.

(17) Every join-commutative meet-commutative meet-absorbing
join-absorbing join-idempotent distributive non empty lattice structure is
join-associative.

(18) Every join-commutative meet-commutative meet-absorbing
join-absorbing join-idempotent distributive’ non empty lattice structure is
meet-associative.

(19) Let L be a complemented’ join-commutative meet-commutative lower-
bounded’ upper-bounded’ join-idempotent distributive distributive’ non
empty lattice structure. Then >L = >′L.

(20) Let L be a complemented’ join-commutative meet-commutative lower-
bounded’ upper-bounded’ join-idempotent distributive distributive’ non
empty lattice structure. Then ⊥L = ⊥′L.

(21) For every Boolean distributive’ lattice-like non empty lattice structure
L holds >L = >′L.

(22) Let L be a Boolean complemented lower-bounded upper-bounded distri-
butive distributive’ lattice-like non empty lattice structure. Then ⊥L =
⊥′L.

(23) Let L be a complemented’ lower-bounded’ upper-bounded’ join-
commutative meet-commutative join-idempotent distributive distributive’
non empty lattice structure and x, y be elements of L. Then x is a com-
plement’ of y if and only if x is a complement of y.

(24) Every complemented’ join-commutative meet-commutative lower-
bounded’ upper-bounded’ join-idempotent distributive distributive’ non
empty lattice structure is complemented.

(25) Every Boolean lower-bounded’ upper-bounded’ distributive’ lattice-like
non empty lattice structure is complemented’.

(26) Let L be a non empty lattice structure. Then L is a Boolean lattice if
and only if L is lower-bounded’, upper-bounded’, join-commutative, meet-
commutative, distributive, distributive’, and complemented’.

Let us note that every non empty lattice structure which is Boolean
and lattice-like is also lower-bounded’, upper-bounded’, complemented’, join-
commutative, meet-commutative, distributive, and distributive’ and every non
empty lattice structure which is lower-bounded’, upper-bounded’, complemen-
ted’, join-commutative, meet-commutative, distributive, and distributive’ is also
Boolean and lattice-like.
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3. Axiomatization Based on Sheffer Stroke

We introduce Sheffer structures which are extensions of 1-sorted structure
and are systems
〈 a carrier, a Sheffer stroke 〉,

where the carrier is a set and the Sheffer stroke is a binary operation on the
carrier.

We consider Sheffer lattice structures as extensions of Sheffer structure and
lattice structure as systems
〈 a carrier, a join operation, a meet operation, a Sheffer stroke 〉,

where the carrier is a set, the join operation is a binary operation on the carrier,
the meet operation is a binary operation on the carrier, and the Sheffer stroke
is a binary operation on the carrier.

We consider Sheffer ortholattice structures as extensions of Sheffer structure
and ortholattice structure as systems
〈 a carrier, a join operation, a meet operation, a complement operation, a

Sheffer stroke 〉,
where the carrier is a set, the join operation is a binary operation on the car-
rier, the meet operation is a binary operation on the carrier, the complement
operation is a unary operation on the carrier, and the Sheffer stroke is a binary
operation on the carrier.

The Sheffer ortholattice structure TrivShefferOrthoLattStr is defined by:

(Def. 10) TrivShefferOrthoLattStr = 〈{∅}, op2, op2, op1, op2〉.
One can verify the following observations:

∗ there exists a Sheffer structure which is non empty,

∗ there exists a Sheffer lattice structure which is non empty, and

∗ there exists a Sheffer ortholattice structure which is non empty.

Let L be a non empty Sheffer structure and let x, y be elements of L. The
functor x¹y yields an element of L and is defined as follows:

(Def. 11) x¹y = (the Sheffer stroke of L)(x, y).
Let L be a non empty Sheffer ortholattice structure. We say that L is pro-

perly defined if and only if the conditions (Def. 12) are satisfied.

(Def. 12)(i) For every element x of L holds x¹x = xc,

(ii) for all elements x, y of L holds x t y = x¹x¹(y¹y),
(iii) for all elements x, y of L holds x u y = x¹y¹(x¹y), and
(iv) for all elements x, y of L holds x¹y = xc + yc.

Let L be a non empty Sheffer structure. We say that L satisfies (Sheffer1) if
and only if:

(Def. 13) For every element x of L holds x¹x¹(x¹x) = x.

We say that L satisfies (Sheffer2) if and only if:
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(Def. 14) For all elements x, y of L holds x¹(y¹(y¹y)) = x¹x.

We say that L satisfies (Sheffer3) if and only if:

(Def. 15) For all elements x, y, z of L holds (x¹(y¹z))¹(x¹(y¹z)) = y¹y¹x¹(z¹z¹x).

Let us note that every non empty Sheffer structure which is trivial satisfies
also (Sheffer1), (Sheffer2), and (Sheffer3).

One can verify that every non empty t-semi lattice structure which is trivial
is also join-commutative and join-associative and every non empty u-semi lattice
structure which is trivial is also meet-commutative and meet-associative.

Let us note that every non empty lattice structure which is trivial is also
join-absorbing, meet-absorbing, and Boolean.

One can check the following observations:

∗ TrivShefferOrthoLattStr is non empty,

∗ TrivShefferOrthoLattStr is trivial, and

∗ TrivShefferOrthoLattStr is properly defined and well-complemented.

Let us mention that there exists a non empty Sheffer ortholattice structure
which is properly defined, Boolean, well-complemented, and lattice-like and sa-
tisfies (Sheffer1), (Sheffer2), and (Sheffer3).

Next we state three propositions:

(27) Every properly defined Boolean well-complemented lattice-like non
empty Sheffer ortholattice structure satisfies (Sheffer1).

(28) Every properly defined Boolean well-complemented lattice-like non
empty Sheffer ortholattice structure satisfies (Sheffer2).

(29) Every properly defined Boolean well-complemented lattice-like non
empty Sheffer ortholattice structure satisfies (Sheffer3).

Let L be a non empty Sheffer structure and let a be an element of L. The
functor a−1 yielding an element of L is defined as follows:

(Def. 16) a−1 = a¹a.

One can prove the following propositions:

(30) Let L be a non empty Sheffer ortholattice structure satisfying (Sheffer3)
and x, y, z be elements of L. Then (x¹(y¹z))−1 = y−1¹x¹(z−1¹x).

(31) For every non empty Sheffer ortholattice structure L satisfying (Sheffer1)
and for every element x of L holds x = (x−1)−1.

(32) Let L be a properly defined non empty Sheffer ortholattice structure
satisfying (Sheffer1), (Sheffer2), and (Sheffer3) and x, y be elements of L.
Then x¹y = y¹x.

(33) Let L be a properly defined non empty Sheffer ortholattice structure
satisfying (Sheffer1), (Sheffer2), and (Sheffer3) and x, y be elements of L.
Then x¹(x¹x) = y¹(y¹y).
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(34) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer1), (Sheffer2), and (Sheffer3) is join-commutative.

(35) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer1), (Sheffer2), and (Sheffer3) is meet-commutative.

(36) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer1), (Sheffer2), and (Sheffer3) is distributive.

(37) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer1), (Sheffer2), and (Sheffer3) is distributive’.

(38) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer1), (Sheffer2), and (Sheffer3) is a Boolean lattice.
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Summary. We continue the description of Boolean algebras in terms of
the Sheffer stroke as defined in [2]. The single axiomatization for BAs in terms
of disjunction and negation was shown in [3]. As was checked automatically with
the help of automated theorem prover Otter, single axiom of the form

(x|((y|x)|x))|(y|(z|x)) = y (Sh1)

is enough to axiomatize the class of all Boolean algebras (¹ is used instead of | in
translation of our Mizar article). Many theorems in Section 2 were automatically
translated from the Otter proof object.

MML Identifier: SHEFFER2.

The terminology and notation used in this paper are introduced in the following
papers: [4], [1], and [2].

1. First Implication

Let L be a non empty Sheffer structure. We say that L satisfies (Sh1) if and
only if:

(Def. 1) For all elements x, y, z of L holds x¹(y¹x¹x)¹(y¹(z¹x)) = y.

Let us observe that every non empty Sheffer structure which is trivial satisfies
also (Sh1).

Let us observe that there exists a non empty Sheffer structure which satisfies
(Sh1), (Sheffer1), (Sheffer2), and (Sheffer3).

In the sequel L is a non empty Sheffer structure satisfying (Sh1).
One can prove the following propositions:
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(1) For all elements x, y, z, u of L holds
(x¹(y¹z)¹(x¹(x¹(y¹z))))¹(z¹(x¹z¹z)¹(u¹(x¹(y¹z)))) = z¹(x¹z¹z).

(2) For all elements x, y, z of L holds (x¹y¹(y¹(z¹y¹y)¹(x¹y)¹(x¹y)))¹z =
y¹(z¹y¹y).

(3) For all elements x, y, z of L holds x¹(y¹x¹x)¹(y¹(z¹(x¹z¹z))) = y.

(4) For all elements x, y of L holds x¹(x¹(x¹x¹x)¹(y¹(x¹(x¹x¹x)))) =
x¹(x¹x¹x).

(5) For every element x of L holds x¹(x¹x¹x) = x¹x.

(6) For every element x of L holds x¹(x¹x¹x)¹(x¹x) = x.

(7) For all elements x, y, z of L holds x¹x¹(x¹(y¹x)) = x.

(8) For all elements x, y of L holds x¹(y¹y¹x¹x)¹y = y¹y.

(9) For all elements x, y of L holds (x¹y¹(x¹y¹(x¹y)¹(x¹y)))¹(x¹y¹(x¹y)) =
y¹(x¹y¹(x¹y)¹y¹y).

(10) For all elements x, y of L holds x¹(y¹x¹(y¹x)¹x¹x) = y¹x.

(11) For all elements x, y of L holds x¹x¹(y¹x) = x.

(12) For all elements x, y of L holds x¹(y¹(x¹x)) = x¹x.

(13) For all elements x, y of L holds x¹y¹(x¹y)¹y = x¹y.

(14) For all elements x, y of L holds x¹(y¹x¹x) = y¹x.

(15) For all elements x, y, z of L holds x¹y¹(x¹(z¹y)) = x.

(16) For all elements x, y, z of L holds x¹(y¹z)¹(x¹z) = x.

(17) For all elements x, y, z of L holds x¹(x¹y¹(z¹y)) = x¹y.

(18) For all elements x, y, z of L holds (x¹(y¹z)¹z)¹x = x¹(y¹z).
(19) For all elements x, y of L holds x¹(y¹x¹x) = x¹y.

(20) For all elements x, y of L holds x¹y = y¹x.

(21) For all elements x, y of L holds x¹y¹(x¹x) = x.

(22) For all elements x, y, z of L holds x¹y¹(y¹(z¹x)) = y.

(23) For all elements x, y, z of L holds x¹(y¹z)¹(z¹x) = x.

(24) For all elements x, y, z of L holds x¹y¹(y¹(x¹z)) = y.

(25) For all elements x, y, z of L holds x¹(y¹z)¹(y¹x) = x.

(26) For all elements x, y, z of L holds x¹y¹(x¹z)¹z = x¹z.

(27) For all elements x, y, z of L holds x¹(y¹(x¹(y¹z))) = x¹(y¹z).
(28) For all elements x, y, z of L holds (x¹(y¹(x¹z)))¹y = y¹(x¹z).
(29) For all elements x, y, z, u of L holds (x¹(y¹z))¹(x¹(u¹(y¹x))) =

x¹(y¹z)¹(y¹x).
(30) For all elements x, y, z of L holds (x¹(y¹(x¹z)))¹y = y¹(z¹x).
(31) For all elements x, y, z, u of L holds x¹(y¹z)¹(x¹(u¹(y¹x))) = x.

(32) For all elements x, y of L holds x¹(y¹(x¹y)) = x¹x.
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(33) For all elements x, y, z of L holds x¹(y¹z) = x¹(z¹y).

(34) For all elements x, y, z of L holds x¹(y¹(x¹(z¹(y¹x)))) = x¹x.

(35) For all elements x, y, z of L holds (x¹(y¹z))¹(y¹x¹x) = x¹(y¹z)¹(x¹(y¹z)).

(36) For all elements x, y, z of L holds x¹(y¹x)¹y = y¹y.

(37) For all elements x, y, z of L holds (x¹y)¹z = z¹(y¹x).

(38) For all elements x, y, z of L holds x¹(y¹(z¹(x¹y))) = x¹(y¹y).

(39) For all elements x, y, z of L holds (x¹y¹y)¹(y¹(z¹x)) = y¹(z¹x)¹(y¹(z¹x)).

(40) For all elements x, y, z, u of L holds (x¹y)¹(z¹u) = u¹z¹(y¹x).

(41) For all elements x, y, z of L holds x¹(y¹(y¹x¹z)) = x¹(y¹y).

(42) For all elements x, y of L holds x¹(y¹x) = x¹(y¹y).

(43) For all elements x, y of L holds (x¹y)¹y = y¹(x¹x).

(44) For all elements x, y, z of L holds x¹(y¹y) = x¹(x¹y).

(45) For all elements x, y, z of L holds (x¹(y¹y))¹(x¹(z¹y)) =
x¹(z¹y)¹(x¹(z¹y)).

(46) For all elements x, y, z of L holds (x¹(y¹z))¹(x¹(y¹y)) =
x¹(y¹z)¹(x¹(y¹z)).

(47) For all elements x, y, z of L holds x¹(y¹y¹(z¹(x¹(x¹y)))) = x¹(y¹y¹(y¹y)).

(48) For all elements x, y, z of L holds (x¹(y¹z)¹(x¹(y¹z)))¹(y¹y) = x¹(y¹y).

(49) For all elements x, y, z of L holds x¹(y¹y¹(z¹(x¹(x¹y)))) = x¹y.

(50) For all elements x, y, z of L holds (x¹y¹(x¹y)¹(z¹(x¹y¹z)¹(x¹y)))¹(x¹x) =
z¹(x¹y¹z)¹(x¹x).

(51) For all elements x, y, z of L holds (x¹(y¹z¹x))¹(y¹y) = y¹z¹(y¹y).

(52) For all elements x, y, z of L holds x¹(y¹z¹x)¹(y¹y) = y.

(53) For all elements x, y, z of L holds x¹(y¹(x¹z¹y)¹x) = y¹(x¹z¹y).

(54) For all elements x, y, z of L holds x¹(y¹(y¹(z¹x))¹x) = y¹(x¹(y¹(x¹z))¹y).

(55) For all elements x, y, z of L holds x¹(y¹(y¹(z¹x))¹x) = y¹(y¹(z¹x)).

(56) For all elements x, y, z, u of L holds x¹(y¹(z¹(z¹(u¹(y¹x))))) = x¹(y¹y).

(57) For all elements x, y, z of L holds x¹(y¹(y¹(z¹(x¹y)))) = x¹(y¹(x¹x)).

(58) For all elements x, y, z of L holds x¹(y¹(y¹(z¹(x¹y)))) = x¹x.

(59) For all elements x, y of L holds x¹(y¹(y¹y)) = x¹x.

(60) For all elements x, y, z of L holds x¹(y¹(z¹x)¹(y¹(z¹x))¹(z¹z)) =
x¹(y¹(z¹x)).

(61) For all elements x, y, z of L holds x¹(y¹(z¹z)) = x¹(y¹(z¹x)).

(62) For all elements x, y, z of L holds x¹(y¹(z¹z¹x)) = x¹(y¹z).

(63) For all elements x, y, z of L holds (x¹(y¹y))¹(x¹(z¹(y¹y¹x))) =
x¹(z¹y)¹(x¹(z¹y)).
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(64) For all elements x, y, z of L holds (x¹(y¹y))¹(x¹(z¹(x¹(y¹y)))) =
x¹(z¹y)¹(x¹(z¹y)).

(65) For all elements x, y, z of L holds (x¹(y¹y))¹(x¹(z¹z)) =
x¹(z¹y)¹(x¹(z¹y)).

(66) For all elements x, y, z of L holds (x¹x¹y)¹(z¹z¹y) = y¹(x¹z)¹(y¹(x¹z)).
(67) For every non empty Sheffer structure L such that L satisfies (Sh1) holds

L satisfies (Sheffer1).
(68) For every non empty Sheffer structure L such that L satisfies (Sh1) holds

L satisfies (Sheffer2).
(69) For every non empty Sheffer structure L such that L satisfies (Sh1) holds

L satisfies (Sheffer3).
Let us mention that there exists a non empty Sheffer ortholattice struc-

ture which is properly defined, Boolean, well-complemented, lattice-like, and de
Morgan and satisfies (Sheffer1), (Sheffer2), (Sheffer3), and (Sh1).

Let us mention that every non empty Sheffer ortholattice structure which
is properly defined satisfies (Sheffer1), (Sheffer2), and (Sheffer3) is also Bo-
olean and lattice-like and every non empty Sheffer ortholattice structure which
is Boolean, lattice-like, well-complemented, and properly defined satisfies also
(Sheffer1), (Sheffer2), and (Sheffer3).

2. Second Implication

We adopt the following rules: L denotes a non empty Sheffer structure satis-
fying (Sheffer1), (Sheffer2), and (Sheffer3) and v, q, p, w, z, y, x denote elements
of L.

One can prove the following propositions:

(70) For all x, w holds w¹(x¹x¹x) = w¹w.

(71) For all p, x holds x = x¹x¹(p¹(p¹p)).
(72) For all y, w holds w¹w¹(w¹(y¹(y¹y))) = w.

(73) For all q, p, y, w holds (w¹(y¹(y¹y))¹p)¹(q¹q¹p) = p¹(w¹q)¹(p¹(w¹q)).
(74) For all q, p, x holds (x¹p)¹(q¹q¹p) = p¹(x¹x¹q)¹(p¹(x¹x¹q)).
(75) For all w, p, y, q holds (w¹w¹p)¹(q¹(y¹(y¹y))¹p) = p¹(w¹q)¹(p¹(w¹q)).
(76) For all p, x holds x = x¹x¹(p¹p¹p).
(77) For all y, w holds w¹w¹(w¹(y¹y¹y)) = w.

(78) For all y, w holds w¹(y¹y¹y)¹(w¹w) = w.

(79) For all p, y, w holds w¹(y¹y¹y)¹(p¹(p¹p)) = w.

(80) For all p, x, y holds y¹(x¹x)¹(y¹(x¹x))¹(p¹(p¹p)) = (x¹x)¹y.

(81) For all x, y holds y¹(x¹x) = (x¹x)¹y.

(82) For all y, w holds w¹y = y¹y¹(y¹y)¹w.
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(83) For all y, w holds w¹y = y¹w.

(84) For all x, p holds (p¹x)¹(p¹(x¹x¹(x¹x))) = x¹x¹(x¹x)¹p¹(x¹x¹(x¹x)¹p).

(85) For all x, p holds (p¹x)¹(p¹x) = x¹x¹(x¹x)¹p¹(x¹x¹(x¹x)¹p).

(86) For all x, p holds (p¹x)¹(p¹x) = x¹p¹(x¹x¹(x¹x)¹p).

(87) For all x, p holds (p¹x)¹(p¹x) = x¹p¹(x¹p).

(88) For all y, q, w holds (w¹q¹(y¹y¹y))¹(w¹q¹(w¹q)) = w¹w¹(w¹q)¹(q¹q¹(w¹q)).
(89) For all q, w holds w¹q = w¹w¹(w¹q)¹(q¹q¹(w¹q)).
(90) For all q, p holds (p¹p)¹(p¹(q¹q¹q)) = q¹q¹(q¹q)¹p¹(q¹q¹p).

(91) For all p, q holds p = q¹q¹(q¹q)¹p¹(q¹q¹p).

(92) For all p, q holds p = q¹p¹(q¹q¹p).

(93) For all z, w, x holds (x¹x¹w¹(z¹z¹w))¹(w¹(x¹z)¹(w¹(x¹z))) =
w¹w¹(w¹(x¹z))¹(x¹z¹(x¹z)¹(w¹(x¹z))).

(94) For all z, w, x holds (x¹x¹w¹(z¹z¹w))¹(w¹(x¹z)¹(w¹(x¹z))) = w¹(x¹z).

(95) For all w, p holds (p¹p)¹(p¹(w¹(w¹w))) = w¹w¹p¹(w¹w¹(w¹w)¹p).

(96) For all p, w holds p = w¹w¹p¹(w¹w¹(w¹w)¹p).

(97) For all p, w holds p = w¹w¹p¹(w¹p).

(98) For all z, q, x holds (x¹x¹q¹(z¹z¹q))¹(q¹(x¹z)¹(q¹(x¹z))) =
z¹z¹(z¹z)¹(x¹x¹q)¹(q¹q¹(x¹x¹q)).

(99) For all q, z, x holds q¹(x¹z) = (z¹z¹(z¹z)¹(x¹x¹q))¹(q¹q¹(x¹x¹q)).
(100) For all q, z, x holds q¹(x¹z) = (z¹(x¹x¹q))¹(q¹q¹(x¹x¹q)).
(101) For all w, y holds w¹w = y¹y¹y¹w.

(102) For all w, p holds p¹w¹(w¹w¹p) = p.

(103) For all y, w holds w¹w¹(w¹w¹(y¹y¹y)) = (y¹y)¹y.

(104) For all y, w holds w¹w¹w = y¹y¹y.

(105) For all p, w holds w¹p¹(p¹(w¹w)) = p.

(106) For all w, p holds p¹(w¹w)¹(w¹p) = p.

(107) For all p, w holds w¹p¹(w¹(p¹p)) = w.

(108) For all x, y holds y¹(y¹(x¹x)¹(y¹(x¹x))¹(x¹y)) = x¹y.

(109) For all p, w holds w¹(p¹p)¹(w¹p) = w.

(110) For all p, w, q, y holds (y¹y¹y¹q)¹(w¹w¹q) =
q¹(p¹(p¹p)¹(p¹(p¹p))¹w)¹(q¹(p¹(p¹p)¹(p¹(p¹p))¹w)).

(111) For all q, w, p holds (q¹q)¹(w¹w¹q) =
q¹(p¹(p¹p)¹(p¹(p¹p))¹w)¹(q¹(p¹(p¹p)¹(p¹(p¹p))¹w)).

(112) For all w, y, p holds w¹p¹(w¹(p¹(y¹(y¹y)))) = w.

(113) For all w, y, p holds w¹(p¹(y¹(y¹y)))¹(w¹p) = w.

(114) For all q, p, y holds (y¹y¹y¹p)¹(q¹q¹p) = p¹(p¹p¹q)¹(p¹(p¹p¹q)).
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(115) For all q, z, x holds (q¹(x¹x¹z)¹(q¹(x¹x¹z)))¹(x¹q¹(z¹z¹q)) =
z¹z¹(z¹z)¹(x¹q)¹(q¹q¹(x¹q)).

(116) For all q, z, x holds (q¹(x¹x¹z)¹(q¹(x¹x¹z)))¹(x¹q¹(z¹z¹q)) =
z¹(x¹q)¹(q¹q¹(x¹q)).

(117) For all w, q, z holds (w¹w¹(z¹z¹q))¹(q¹(q¹q¹z)¹(q¹(q¹q¹z))) =
z¹z¹q¹(w¹q)¹(z¹z¹q¹(w¹q)).

(118) For all q, p, x holds p¹(x¹p)¹(p¹(x¹p))¹(q¹(q¹q)) = (x¹x)¹p.

(119) For all p, x holds p¹(x¹p) = (x¹x)¹p.

(120) For all p, y holds (y¹p)¹(y¹y¹p) = p¹p¹(y¹p).
(121) For all x, y holds x = x¹x¹(y¹x).
(122) For all x, y holds (y¹x)¹x = x¹(y¹y)¹(x¹(y¹y))¹(y¹x).
(123) For all x, z, y holds x¹(y¹y¹z)¹(x¹(y¹y¹z))¹(y¹x¹(z¹z¹x)) = (z¹(y¹x))¹x.

(124) For all x, y, z holds x¹(z¹(z¹z)¹(z¹(z¹z))¹y)¹(x¹(z¹(z¹z)¹(z¹(z¹z))¹y)) =
x.

(125) For all x, z, y holds (x¹(y¹y¹z))¹z = z¹(y¹x).
(126) For all x, y holds x¹(y¹x¹x) = y¹x.

(127) For all z, y, x holds y = x¹x¹x¹y¹(z¹z¹y).
(128) For all z, y holds y¹(y¹y¹z)¹(y¹(y¹y¹z)) = y.

(129) For all x, z, y holds y¹y¹z¹(x¹z)¹(y¹y¹z¹(x¹z)) = (x¹x¹(y¹y¹z))¹z.

(130) For all x, z, y holds (y¹y¹z¹(x¹z))¹(y¹y¹z¹(x¹z)) = z¹(y¹(x¹x)).
(131) For all y, x holds x¹y¹(x¹y)¹x = x¹y.

(132) For all p, w holds w¹w¹(w¹p) = w.

(133) For all w, p holds p¹w¹(w¹w) = w.

(134) For all p, y, w holds w¹(y¹(y¹y))¹(w¹p) = w.

(135) For all p, w holds w¹p¹(w¹w) = w.

(136) For all y, p, w holds w¹p¹(w¹(y¹(y¹y))) = w.

(137) For all p, q, w, y, x holds (x¹(y¹(y¹y))¹w¹(q¹q¹w))¹(w¹(x¹q)¹(w¹(x¹q))) =
w¹(p¹(p¹p))¹(w¹(x¹q))¹(x¹q¹(x¹q)¹(w¹(x¹q))).

(138) For all q, w, y, x holds (x¹(y¹(y¹y))¹w¹(q¹q¹w))¹(w¹(x¹q)¹(w¹(x¹q))) =
w¹(x¹q¹(x¹q)¹(w¹(x¹q))).

(139) For all q, w, y, x holds (x¹(y¹(y¹y))¹w¹(q¹q¹w))¹(w¹(x¹q)¹(w¹(x¹q))) =
w¹(x¹q).

(140) For all z, p, q, y, x holds (x¹(y¹(y¹y))¹q¹(z¹z¹q))¹(q¹(x¹z)¹(q¹(x¹z))) =
z¹z¹(p¹(p¹p))¹(x¹(y¹(y¹y))¹q)¹(q¹q¹(x¹(y¹(y¹y))¹q)).

(141) For all z, p, q, y, x holds q¹(x¹z) =
(z¹z¹(p¹(p¹p))¹(x¹(y¹(y¹y))¹q))¹(q¹q¹(x¹(y¹(y¹y))¹q)).

(142) For all z, q, y, x holds q¹(x¹z) = (z¹(x¹(y¹(y¹y))¹q))¹(q¹q¹(x¹(y¹(y¹y))¹q)).
(143) For all v, p, y, x holds p¹(x¹v) = (v¹(x¹(y¹(y¹y))¹p))¹p.
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(144) For all y, w, z, v, x holds (w¹(z¹(x¹v)))¹(x¹(y¹(y¹y))¹z¹(v¹v¹z)) =
z¹(x¹v).

(145) For all y, z, x holds (y¹(x¹x¹z)¹(y¹(x¹x¹z)))¹(x¹y¹(z¹z¹y)) = y¹(x¹x¹z).
(146) For all z, y, x holds (z¹(x¹y))¹y = y¹(x¹x¹z).
(147) For all x, w, y, z holds (x¹x¹w¹(z¹(y¹(y¹y))¹w))¹w = w¹(x¹z).
(148) For all z, w, x holds w¹(z¹(x¹x¹w)) = w¹(x¹z).
(149) For all p, z, y, x holds (z¹(x¹p)¹(z¹(x¹p)))¹(x¹(y¹(y¹y))¹z¹(p¹p¹z)) =

p¹p¹z¹(x¹(y¹(y¹y))¹z)¹(p¹p¹z¹(x¹(y¹(y¹y))¹z)).
(150) For all p, z, y, x holds z¹(x¹p) =

(p¹p¹z¹(x¹(y¹(y¹y))¹z))¹(p¹p¹z¹(x¹(y¹(y¹y))¹z)).
(151) For all z, p, y, x holds z¹(x¹p) = z¹(p¹(x¹(y¹(y¹y))¹(x¹(y¹(y¹y))))).
(152) For all z, p, x holds z¹(x¹p) = z¹(p¹x).
(153) For all w, q, p holds (p¹q)¹w = w¹(q¹p).
(154) For all w, p, q holds (q¹p¹w)¹q = q¹(p¹p¹w).
(155) For all z, w, y, x holds w¹x = w¹(x¹z¹(x¹(y¹(y¹y))¹(x¹(y¹(y¹y)))¹w)).
(156) For all w, z, x holds w¹x = w¹(x¹z¹(x¹w)).
(157) For all q, x, z, y holds (x¹y)¹(x¹(y¹(z¹(z¹z)))¹q¹x) =

x¹y¹(x¹(y¹(z¹(z¹z)))).
(158) For all x, q, z, y holds (x¹y)¹(x¹(y¹(z¹(z¹z))¹(y¹(z¹(z¹z)))¹q)) =

x¹y¹(x¹(y¹(z¹(z¹z)))).
(159) For all z, x, q, y holds (x¹y)¹(x¹(y¹q)) = x¹y¹(x¹(y¹(z¹(z¹z)))).
(160) For all x, q, y holds x¹y¹(x¹(y¹q)) = x.

(161) L satisfies (Sh1).
Let us mention that every non empty Sheffer structure which satisfies

(Sheffer1), (Sheffer2), and (Sheffer3) satisfies also (Sh1) and every non empty
Sheffer structure which satisfies (Sh1) satisfies also (Sheffer1), (Sheffer2), and
(Sheffer3).

Let us observe that every non empty Sheffer ortholattice structure which
is properly defined satisfies (Sh1) is also Boolean and lattice-like and every
non empty Sheffer ortholattice structure which is Boolean, lattice-like, well-
complemented, and properly defined satisfies also (Sh1).
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The terminology and notation used in this paper have been introduced in the
following articles: [16], [3], [19], [5], [4], [1], [15], [6], [17], [18], [9], [8], [2], [20],
[12], [14], [10], [13], [7], and [11].

For simplicity, we adopt the following rules: S, T denote non trivial real
normed spaces, x0 denotes a point of S, f denotes a partial function from S to
T , h denotes a convergent to 0 sequence of S, and c denotes a constant sequence
of S.

Let X, Y , Z be real normed spaces, let f be an element of BdLinOps(X, Y ),
and let g be an element of BdLinOps(Y, Z). The functor g ·f yielding an element
of BdLinOps(X, Z) is defined by:

(Def. 1) g · f = modetrans(g, Y, Z) ·modetrans(f, X, Y ).
Let X, Y , Z be real normed spaces, let f be a point of

RNormSpaceOfBoundedLinearOperators(X, Y ), and let g be a point of
RNormSpaceOfBoundedLinearOperators(Y,Z). The functor g · f yields a po-
int of RNormSpaceOfBoundedLinearOperators(X, Z) and is defined by:

(Def. 2) g · f = modetrans(g, Y, Z) ·modetrans(f, X, Y ).
Next we state three propositions:

(1) Let x0 be a point of S. Suppose f is differentiable in x0. Then there
exists a neighbourhood N of x0 such that

(i) N ⊆ dom f, and
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(ii) for every point z of S and for every convergent to 0 sequence h of real
numbers and for every c such that rng c = {x0} and rng(h · z + c) ⊆ N

holds h−1 (f · (h · z + c)− f · c) is convergent and f ′(x0)(z) = lim(h−1 (f ·
(h · z + c)− f · c)).

(2) Let x0 be a point of S. Suppose f is differentiable in x0. Let z be a point
of S, h be a convergent to 0 sequence of real numbers, and given c. Suppose
rng c = {x0} and rng(h · z + c) ⊆ dom f. Then h−1 (f · (h · z + c)− f · c) is
convergent and f ′(x0)(z) = lim(h−1 (f · (h · z + c)− f · c)).

(3) Let x0 be a point of S and N be a neighbourhood of x0. Suppose N ⊆
dom f. Let z be a point of S and d1 be a point of T . Then the following
statements are equivalent

(i) for every convergent to 0 sequence h of real numbers and for every c

such that rng c = {x0} and rng(h ·z+c) ⊆ N holds h−1 (f ·(h ·z+c)−f ·c)
is convergent and d1 = lim(h−1 (f · (h · z + c)− f · c)),

(ii) for every real number e such that e > 0 there exists a real number d

such that d > 0 and for every real number h such that |h| < d and h 6= 0
and h · z + x0 ∈ N holds ‖h−1 · (fh·z+x0 − fx0)− d1‖ < e.

Let us consider S, T , let us consider f , let x0 be a point of S, and let z be
a point of S. We say that f is Gateaux differentiable in x0, z if and only if the
condition (Def. 3) is satisfied.

(Def. 3) There exists a neighbourhood N of x0 such that
(i) N ⊆ dom f, and
(ii) there exists a point d1 of T such that for every real number e such

that e > 0 there exists a real number d such that d > 0 and for every
real number h such that |h| < d and h 6= 0 and h · z + x0 ∈ N holds
‖h−1 · (fh·z+x0 − fx0)− d1‖ < e.

One can prove the following proposition

(4) For every real normed space X and for all points x, y of X holds ‖x−y‖ >

0 iff x 6= y and for every real normed space X and for all points x, y of
X holds ‖x− y‖ = ‖y− x‖ and for every real normed space X and for all
points x, y of X holds ‖x − y‖ = 0 iff x = y and for every real normed
space X and for all points x, y of X holds ‖x − y‖ 6= 0 iff x 6= y and for
every real normed space X and for all points x, y, z of X and for every
real number e such that e > 0 holds if ‖x− z‖ < e

2 and ‖z − y‖ < e
2 , then

‖x− y‖ < e and for every real normed space X and for all points x, y, z

of X and for every real number e such that e > 0 holds if ‖x − z‖ < e
2

and ‖y− z‖ < e
2 , then ‖x− y‖ < e and for every real normed space X and

for every point x of X such that for every real number e such that e > 0
holds ‖x‖ < e holds x = 0X and for every real normed space X and for all
points x, y of X such that for every real number e such that e > 0 holds
‖x− y‖ < e holds x = y.
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Let us consider S, T , let us consider f , let x0 be a point of S, and let z be a
point of S. Let us assume that f is Gateaux differentiable in x0, z. The functor
GateauxDiffz(f, x0) yields a point of T and is defined by the condition (Def. 4).

(Def. 4) There exists a neighbourhood N of x0 such that
(i) N ⊆ dom f, and
(ii) for every real number e such that e > 0 there exists a real number d

such that d > 0 and for every real number h such that |h| < d and h 6= 0
and h · z +x0 ∈ N holds ‖h−1 · (fh·z+x0 − fx0)−GateauxDiffz(f, x0)‖ < e.

We now state two propositions:

(5) Let x0 be a point of S and z be a point of S. Then f is Gateaux differen-
tiable in x0, z if and only if there exists a neighbourhood N of x0 such that
N ⊆ dom f and there exists a point d1 of T such that for every convergent
to 0 sequence h of real numbers and for every c such that rng c = {x0}
and rng(h · z + c) ⊆ N holds h−1 (f · (h · z + c)− f · c) is convergent and
d1 = lim(h−1 (f · (h · z + c)− f · c)).

(6) Let x0 be a point of S. Suppose f is differentiable in x0. Let z be a point
of S. Then

(i) f is Gateaux differentiable in x0, z,
(ii) GateauxDiffz(f, x0) = f ′(x0)(z), and
(iii) there exists a neighbourhood N of x0 such that N ⊆ dom f and for

every convergent to 0 sequence h of real numbers and for every c such that
rng c = {x0} and rng(h · z + c) ⊆ N holds h−1 (f · (h · z + c) − f · c) is
convergent and GateauxDiffz(f, x0) = lim(h−1 (f · (h · z + c)− f · c)).

In the sequel U is a non trivial real normed space.
Next we state several propositions:

(7) Let R be a rest of S, T . Suppose R0S = 0T . Let e be a real number.
Suppose e > 0. Then there exists a real number d such that d > 0 and for
every point h of S such that ‖h‖ < d holds ‖Rh‖ ¬ e · ‖h‖.

(8) Let R be a rest of T , U . Suppose R0T = 0U . Let L be a bounded linear
operator from S into T . Then R · L is a rest of S, U .

(9) For every rest R of S, T and for every bounded linear operator L from
T into U holds L ·R is a rest of S, U .

(10) Let R1 be a rest of S, T . Suppose (R1)0S = 0T . Let R2 be a rest of T ,
U . If (R2)0T = 0U , then R2 ·R1 is a rest of S, U .

(11) Let R1 be a rest of S, T . Suppose (R1)0S = 0T . Let R2 be a rest of T ,
U . Suppose (R2)0T = 0U . Let L be a bounded linear operator from S into
T . Then R2 · (L + R1) is a rest of S, U .

(12) Let R1 be a rest of S, T . Suppose (R1)0S = 0T . Let R2 be a rest of
T , U . Suppose (R2)0T = 0U . Let L1 be a bounded linear operator from
S into T and L2 be a bounded linear operator from T into U . Then
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L2 ·R1 + R2 · (L1 + R1) is a rest of S, U .

(13) Let f1 be a partial function from S to T . Suppose f1 is differentiable in
x0. Let f2 be a partial function from T to U . Suppose f2 is differentiable
in (f1)x0 . Then f2 ·f1 is differentiable in x0 and (f2 ·f1)′(x0) = f2

′((f1)x0) ·
f1
′(x0).
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Summary. In C-program, vectors of n-dimension are sometimes represen-
ted by arrays, where the dimension n is saved in the 0-th element of each array.
If we write the program in non-overwriting type, we can give Logical-Model to
each program. Here, we give a program calculating inner product of 2 vectors,
as an example of such a type, and its Logical-Model. If the Logical-Model is well
defined, and theorems tying the model with previous definitions are given, we can
say that the program is logically correct. In case the program is given as implicit
function form (i.e., the result of calculation is given by a variable of one of argu-
ments of a function), its Logical-Model is given by a definition of a new predicate
form. Logical correctness of such a program is shown by theorems following the
definition. As examples of such programs, we presented vector calculation of add,
sub, minus and scalar product.
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The articles [16], [18], [14], [20], [8], [4], [5], [11], [3], [10], [2], [6], [19], [17], [12],
[9], [13], [1], [15], and [7] provide the terminology and notation for this paper.

In this paper m, n, i are natural numbers and D is a set.
The following proposition is true

(1) For all n, m holds n ∈ m iff n < m.

Let D be a non empty set. One can check that there exists a finite 0-sequence
of D which is non empty.

The following proposition is true

(2) For every non empty set D and for every non empty finite 0-sequence f

of D holds len f > 0.

Let D be a set and let q be a finite sequence of elements of D. The functor
FS2XFS(q) yields a finite 0-sequence of D and is defined by:
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(Def. 1) len FS2XFS(q) = len q and for every i such that i < len q holds q(i+1) =
(FS2XFS(q))(i).

Let D be a set and let q be a finite 0-sequence of D. The functor XFS2FS(q)
yielding a finite sequence of elements of D is defined as follows:

(Def. 2) len XFS2FS(q) = len q and for every i such that 1 ¬ i and i ¬ len q holds
q(i−′ 1) = (XFS2FS(q))(i).

One can prove the following two propositions:

(3) For every natural number k and for every set a holds k 7−→ a is a finite
0-sequence.

(4) Let D be a set, n be a natural number, and r be a set. Suppose r ∈ D.

Then n 7−→ r is a finite 0-sequence of D and for every finite 0-sequence q2

such that q2 = n 7−→ r holds len q2 = n.

Let D be a non empty set, let q be a finite sequence of elements of D, and let
n be a natural number. Let us assume that n > len q and N ⊆ D. The functor
FS2XFS?(q, n) yields a non empty finite 0-sequence of D and is defined by the
conditions (Def. 3).

(Def. 3)(i) len q = (FS2XFS?(q, n))(0),
(ii) len FS2XFS?(q, n) = n,

(iii) for every i such that 1 ¬ i and i ¬ len q holds (FS2XFS?(q, n))(i) =
q(i), and

(iv) for every natural number j such that len q < j and j < n holds
(FS2XFS?(q, n))(j) = 0.

Let D be a non empty set and let p be a non empty finite 0-sequence of D.
Let us assume that N ⊆ D and p(0) is a natural number and p(0) ∈ len p. The
functor XFS2FS?(p) yielding a finite sequence of elements of D is defined by:

(Def. 4) For every m such that m = p(0) holds len XFS2FS?(p) = m and for
every i such that 1 ¬ i and i ¬ m holds (XFS2FS?(p))(i) = p(i).

The following proposition is true

(5) For every non empty set D and for every non empty finite 0-sequence p

of D such that N ⊆ D and p(0) = 0 and 0 < len p holds XFS2FS?(p) = ∅.
Let D be a non empty set, let p be a finite 0-sequence of D, and let q be a

finite sequence of elements of D. We say that p is an xrep of q if and only if:

(Def. 5) N ⊆ D and p(0) = len q and len q < len p and for every i such that 1 ¬ i

and i ¬ len q holds p(i) = q(i).

The following proposition is true

(6) Let D be a non empty set and p be a non empty finite 0-sequence of D.
Suppose N ⊆ D and p(0) is a natural number and p(0) ∈ len p. Then p is
an xrep of XFS2FS?(p).
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Let x, y, a, b, c be sets. The functor IFLGT(x, y, a, b, c) yielding a set is
defined by:

(Def. 6) IFLGT(x, y, a, b, c) =





a, if x ∈ y,

b, if x = y,

c, otherwise.
Next we state the proposition

(7) Let D be a non empty set, q be a finite sequence of elements of D, and
n be a natural number. Suppose N ⊆ D and n > len q. Then there exists
a finite 0-sequence p of D such that len p = n and p is an xrep of q.

Let b be a finite 0-sequence of R and let n be a natural number. Then b(n)
is a real number.

Let a, b be finite 0-sequences of R. Let us assume that b(0) is a natural
number and 0 ¬ b(0) and b(0) < len a. The functor InnerPrdPrg(a, b) yielding
a real number is defined by the condition (Def. 7).

(Def. 7) There exists a finite 0-sequence s of R and there exists an integer n such
that

(i) len s = len a,

(ii) s(0) = 0,
(iii) n = b(0),
(iv) if n 6= 0, then for every natural number i such that i < n holds s(i+1) =

s(i) + a(i + 1) · b(i + 1), and
(v) InnerPrdPrg(a, b) = s(n).
The following propositions are true:

(8) Let a be a finite sequence of elements of R and s be a finite 0-sequence
of R. Suppose len s > len a and s(0) = 0 and for every i such that i < len a

holds s(i + 1) = s(i) + a(i + 1). Then
∑

a = s(len a).
(9) Let a be a finite sequence of elements of R. Then there exists a finite

0-sequence s of R such that len s = len a + 1 and s(0) = 0 and for every i

such that i < len a holds s(i + 1) = s(i) + a(i + 1) and
∑

a = s(len a).
(10) Let a, b be finite sequences of elements of R and n be a na-

tural number. If len a = len b and n > len a, then |(a, b)| =
InnerPrdPrg(FS2XFS?(a, n), FS2XFS?(b, n)).

Let b, c be finite 0-sequences of R, let a be a real number, and let m be an
integer. We say that m scalar prd prg of c, a, b if and only if the conditions
(Def. 8) are satisfied.

(Def. 8)(i) len c = m,

(ii) len b = m, and
(iii) there exists an integer n such that c(0) = b(0) and n = b(0) and if

n 6= 0, then for every natural number i such that 1 ¬ i and i ¬ n holds
c(i) = a · b(i).
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We now state the proposition

(11) Let b be a non empty finite 0-sequence of R, a be a real number, and m

be a natural number. Suppose b(0) is a natural number and len b = m and
0 ¬ b(0) and b(0) < m. Then

(i) there exists a finite 0-sequence c of R such that m scalar prd prg of c,
a, b, and

(ii) for every non empty finite 0-sequence c of R such that m scalar prd prg
of c, a, b holds XFS2FS?(c) = a ·XFS2FS?(b).

Let b, c be finite 0-sequences of R and let m be an integer. We say that m

vector minus prg of c, b if and only if the conditions (Def. 9) are satisfied.

(Def. 9)(i) len c = m,

(ii) len b = m, and
(iii) there exists an integer n such that c(0) = b(0) and n = b(0) and if

n 6= 0, then for every natural number i such that 1 ¬ i and i ¬ n holds
c(i) = −b(i).

The following proposition is true

(12) Let b be a non empty finite 0-sequence of R and m be a natural number.
Suppose b(0) is a natural number and len b = m and 0 ¬ b(0) and b(0) <

m. Then
(i) there exists a finite 0-sequence c of R such that m vector minus prg of

c, b, and
(ii) for every non empty finite 0-sequence c of R such that m vector minus

prg of c, b holds XFS2FS?(c) = −XFS2FS?(b).

Let a, b, c be finite 0-sequences of R and let m be an integer. We say that
m vector add prg of c, a, b if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) len c = m,

(ii) len a = m,

(iii) len b = m, and
(iv) there exists an integer n such that c(0) = b(0) and n = b(0) and if

n 6= 0, then for every natural number i such that 1 ¬ i and i ¬ n holds
c(i) = a(i) + b(i).

Next we state the proposition

(13) Let a, b be non empty finite 0-sequences of R and m be a natural number.
Suppose b(0) is a natural number and len a = m and len b = m and
a(0) = b(0) and 0 ¬ b(0) and b(0) < m. Then

(i) there exists a finite 0-sequence c of R such that m vector add prg of c,
a, b, and

(ii) for every non empty finite 0-sequence c of R such that m vector add
prg of c, a, b holds XFS2FS?(c) = XFS2FS?(a) + XFS2FS?(b).
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Let a, b, c be finite 0-sequences of R and let m be an integer. We say that
m vector sub prg of c, a, b if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) len c = m,

(ii) len a = m,

(iii) len b = m, and
(iv) there exists an integer n such that c(0) = b(0) and n = b(0) and if

n 6= 0, then for every natural number i such that 1 ¬ i and i ¬ n holds
c(i) = a(i)− b(i).

One can prove the following proposition

(14) Let a, b be non empty finite 0-sequences of R and m be a natural number.
Suppose b(0) is a natural number and len a = m and len b = m and
a(0) = b(0) and 0 ¬ b(0) and b(0) < m. Then

(i) there exists a finite 0-sequence c of R such that m vector sub prg of c,
a, b, and

(ii) for every non empty finite 0-sequence c of R such that m vector sub
prg of c, a, b holds XFS2FS?(c) = XFS2FS?(a)−XFS2FS?(b).
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Summary. We showed relations between separateness and inflation ope-
ration. We also gave some relations between separateness and connectedness de-
fined before. For two finite topological spaces, we defined a continuous function
from one to another. Some topological concepts are preserved by such continuous
functions. We gave one-dimensional concrete models of finite topological space.

MML Identifier: FINTOPO4.

The notation and terminology used here are introduced in the following articles:
[12], [5], [13], [1], [14], [3], [4], [2], [6], [10], [9], [11], [7], and [8].

Let F1 be a non empty finite topology space and let A, B be subsets of F1.
We say that A and B are separated if and only if:

(Def. 1) Ab misses B and A misses Bb.

Next we state a number of propositions:

(1) Let F1 be a filled non empty finite topology space, A be a subset of F1,
and n, m be natural numbers. If n ¬ m, then Finf(A, n) ⊆ Finf(A,m).

(2) Let F1 be a filled non empty finite topology space, A be a subset of F1,
and n, m be natural numbers. If n ¬ m, then Fcl(A,n) ⊆ Fcl(A, m).

(3) Let F1 be a filled non empty finite topology space, A be a subset of F1,
and n, m be natural numbers. If n ¬ m, then Fdfl(A,m) ⊆ Fdfl(A,n).

(4) Let F1 be a filled non empty finite topology space, A be a subset of F1,
and n, m be natural numbers. If n ¬ m, then Fint(A,m) ⊆ Fint(A, n).

(5) Let F1 be a non empty finite topology space and A, B be subsets of F1.
If A and B are separated, then B and A are separated.
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(6) Let F1 be a filled non empty finite topology space and A, B be subsets
of F1. If A and B are separated, then A misses B.

(7) Let F1 be a non empty finite topology space and A, B be subsets of F1.
Suppose F1 is symmetric. Then A and B are separated if and only if Af

misses B and A misses Bf .

(8) Let F1 be a filled non empty finite topology space and A, B be subsets
of F1. If F1 is symmetric and Ab misses B, then A misses Bb.

(9) Let F1 be a filled non empty finite topology space and A, B be subsets
of F1. If F1 is symmetric and A misses Bb, then Ab misses B.

(10) Let F1 be a filled non empty finite topology space and A, B be subsets
of F1. Suppose F1 is symmetric. Then A and B are separated if and only
if Ab misses B.

(11) Let F1 be a filled non empty finite topology space and A, B be subsets
of F1. Suppose F1 is symmetric. Then A and B are separated if and only
if A misses Bb.

(12) Let F1 be a filled non empty finite topology space and I1 be a subset of
F1. Suppose F1 is symmetric. Then I1 is connected if and only if for all
subsets A, B of F1 such that I1 = A∪B and A and B are separated holds
A = I1 or B = I1.

(13) Let F1 be a filled non empty finite topology space and B be a subset of
F1. Suppose F1 is symmetric. Then B is connected if and only if it is not
true that there exists a subset C of F1 such that C 6= ∅ and B \ C 6= ∅
and C ⊆ B and Cb misses B \ C.

Let F2, F3 be non empty finite topology spaces, let f be a function from the
carrier of F2 into the carrier of F3, and let n be a natural number. We say that
f is continuous n if and only if:

(Def. 2) For every element x of F2 and for every element y of F3 such that x ∈ the
carrier of F2 and y = f(x) holds f◦U(x, 0) ⊆ U(y, n).

Next we state four propositions:

(14) Let F2 be a non empty finite topology space, F3 be a filled non empty
finite topology space, n be a natural number, and f be a function from
the carrier of F2 into the carrier of F3. If f is continuous 0, then f is
continuous n.

(15) Let F2 be a non empty finite topology space, F3 be a filled non empty
finite topology space, n0, n be natural numbers, and f be a function from
the carrier of F2 into the carrier of F3. If f is continuous n0 and n0 ¬ n,

then f is continuous n.

(16) Let F2, F3 be non empty finite topology spaces, A be a subset of F2,
B be a subset of F3, and f be a function from the carrier of F2 into the
carrier of F3. If f is continuous 0 and B = f◦A, then f◦Ab ⊆ Bb.
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(17) Let F2, F3 be non empty finite topology spaces, A be a subset of F2,
B be a subset of F3, and f be a function from the carrier of F2 into the
carrier of F3. Suppose A is connected and f is continuous 0 and B = f◦A.

Then B is connected.

Let n be a natural number. The functor Nbdl1(n) yielding a function from
Seg n into 2Seg n is defined as follows:

(Def. 3) dom Nbdl1(n) = Seg n and for every natural number i such that i ∈ Seg n

holds (Nbdl1(n))(i) = {i, max(i−′ 1, 1), min(i + 1, n)}.
Let n be a natural number. Let us assume that n > 0. The functor FTSL1(n)

yielding a non empty finite topology space is defined as follows:

(Def. 4) FTSL1(n) = 〈Seg n, Nbdl1(n)〉.
We now state two propositions:

(18) For every natural number n such that n > 0 holds FTSL1(n) is filled.

(19) For every natural number n such that n > 0 holds FTSL1(n) is symme-
tric.

Let n be a natural number. The functor Nbdc1(n) yielding a function from
Seg n into 2Seg n is defined by the conditions (Def. 5).

(Def. 5)(i) dom Nbdc1(n) = Seg n, and
(ii) for every natural number i such that i ∈ Seg n holds if 1 < i and

i < n, then (Nbdc1(n))(i) = {i, i−′ 1, i + 1} and if i = 1 and i < n, then
(Nbdc1(n))(i) = {i, n, i+1} and if 1 < i and i = n, then (Nbdc1(n))(i) =
{i, i−′ 1, 1} and if i = 1 and i = n, then (Nbdc1(n))(i) = {i}.

Let n be a natural number. Let us assume that n > 0. The functor FTSC1(n)
yielding a non empty finite topology space is defined as follows:

(Def. 6) FTSC1(n) = 〈Seg n, Nbdc1(n)〉.
We now state two propositions:

(20) For every natural number n such that n > 0 holds FTSC1(n) is filled.

(21) For every natural number n such that n > 0 holds FTSC1(n) is symme-
tric.
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Summary. In this paper we show some auxiliary facts for sequence func-
tion to be pseudo-metric. Next we prove the Nagata-Smirnov theorem that every
topological space is metrizable if and only if it has σ-locally finite basis. We attach
also the proof of the Bing’s theorem that every topological space is metrizable if
and only if its basis is σ-discrete.
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The terminology and notation used in this paper have been introduced in the
following articles: [9], [27], [28], [32], [20], [5], [12], [8], [21], [15], [2], [17], [14],
[18], [19], [6], [10], [11], [24], [23], [4], [33], [1], [3], [25], [16], [26], [7], [13], [29],
[31], [34], [30], and [22].

For simplicity, we adopt the following convention: i, k, m, n denote natural
numbers, r, s denote real numbers, X denotes a set, T , T1, T2 denote non empty
topological spaces, p denotes a point of T , A denotes a subset of T , A′ denotes
a non empty subset of T , p1 denotes an element of [: the carrier of T , the carrier
of T :], p2 denotes a function from [: the carrier of T , the carrier of T :] into R, p′1
denotes a real map of [:T, T :], f denotes a real map of T , F2 denotes a sequence
of partial functions from [: the carrier of T , the carrier of T :] into R, and s1

denotes a sequence of real numbers.
The following proposition is true

(1) For every i such that i > 0 there exist n, m such that i = 2n · (2 ·m+1).

The function PairFunc from [:N, N :] into N is defined by:

(Def. 1) For all n, m holds PairFunc(〈〈n, m〉〉) = 2n · (2 ·m + 1)− 1.

We now state the proposition

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102 and KBN grant 4 T11C 039 24.
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(2) PairFunc is bijective.

Let X be a set, let f be a function from [:X, X :] into R, and let x be an
element of X. The functor ρ(f, x) yielding a function from X into R is defined
as follows:

(Def. 2) For every element y of X holds (ρ(f, x))(y) = f(x, y).

The following two propositions are true:

(3) Let D be a subset of [:T1, T2 :]. Suppose D is open. Let x1 be a point of
T1, x2 be a point of T2, X1 be a subset of T1, and X2 be a subset of T2.
Then

(i) if X1 = π1((the carrier of T1)× the carrier of T2)◦(D ∩ [: the carrier of
T1, {x2} :]), then X1 is open, and

(ii) if X2 = π2((the carrier of T1)×the carrier of T2)◦(D∩[: {x1}, the carrier
of T2 :]), then X2 is open.

(4) For every p2 such that for every p′1 such that p2 = p′1 holds p′1 is conti-
nuous and for every point x of T holds ρ(p2, x) is continuous.

Let X be a non empty set, let f be a function from [:X, X :] into R, and let
A be a subset of X. The functor inf(f, A) yielding a function from X into R is
defined by:

(Def. 3) For every element x of X holds (inf(f, A))(x) = inf((ρ(f, x))◦A).

One can prove the following propositions:

(5) Let X be a non empty set and f be a function from [:X, X :] into R.
Suppose f is a pseudometric of. Let A be a non empty subset of X and x

be an element of X. Then (inf(f, A))(x)  0.

(6) Let X be a non empty set and f be a function from [:X, X :] into R.
Suppose f is a pseudometric of. Let A be a subset of X and x be an
element of X. If x ∈ A, then (inf(f, A))(x) = 0.

(7) Let given p2. Suppose p2 is a pseudometric of. Let x, y be points of T and
A be a non empty subset of T . Then |(inf(p2, A))(x) − (inf(p2, A))(y)| ¬
p2(x, y).

(8) Let given p2. Suppose p2 is a pseudometric of and for every p holds
ρ(p2, p) is continuous. Let A be a non empty subset of T . Then inf(p2, A)
is continuous.

(9) For every function f from [:X, X :] into R such that f is a metric of X

holds f is a pseudometric of.

(10) Let given p2. Suppose p2 is a metric of the carrier of T and for every
non empty subset A of T holds A = {p; p ranges over points of T :
(inf(p2, A))(p) = 0}. Then T is metrizable.

(11) Let given F2. Suppose for every n there exists p2 such that F2(n) = p2

and p2 is a pseudometric of and for every p1 holds F2#p1 is summable.
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Let given p2. If for every p1 holds p2(p1) =
∑

(F2#p1), then p2 is a pseu-
dometric of.

(12) For all n, s1 such that for every m such that m ¬ n holds s1(m) ¬ r and
for every m such that m ¬ n holds (

∑κ
α=0(s1)(α))κ∈N(m) ¬ r · (m + 1).

(13) For every k holds |(∑κ
α=0(s1)(α))κ∈N(k)| ¬ (

∑κ
α=0|s1|(α))κ∈N(k).

(14) Let F1 be a sequence of partial functions from the carrier of T into R.
Suppose that

(i) for every n there exists f such that F1(n) = f and f is continuous and
for every p holds f(p)  0, and

(ii) there exists s1 such that s1 is summable and for all n, p holds
(F1#p)(n) ¬ s1(n).
Let given f . If for every p holds f(p) =

∑
(F1#p), then f is continuous.

(15) Let given s, F2. Suppose that for every n there exists p2 such that
F2(n) = p2 and p2 is a pseudometric of and for every p1 holds p2(p1) ¬ s

and for every p′1 such that p2 = p′1 holds p′1 is continuous. Let given p2.
Suppose that for every p1 holds p2(p1) =

∑
(((1

2)κ)κ∈N (F2#p1)). Then
p2 is a pseudometric of and for every p′1 such that p2 = p′1 holds p′1 is
continuous.

(16) Let given p2. Suppose p2 is a pseudometric of and for every p′1 such that
p2 = p′1 holds p′1 is continuous. Let A be a non empty subset of T and
given p. If p ∈ A, then (inf(p2, A))(p) = 0.

(17) Let given T . Suppose T is a T1 space. Let given s, F2. Suppose that
(i) for every n there exists p2 such that F2(n) = p2 and p2 is a pseudometric

of and for every p1 holds p2(p1) ¬ s and for every p′1 such that p2 = p′1
holds p′1 is continuous, and

(ii) for all p, A′ such that p /∈ A′ and A′ is closed there exists n such that
for every p2 such that F2(n) = p2 holds (inf(p2, A

′))(p) > 0.

Then there exists p2 such that p2 is a metric of the carrier of T and for
every p1 holds p2(p1) =

∑
(((1

2)κ)κ∈N (F2#p1)) and T is metrizable.

(18) Let D be a non empty set, p, q be finite sequences of elements of D, and
B be a binary operation on D. Suppose that

(i) p is one-to-one,
(ii) q is one-to-one,
(iii) rng q ⊆ rng p,

(iv) B is commutative and associative, and
(v) B has a unity or len q  1 and len p > len q.

Then there exists a finite sequence r of elements of D such that r is one-
to-one and rng r = rng p \ rng q and B � p = B(B � q, B � r).

(19) Let given T . Then T is a T3 space and a T1 space and there exists a
family sequence of T which is Basis-sigma-locally finite if and only if T is
metrizable.
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(20) Suppose T is metrizable. Let F3 be a family of subsets of T . Suppose F3

is a cover of T and open. Then there exists a family sequence U1 of T such
that

⋃
U1 is open and

⋃
U1 is a cover of T and

⋃
U1 is finer than F3 and

U1 is sigma-discrete.

(21) For every T such that T is metrizable holds there exists a family sequence
of T which is Basis-sigma-discrete.

(22) For every T holds T is a T3 space and a T1 space and there exists a
family sequence of T which is Basis-sigma-discrete iff T is metrizable.
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The terminology and notation used here have been introduced in the following
articles: [24], [7], [27], [28], [22], [4], [29], [5], [2], [18], [23], [3], [6], [21], [19], [26],
[25], [9], [8], [20], [16], [11], [10], [1], [13], [14], [12], [15], and [17].

1. Preliminaries

One can prove the following propositions:

(1) Let A, B, a, b be sets and f be a function from A into B. If a ∈ A and
b ∈ B, then f+·(a7−→. b) is a function from A into B.

(2) For every function f and for all sets X, x such that f¹X is one-to-one
and x ∈ rng(f¹X) holds (f · (f¹X)−1)(x) = x.

(3) Let x, y, X, Y , Z be sets, f be a function from [:X, Y :] into Z, and g

be a function. If Z 6= ∅ and x ∈ X and y ∈ Y, then (g · f)(x, y) = g(f(x,

y)).
(4) For all sets X, a, b and for every function f from X into {a, b} holds

X = f−1({a}) ∪ f−1({b}).
(5) For all non empty 1-sorted structures S, T and for every point s of S

and for every point t of T holds (S 7−→ t)(s) = t.

(6) Let T be a non empty topological structure, t be a point of T , and A be
a subset of T . If A = {t}, then Sspace(t) = T ¹A.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.
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(7) Let T be a topological space, A, B be subsets of T , and C, D be subsets
of the topological structure of T . Suppose A = C and B = D. Then A

and B are separated if and only if C and D are separated.

(8) For every non empty topological space T holds T is connected iff there
exists no map from T into {{0, 1}}top which is continuous and onto.

One can verify that every topological structure which is empty is also con-
nected.

We now state the proposition

(9) For every topological space T such that the topological structure of T is
connected holds T is connected.

Let T be a connected topological space. One can check that the topological
structure of T is connected.

One can prove the following proposition

(10) Let S, T be non empty topological spaces. Suppose S and T are home-
omorphic and S is arcwise connected. Then T is arcwise connected.

One can verify that every non empty topological space which is trivial is also
arcwise connected.

One can prove the following propositions:

(11) For every subspace T of E2
T such that the carrier of T is a simple closed

curve holds T is arcwise connected.

(12) Let T be a topological space. Then there exists a family F of subsets of
T such that F = {the carrier of T} and F is a cover of T and open.

Let T be a topological space. Note that there exists a family of subsets of T

which is non empty, mutually-disjoint, open, and closed.
The following proposition is true

(13) Let T be a topological space, D be a mutually-disjoint open family of
subsets of T , A be a subset of T , and X be a set. If A is connected and
X ∈ D and X meets A and D is a cover of A, then A ⊆ X.

2. On the Product of Topologies

One can prove the following three propositions:

(14) Let S, T be topological spaces. Then the topological structure of [:S,

T :] = [: the topological structure of S, the topological structure of T :].

(15) For all topological spaces S, T and for every subset A of S and for every
subset B of T holds [:A, B :] = [:A, B :].

(16) Let S, T be topological spaces, A be a closed subset of S, and B be a
closed subset of T . Then [:A, B :] is closed.
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Let A, B be connected topological spaces. One can check that [:A, B :] is
connected.

One can prove the following propositions:

(17) Let S, T be topological spaces, A be a subset of S, and B be a subset
of T . If A is connected and B is connected, then [:A, B :] is connected.

(18) Let S, T be topological spaces, Y be a non empty topological space, A

be a subset of S, f be a map from [:S, T :] into Y , and g be a map from
[:S¹A, T :] into Y . If g = f¹[:A, the carrier of T :] and f is continuous, then
g is continuous.

(19) Let S, T be topological spaces, Y be a non empty topological space, A

be a subset of T , f be a map from [:S, T :] into Y , and g be a map from
[:S, T ¹A :] into Y . If g = f¹[: the carrier of S, A :] and f is continuous, then
g is continuous.

(20) Let S, T , T1, T2, Y be non empty topological spaces, f be a map from
[:Y, T1 :] into S, g be a map from [:Y, T2 :] into S, and F1, F2 be closed
subsets of T . Suppose that T1 is a subspace of T and T2 is a subspace of T

and F1 = Ω(T1) and F2 = Ω(T2) and Ω(T1)∪Ω(T2) = ΩT and f is continuous
and g is continuous and for every set p such that p ∈ Ω[: Y, T1 :] ∩ Ω[: Y, T2 :]

holds f(p) = g(p). Then there exists a map h from [:Y, T :] into S such
that h = f+·g and h is continuous.

(21) Let S, T , T1, T2, Y be non empty topological spaces, f be a map from
[:T1, Y :] into S, g be a map from [:T2, Y :] into S, and F1, F2 be closed
subsets of T . Suppose that T1 is a subspace of T and T2 is a subspace of T

and F1 = Ω(T1) and F2 = Ω(T2) and Ω(T1)∪Ω(T2) = ΩT and f is continuous
and g is continuous and for every set p such that p ∈ Ω[: T1, Y :] ∩ Ω[: T2, Y :]

holds f(p) = g(p). Then there exists a map h from [:T, Y :] into S such
that h = f+·g and h is continuous.

3. On the Fundamental Groups

Let T be a non empty topological space and let t be a point of T . Observe
that every loop of t is continuous.

We now state a number of propositions:

(22) Let T be a non empty topological space, t be a point of T , x be a point
of I, and P be a constant loop of t. Then P (x) = t.

(23) For every non empty topological space T and for every point t of T and
for every loop P of t holds P (0) = t and P (1) = t.

(24) Let S, T be non empty topological spaces, f be a continuous map from
S into T , and a, b be points of S. If a, b are connected, then f(a), f(b)
are connected.
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(25) Let S, T be non empty topological spaces, f be a continuous map from
S into T , a, b be points of S, and P be a path from a to b. If a, b are
connected, then f · P is a path from f(a) to f(b).

(26) Let S be a non empty arcwise connected topological space, T be a non
empty topological space, f be a continuous map from S into T , a, b be
points of S, and P be a path from a to b. Then f · P is a path from f(a)
to f(b).

(27) Let S, T be non empty topological spaces, f be a continuous map from
S into T , a be a point of S, and P be a loop of a. Then f · P is a loop of
f(a).

(28) Let S, T be non empty topological spaces, f be a continuous map from
S into T , a, b be points of S, P , Q be paths from a to b, and P1, Q1 be
paths from f(a) to f(b). Suppose P , Q are homotopic and P1 = f ·P and
Q1 = f ·Q. Then P1, Q1 are homotopic.

(29) Let S, T be non empty topological spaces, f be a continuous map from
S into T , a, b be points of S, P , Q be paths from a to b, P1, Q1 be paths
from f(a) to f(b), and F be a homotopy between P and Q. Suppose P , Q

are homotopic and P1 = f · P and Q1 = f ·Q. Then f · F is a homotopy
between P1 and Q1.

(30) Let S, T be non empty topological spaces, f be a continuous map from
S into T , a, b, c be points of S, P be a path from a to b, Q be a path
from b to c, P1 be a path from f(a) to f(b), and Q1 be a path from f(b)
to f(c). Suppose a, b are connected and b, c are connected and P1 = f ·P
and Q1 = f ·Q. Then P1 + Q1 = f · (P + Q).

(31) Let S be a non empty topological space, s be a point of S, x, y be
elements of π1(S, s), and P , Q be loops of s. If x = [P ]EqRel(S,s) and
y = [Q]EqRel(S,s), then x · y = [P + Q]EqRel(S,s).

Let S, T be non empty topological spaces, let s be a point of S, and let
f be a map from S into T . Let us assume that f is continuous. The functor
FundGrIso(f, s) yielding a map from π1(S, s) into π1(T, f(s)) is defined by the
condition (Def. 1).

(Def. 1) Let x be an element of π1(S, s). Then there exists a loop l1 of s and
there exists a loop l2 of f(s) such that x = [l1]EqRel(S,s) and l2 = f · l1 and
(FundGrIso(f, s))(x) = [l2]EqRel(T,f(s)).

The following proposition is true

(32) Let S, T be non empty topological spaces, s be a point of S, f be a
continuous map from S into T , x be an element of π1(S, s), l1 be a loop
of s, and l2 be a loop of f(s). If x = [l1]EqRel(S,s) and l2 = f · l1, then
(FundGrIso(f, s))(x) = [l2]EqRel(T,f(s)).

Let S, T be non empty topological spaces, let s be a point of S, and let f
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be a continuous map from S into T . Then FundGrIso(f, s) is a homomorphism
from π1(S, s) to π1(T, f(s)).

We now state three propositions:

(33) Let S, T be non empty topological spaces, s be a point of S, and f

be a continuous map from S into T . If f is a homeomorphism, then
FundGrIso(f, s) is an isomorphism.

(34) Let S, T be non empty topological spaces, s be a point of S, t be a
point of T , f be a continuous map from S into T , P be a path from
t to f(s), and h be a homomorphism from π1(S, s) to π1(T, t). Suppose
f is a homeomorphism and f(s), t are connected and h = π1-iso(P ) ·
FundGrIso(f, s). Then h is an isomorphism.

(35) Let S be a non empty topological space, T be a non empty arcwise
connected topological space, s be a point of S, and t be a point of T . If S

and T are homeomorphic, then π1(S, s) and π1(T, t) are isomorphic.
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The notation and terminology used here have been introduced in the following
papers: [12], [15], [2], [11], [4], [16], [5], [7], [14], [9], [8], [3], [1], [13], [10], and [6].

For simplicity, we follow the rules: M denotes a non empty set, V denotes
a complex normed space, f , f1, f2, f3 denote partial functions from M to the
carrier of V , and z, z1, z2 denote complex numbers.

Let M be a non empty set, let V be a complex normed space, and let f1,
f2 be partial functions from M to the carrier of V . The functor f1 + f2 yields a
partial function from M to the carrier of V and is defined by:

(Def. 1) dom(f1 + f2) = dom f1 ∩ dom f2 and for every element c of M such that
c ∈ dom(f1 + f2) holds (f1 + f2)c = (f1)c + (f2)c.

The functor f1 − f2 yields a partial function from M to the carrier of V and is
defined as follows:

(Def. 2) dom(f1− f2) = dom f1 ∩ dom f2 and for every element c of M such that
c ∈ dom(f1 − f2) holds (f1 − f2)c = (f1)c − (f2)c.

Let M be a non empty set, let V be a complex normed space, let f1 be a
partial function from M to C, and let f2 be a partial function from M to the
carrier of V . The functor f1 f2 yielding a partial function from M to the carrier
of V is defined by:

(Def. 3) dom(f1 f2) = dom f1 ∩ dom f2 and for every element c of M such that
c ∈ dom(f1 f2) holds (f1 f2)c = (f1)c · (f2)c.

Let X be a non empty set, let V be a complex normed space, let f be a
partial function from X to the carrier of V , and let z be a complex number. The
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functor z f yields a partial function from X to the carrier of V and is defined
as follows:

(Def. 4) dom(z f) = dom f and for every element x of X such that x ∈ dom(z f)
holds (z f)x = z · fx.

Let X be a non empty set, let V be a complex normed space, and let f be a
partial function from X to the carrier of V . The functor ‖f‖ yielding a partial
function from X to R is defined as follows:

(Def. 5) dom‖f‖ = dom f and for every element x of X such that x ∈ dom‖f‖
holds ‖f‖(x) = ‖fx‖.

The functor −f yields a partial function from X to the carrier of V and is
defined by:

(Def. 6) dom(−f) = dom f and for every element x of X such that x ∈ dom(−f)
holds (−f)x = −fx.

The following propositions are true:

(1) Let f1 be a partial function from M to C and f2 be a partial function
from M to the carrier of V . Then dom(f1 f2)\(f1 f2)−1({0V }) = (dom f1\
f1
−1({0})) ∩ (dom f2 \ f2

−1({0V })).
(2) ‖f‖−1({0}) = f−1({0V }) and (−f)−1({0V }) = f−1({0V }).
(3) If z 6= 0C, then (z f)−1({0V }) = f−1({0V }).
(4) f1 + f2 = f2 + f1.

(5) (f1 + f2) + f3 = f1 + (f2 + f3).
(6) Let f1, f2 be partial functions from M to C and f3 be a partial function

from M to the carrier of V . Then (f1 f2) f3 = f1 (f2 f3).
(7) For all partial functions f1, f2 from M to C holds (f1 + f2) f3 = f1 f3 +

f2 f3.

(8) For every partial function f3 from M to C holds f3 (f1 + f2) = f3 f1 +
f3 f2.

(9) For every partial function f1 from M to C holds z (f1 f2) = (z f1) f2.

(10) For every partial function f1 from M to C holds z (f1 f2) = f1 (z f2).
(11) For all partial functions f1, f2 from M to C holds (f1 − f2) f3 = f1 f3 −

f2 f3.

(12) For every partial function f3 from M to C holds f3 f1 − f3 f2 = f3 (f1 −
f2).

(13) z (f1 + f2) = z f1 + z f2.

(14) (z1 · z2) f = z1 (z2 f).
(15) z (f1 − f2) = z f1 − z f2.

(16) f1 − f2 = (−1C) (f2 − f1).
(17) f1 − (f2 + f3) = f1 − f2 − f3.
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(18) 1C f = f.

(19) f1 − (f2 − f3) = (f1 − f2) + f3.

(20) f1 + (f2 − f3) = (f1 + f2)− f3.

(21) For every partial function f1 from M to C holds ‖f1 f2‖ = |f1| ‖f2‖.
(22) ‖z f‖ = |z| ‖f‖.
(23) −f = (−1C) f.

(24) −−f = f.

(25) f1 − f2 = f1 +−f2.

(26) f1 −−f2 = f1 + f2.

In the sequel X, Y denote sets.
We now state a number of propositions:

(27) (f1+f2)¹X = f1¹X+f2¹X and (f1+f2)¹X = f1¹X+f2 and (f1+f2)¹X =
f1 + f2¹X.

(28) For every partial function f1 from M to C holds (f1 f2)¹X =
(f1¹X) (f2¹X) and (f1 f2)¹X = (f1¹X) f2 and (f1 f2)¹X = f1 (f2¹X).

(29) (−f)¹X = −f¹X and ‖f‖¹X = ‖f¹X‖.
(30) (f1−f2)¹X = f1¹X−f2¹X and (f1−f2)¹X = f1¹X−f2 and (f1−f2)¹X =

f1 − f2¹X.

(31) (z f)¹X = z (f¹X).
(32) f1 is total and f2 is total iff f1 + f2 is total and f1 is total and f2 is total

iff f1 − f2 is total.

(33) For every partial function f1 from M to C holds f1 is total and f2 is
total iff f1 f2 is total.

(34) f is total iff z f is total.

(35) f is total iff −f is total.

(36) f is total iff ‖f‖ is total.

(37) For every element x of M such that f1 is total and f2 is total holds
(f1 + f2)x = (f1)x + (f2)x and (f1 − f2)x = (f1)x − (f2)x.

(38) Let f1 be a partial function from M to C and x be an element of M . If
f1 is total and f2 is total, then (f1 f2)x = (f1)x · (f2)x.

(39) For every element x of M such that f is total holds (z f)x = z · fx.

(40) For every element x of M such that f is total holds (−f)x = −fx and
‖f‖(x) = ‖fx‖.

Let us consider M , let us consider V , and let us consider f , Y . We say that
f is bounded on Y if and only if:

(Def. 7) There exists a real number r such that for every element x of M such
that x ∈ Y ∩ dom f holds ‖fx‖ ¬ r.

One can prove the following propositions:
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(41) If Y ⊆ X and f is bounded on X, then f is bounded on Y .

(42) If X misses dom f, then f is bounded on X.

(43) 0C f is bounded on Y .

(44) If f is bounded on Y , then z f is bounded on Y .

(45) If f is bounded on Y , then ‖f‖ is bounded on Y and −f is bounded on
Y .

(46) If f1 is bounded on X and f2 is bounded on Y , then f1 + f2 is bounded
on X ∩ Y.

(47) For every partial function f1 from M to C such that f1 is bounded on
X and f2 is bounded on Y holds f1 f2 is bounded on X ∩ Y.

(48) If f1 is bounded on X and f2 is bounded on Y , then f1 − f2 is bounded
on X ∩ Y.

(49) If f is bounded on X and bounded on Y , then f is bounded on X ∪ Y.

(50) If f1 is a constant on X and f2 is a constant on Y , then f1 + f2 is a
constant on X ∩ Y and f1 − f2 is a constant on X ∩ Y.

(51) Let f1 be a partial function from M to C. Suppose f1 is a constant on
X and f2 is a constant on Y . Then f1 f2 is a constant on X ∩ Y.

(52) If f is a constant on Y , then z f is a constant on Y .

(53) If f is a constant on Y , then ‖f‖ is a constant on Y and −f is a constant
on Y .

(54) If f is a constant on Y , then f is bounded on Y .

(55) If f is a constant on Y , then for every z holds z f is bounded on Y and
−f is bounded on Y and ‖f‖ is bounded on Y .

(56) If f1 is bounded on X and f2 is a constant on Y , then f1 +f2 is bounded
on X ∩ Y.

(57) If f1 is bounded on X and f2 is a constant on Y , then f1−f2 is bounded
on X ∩ Y and f2 − f1 is bounded on X ∩ Y.
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The notation and terminology used here are introduced in the following papers:
[25], [28], [29], [4], [30], [6], [14], [5], [2], [24], [10], [26], [27], [19], [15], [12], [13],
[11], [31], [20], [3], [1], [16], [21], [17], [23], [7], [8], [22], [18], and [9].

For simplicity, we use the following convention: n denotes a natural number,
r, s denote real numbers, z denotes a complex number, C1, C2, C3 denote
complex normed spaces, and R1 denotes a real normed space.

Let C4 be a complex linear space and let s1 be a sequence of C4. The functor
−s1 yields a sequence of C4 and is defined by:

(Def. 1) For every n holds (−s1)(n) = −s1(n).
The following propositions are true:

(1) For all sequences s2, s3 of C1 holds s2 − s3 = s2 +−s3.

(2) For every sequence s1 of C1 holds −s1 = (−1C) · s1.

Let us consider C2, C3 and let f be a partial function from C2 to C3. The
functor ‖f‖ yielding a partial function from the carrier of C2 to R is defined by:

(Def. 2) dom‖f‖ = dom f and for every point c of C2 such that c ∈ dom‖f‖
holds ‖f‖(c) = ‖fc‖.

Let us consider C1, R1 and let f be a partial function from C1 to R1. The
functor ‖f‖ yielding a partial function from the carrier of C1 to R is defined as
follows:

(Def. 3) dom‖f‖ = dom f and for every point c of C1 such that c ∈ dom‖f‖
holds ‖f‖(c) = ‖fc‖.

403
c© 2004 University of Białystok

ISSN 1426–2630



404 noboru endou

Let us consider R1, C1 and let f be a partial function from R1 to C1. The
functor ‖f‖ yielding a partial function from the carrier of R1 to R is defined by:

(Def. 4) dom‖f‖ = dom f and for every point c of R1 such that c ∈ dom‖f‖
holds ‖f‖(c) = ‖fc‖.

Let us consider C1 and let x0 be a point of C1. A subset of C1 is called a
neighbourhood of x0 if:

(Def. 5) There exists a real number g such that 0 < g and {y; y ranges over points
of C1: ‖y − x0‖ < g} ⊆ it.

Next we state two propositions:

(3) Let x0 be a point of C1 and g be a real number. If 0 < g, then {y; y
ranges over points of C1: ‖y − x0‖ < g} is a neighbourhood of x0.

(4) For every point x0 of C1 and for every neighbourhood N of x0 holds
x0 ∈ N.

Let us consider C1 and let X be a subset of C1. We say that X is compact
if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let s4 be a sequence of C1. Suppose rng s4 ⊆ X. Then there exists a
sequence s5 of C1 such that s5 is a subsequence of s4 and convergent and
lim s5 ∈ X.

Let us consider C1 and let X be a subset of C1. We say that X is closed if
and only if:

(Def. 7) For every sequence s4 of C1 such that rng s4 ⊆ X and s4 is convergent
holds lim s4 ∈ X.

Let us consider C1 and let X be a subset of C1. We say that X is open if
and only if:

(Def. 8) Xc is closed.

Let us consider C2, C3, let f be a partial function from C2 to C3, and let
s1 be a sequence of C2. Let us assume that rng s1 ⊆ dom f. The functor f · s1

yields a sequence of C3 and is defined by:

(Def. 9) f · s1 = (f qua function) ·(s1).
Let us consider C1, R1, let f be a partial function from C1 to R1, and let

s1 be a sequence of C1. Let us assume that rng s1 ⊆ dom f. The functor f · s1

yielding a sequence of R1 is defined by:

(Def. 10) f · s1 = (f qua function) ·(s1).
Let us consider C1, R1, let f be a partial function from R1 to C1, and let

s1 be a sequence of R1. Let us assume that rng s1 ⊆ dom f. The functor f · s1

yields a sequence of C1 and is defined by:

(Def. 11) f · s1 = (f qua function) ·(s1).
Let us consider C1, let f be a partial function from the carrier of C1 to C,

and let s1 be a sequence of C1. Let us assume that rng s1 ⊆ dom f. The functor
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f · s1 yields a complex sequence and is defined as follows:

(Def. 12) f · s1 = (f qua function) ·(s1).
Let us consider R1, let f be a partial function from the carrier of R1 to C,

and let s1 be a sequence of R1. Let us assume that rng s1 ⊆ dom f. The functor
f · s1 yielding a complex sequence is defined by:

(Def. 13) f · s1 = (f qua function) ·(s1).
Let us consider C1, let f be a partial function from the carrier of C1 to R,

and let s1 be a sequence of C1. Let us assume that rng s1 ⊆ dom f. The functor
f · s1 yielding a sequence of real numbers is defined as follows:

(Def. 14) f · s1 = (f qua function) ·(s1).
Let us consider C2, C3, let f be a partial function from C2 to C3, and let x0

be a point of C2. We say that f is continuous in x0 if and only if the conditions
(Def. 15) are satisfied.

(Def. 15)(i) x0 ∈ dom f, and
(ii) for every sequence s1 of C2 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).
Let us consider C1, R1, let f be a partial function from C1 to R1, and let x0

be a point of C1. We say that f is continuous in x0 if and only if the conditions
(Def. 16) are satisfied.

(Def. 16)(i) x0 ∈ dom f, and
(ii) for every sequence s1 of C1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).
Let us consider R1, let us consider C1, let f be a partial function from R1

to C1, and let x0 be a point of R1. We say that f is continuous in x0 if and only
if the conditions (Def. 17) are satisfied.

(Def. 17)(i) x0 ∈ dom f, and
(ii) for every sequence s1 of R1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).
Let us consider C1, let f be a partial function from the carrier of C1 to C,

and let x0 be a point of C1. We say that f is continuous in x0 if and only if the
conditions (Def. 18) are satisfied.

(Def. 18)(i) x0 ∈ dom f, and
(ii) for every sequence s1 of C1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).
Let us consider C1, let f be a partial function from the carrier of C1 to R,

and let x0 be a point of C1. We say that f is continuous in x0 if and only if the
conditions (Def. 19) are satisfied.

(Def. 19)(i) x0 ∈ dom f, and
(ii) for every sequence s1 of C1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).
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Let us consider R1, let f be a partial function from the carrier of R1 to C,
and let x0 be a point of R1. We say that f is continuous in x0 if and only if the
conditions (Def. 20) are satisfied.

(Def. 20)(i) x0 ∈ dom f, and
(ii) for every sequence s1 of R1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0 = lim(f · s1).

The following propositions are true:

(5) For every sequence s1 of C2 and for every partial function h from C2 to
C3 such that rng s1 ⊆ dom h holds s1(n) ∈ dom h.

(6) For every sequence s1 of C1 and for every partial function h from C1 to
R1 such that rng s1 ⊆ dom h holds s1(n) ∈ dom h.

(7) For every sequence s1 of R1 and for every partial function h from R1 to
C1 such that rng s1 ⊆ dom h holds s1(n) ∈ dom h.

(8) For every sequence s1 of C1 and for every set x holds x ∈ rng s1 iff there
exists n such that x = s1(n).

(9) For all sequences s1, s2 of C1 such that s2 is a subsequence of s1 holds
rng s2 ⊆ rng s1.

(10) Let f be a partial function from C2 to C3 and C5 be a sequence of C2.
If rng C5 ⊆ dom f, then for every n holds (f · C5)(n) = fC5(n).

(11) Let f be a partial function from C1 to R1 and C5 be a sequence of C1.
If rng C5 ⊆ dom f, then for every n holds (f · C5)(n) = fC5(n).

(12) Let f be a partial function from R1 to C1 and R2 be a sequence of R1.
If rng R2 ⊆ dom f, then for every n holds (f ·R2)(n) = fR2(n).

(13) Let f be a partial function from the carrier of C1 to C and C5 be a
sequence of C1. If rng C5 ⊆ dom f, then for every n holds (f · C5)(n) =
fC5(n).

(14) Let f be a partial function from the carrier of C1 to R and C5 be a
sequence of C1. If rng C5 ⊆ dom f, then for every n holds (f · C5)(n) =
fC5(n).

(15) Let f be a partial function from the carrier of R1 to C and R2 be a
sequence of R1. If rng R2 ⊆ dom f, then for every n holds (f · R2)(n) =
fR2(n).

(16) Let h be a partial function from C2 to C3, C5 be a sequence of C2,
and N1 be an increasing sequence of naturals. If rng C5 ⊆ dom h, then
(h · C5) ·N1 = h · (C5 ·N1).

(17) Let h be a partial function from C1 to R1, C6 be a sequence of C1,
and N1 be an increasing sequence of naturals. If rng C6 ⊆ dom h, then
(h · C6) ·N1 = h · (C6 ·N1).

(18) Let h be a partial function from R1 to C1, R3 be a sequence of R1,
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and N1 be an increasing sequence of naturals. If rng R3 ⊆ dom h, then
(h ·R3) ·N1 = h · (R3 ·N1).

(19) Let h be a partial function from the carrier of C1 to C, C6 be a sequence
of C1, and N1 be an increasing sequence of naturals. If rng C6 ⊆ dom h,

then (h · C6) ·N1 = h · (C6 ·N1).
(20) Let h be a partial function from the carrier of C1 to R, C6 be a sequence

of C1, and N1 be an increasing sequence of naturals. If rng C6 ⊆ dom h,

then (h · C6) ·N1 = h · (C6 ·N1).
(21) Let h be a partial function from the carrier of R1 to C, R3 be a sequence

of R1, and N1 be an increasing sequence of naturals. If rng R3 ⊆ dom h,

then (h ·R3) ·N1 = h · (R3 ·N1).
(22) Let h be a partial function from C2 to C3 and C7, C8 be sequences of

C2. If rng C7 ⊆ dom h and C8 is a subsequence of C7, then h · C8 is a
subsequence of h · C7.

(23) Let h be a partial function from C1 to R1 and C7, C8 be sequences of
C1. If rng C7 ⊆ dom h and C8 is a subsequence of C7, then h · C8 is a
subsequence of h · C7.

(24) Let h be a partial function from R1 to C1 and R4, R5 be sequences of
R1. If rng R4 ⊆ dom h and R5 is a subsequence of R4, then h · R5 is a
subsequence of h ·R4.

(25) Let s1 be a complex sequence, n be a natural number, and N2 be an
increasing sequence of naturals. Then (s1 ·N2)(n) = s1(N2(n)).

(26) Let h be a partial function from the carrier of C1 to C and C7, C8 be
sequences of C1. If rng C7 ⊆ dom h and C8 is a subsequence of C7, then
h · C8 is a subsequence of h · C7.

(27) Let h be a partial function from the carrier of C1 to R and C7, C8 be
sequences of C1. If rng C7 ⊆ dom h and C8 is a subsequence of C7, then
h · C8 is a subsequence of h · C7.

(28) Let h be a partial function from the carrier of R1 to C and R4, R5 be
sequences of R1. If rng R4 ⊆ dom h and R5 is a subsequence of R4, then
h ·R5 is a subsequence of h ·R4.

(29) Let f be a partial function from C2 to C3 and x0 be a point of C2. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for

every point x1 of C2 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds
‖fx1 − fx0‖ < r.

(30) Let f be a partial function from C1 to R1 and x0 be a point of C1. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
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(ii) for every r such that 0 < r there exists s such that 0 < s and for
every point x1 of C1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds
‖fx1 − fx0‖ < r.

(31) Let f be a partial function from R1 to C1 and x0 be a point of R1. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for

every point x1 of R1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds
‖fx1 − fx0‖ < r.

(32) Let f be a partial function from the carrier of C1 to R and x0 be a point
of C1. Then f is continuous in x0 if and only if the following conditions
are satisfied:

(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every

point x1 of C1 such that x1 ∈ dom f and ‖x1−x0‖ < s holds |fx1−fx0 | < r.

(33) Let f be a partial function from the carrier of C1 to C and x0 be a point
of C1. Then f is continuous in x0 if and only if the following conditions
are satisfied:

(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every

point x1 of C1 such that x1 ∈ dom f and ‖x1−x0‖ < s holds |fx1−fx0 | < r.

(34) Let f be a partial function from the carrier of R1 to C and x0 be a point
of R1. Then f is continuous in x0 if and only if the following conditions
are satisfied:

(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every

point x1 of R1 such that x1 ∈ dom f and ‖x1−x0‖ < s holds |fx1−fx0 | < r.

(35) Let f be a partial function from C2 to C3 and x0 be a point of C2. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N3 of fx0 there exists a neighbourhood N of

x0 such that for every point x1 of C2 such that x1 ∈ dom f and x1 ∈ N

holds fx1 ∈ N3.

(36) Let f be a partial function from C1 to R1 and x0 be a point of C1. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N3 of fx0 there exists a neighbourhood N of

x0 such that for every point x1 of C1 such that x1 ∈ dom f and x1 ∈ N

holds fx1 ∈ N3.

(37) Let f be a partial function from R1 to C1 and x0 be a point of R1. Then
f is continuous in x0 if and only if the following conditions are satisfied:
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(i) x0 ∈ dom f, and
(ii) for every neighbourhood N3 of fx0 there exists a neighbourhood N of

x0 such that for every point x1 of R1 such that x1 ∈ dom f and x1 ∈ N

holds fx1 ∈ N3.

(38) Let f be a partial function from C2 to C3 and x0 be a point of C2. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N3 of fx0 there exists a neighbourhood N of

x0 such that f◦N ⊆ N3.

(39) Let f be a partial function from C1 to R1 and x0 be a point of C1. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N3 of fx0 there exists a neighbourhood N of

x0 such that f◦N ⊆ N3.

(40) Let f be a partial function from R1 to C1 and x0 be a point of R1. Then
f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N3 of fx0 there exists a neighbourhood N of

x0 such that f◦N ⊆ N3.

(41) Let f be a partial function from C2 to C3 and x0 be a point of C2.
Suppose x0 ∈ dom f and there exists a neighbourhood N of x0 such that
dom f ∩N = {x0}. Then f is continuous in x0.

(42) Let f be a partial function from C1 to R1 and x0 be a point of C1.
Suppose x0 ∈ dom f and there exists a neighbourhood N of x0 such that
dom f ∩N = {x0}. Then f is continuous in x0.

(43) Let f be a partial function from R1 to C1 and x0 be a point of R1.
Suppose x0 ∈ dom f and there exists a neighbourhood N of x0 such that
dom f ∩N = {x0}. Then f is continuous in x0.

(44) Let h1, h2 be partial functions from C2 to C3 and s1 be a sequence of
C2. If rng s1 ⊆ dom h1 ∩ dom h2, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and
(h1 − h2) · s1 = h1 · s1 − h2 · s1.

(45) Let h1, h2 be partial functions from C1 to R1 and s1 be a sequence of
C1. If rng s1 ⊆ dom h1 ∩ dom h2, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and
(h1 − h2) · s1 = h1 · s1 − h2 · s1.

(46) Let h1, h2 be partial functions from R1 to C1 and s1 be a sequence of
R1. If rng s1 ⊆ dom h1 ∩ dom h2, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and
(h1 − h2) · s1 = h1 · s1 − h2 · s1.

(47) Let h be a partial function from C2 to C3, s1 be a sequence of C2, and
z be a complex number. If rng s1 ⊆ dom h, then (z h) · s1 = z · (h · s1).
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(48) Let h be a partial function from C1 to R1, s1 be a sequence of C1, and
r be a real number. If rng s1 ⊆ dom h, then (r h) · s1 = r · (h · s1).

(49) Let h be a partial function from R1 to C1, s1 be a sequence of R1, and
z be a complex number. If rng s1 ⊆ dom h, then (z h) · s1 = z · (h · s1).

(50) Let h be a partial function from C2 to C3 and s1 be a sequence of C2. If
rng s1 ⊆ dom h, then ‖h · s1‖ = ‖h‖ · s1 and −h · s1 = (−h) · s1.

(51) Let h be a partial function from C1 to R1 and s1 be a sequence of C1. If
rng s1 ⊆ dom h, then ‖h · s1‖ = ‖h‖ · s1 and −h · s1 = (−h) · s1.

(52) Let h be a partial function from R1 to C1 and s1 be a sequence of R1.
If rng s1 ⊆ dom h, then ‖h · s1‖ = ‖h‖ · s1 and −h · s1 = (−h) · s1.

(53) Let f1, f2 be partial functions from C2 to C3 and x0 be a point of C2.
Suppose f1 is continuous in x0 and f2 is continuous in x0. Then f1 + f2 is
continuous in x0 and f1 − f2 is continuous in x0.

(54) Let f1, f2 be partial functions from C1 to R1 and x0 be a point of C1.
Suppose f1 is continuous in x0 and f2 is continuous in x0. Then f1 + f2 is
continuous in x0 and f1 − f2 is continuous in x0.

(55) Let f1, f2 be partial functions from R1 to C1 and x0 be a point of R1.
Suppose f1 is continuous in x0 and f2 is continuous in x0. Then f1 + f2 is
continuous in x0 and f1 − f2 is continuous in x0.

(56) Let f be a partial function from C2 to C3, x0 be a point of C2, and z be
a complex number. If f is continuous in x0, then z f is continuous in x0.

(57) Let f be a partial function from C1 to R1, x0 be a point of C1, and r be
a real number. If f is continuous in x0, then r f is continuous in x0.

(58) Let f be a partial function from R1 to C1, x0 be a point of R1, and z be
a complex number. If f is continuous in x0, then z f is continuous in x0.

(59) Let f be a partial function from C2 to C3 and x0 be a point of C2. If f

is continuous in x0, then ‖f‖ is continuous in x0 and −f is continuous in
x0.

(60) Let f be a partial function from C1 to R1 and x0 be a point of C1. If f

is continuous in x0, then ‖f‖ is continuous in x0 and −f is continuous in
x0.

(61) Let f be a partial function from R1 to C1 and x0 be a point of R1. If f

is continuous in x0, then ‖f‖ is continuous in x0 and −f is continuous in
x0.

Let C2, C3 be complex normed spaces, let f be a partial function from C2

to C3, and let X be a set. We say that f is continuous on X if and only if:

(Def. 21) X ⊆ dom f and for every point x0 of C2 such that x0 ∈ X holds f¹X is
continuous in x0.

Let C1 be a complex normed space, let R1 be a real normed space, let f be a
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partial function from C1 to R1, and let X be a set. We say that f is continuous
on X if and only if:

(Def. 22) X ⊆ dom f and for every point x0 of C1 such that x0 ∈ X holds f¹X is
continuous in x0.

Let R1 be a real normed space, let C1 be a complex normed space, let g be a
partial function from R1 to C1, and let X be a set. We say that g is continuous
on X if and only if:

(Def. 23) X ⊆ dom g and for every point x0 of R1 such that x0 ∈ X holds g¹X is
continuous in x0.

Let C1 be a complex normed space, let f be a partial function from the
carrier of C1 to C, and let X be a set. We say that f is continuous on X if and
only if:

(Def. 24) X ⊆ dom f and for every point x0 of C1 such that x0 ∈ X holds f¹X is
continuous in x0.

Let C1 be a complex normed space, let f be a partial function from the
carrier of C1 to R, and let X be a set. We say that f is continuous on X if and
only if:

(Def. 25) X ⊆ dom f and for every point x0 of C1 such that x0 ∈ X holds f¹X is
continuous in x0.

Let R1 be a real normed space, let f be a partial function from the carrier
of R1 to C, and let X be a set. We say that f is continuous on X if and only if:

(Def. 26) X ⊆ dom f and for every point x0 of R1 such that x0 ∈ X holds f¹X is
continuous in x0.

In the sequel X, X1 denote sets.
The following propositions are true:

(62) Let f be a partial function from C2 to C3. Then f is continuous on X if
and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every sequence s4 of C2 such that rng s4 ⊆ X and s4 is convergent

and lim s4 ∈ X holds f · s4 is convergent and flim s4 = lim(f · s4).
(63) Let f be a partial function from C1 to R1. Then f is continuous on X if

and only if the following conditions are satisfied:
(i) X ⊆ dom f, and
(ii) for every sequence s4 of C1 such that rng s4 ⊆ X and s4 is convergent

and lim s4 ∈ X holds f · s4 is convergent and flim s4 = lim(f · s4).
(64) Let f be a partial function from R1 to C1. Then f is continuous on X if

and only if the following conditions are satisfied:
(i) X ⊆ dom f, and
(ii) for every sequence s4 of R1 such that rng s4 ⊆ X and s4 is convergent

and lim s4 ∈ X holds f · s4 is convergent and flim s4 = lim(f · s4).
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(65) Let f be a partial function from C2 to C3. Then f is continuous on X if
and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every point x0 of C2 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C2 such that
x1 ∈ X and ‖x1 − x0‖ < s holds ‖fx1 − fx0‖ < r.

(66) Let f be a partial function from C1 to R1. Then f is continuous on X if
and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every point x0 of C1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C1 such that
x1 ∈ X and ‖x1 − x0‖ < s holds ‖fx1 − fx0‖ < r.

(67) Let f be a partial function from R1 to C1. Then f is continuous on X if
and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every point x0 of R1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of R1 such that
x1 ∈ X and ‖x1 − x0‖ < s holds ‖fx1 − fx0‖ < r.

(68) Let f be a partial function from the carrier of C1 to C. Then f is conti-
nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every point x0 of C1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C1 such that
x1 ∈ X and ‖x1 − x0‖ < s holds |fx1 − fx0 | < r.

(69) Let f be a partial function from the carrier of C1 to R. Then f is conti-
nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every point x0 of C1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C1 such that
x1 ∈ X and ‖x1 − x0‖ < s holds |fx1 − fx0 | < r.

(70) Let f be a partial function from the carrier of R1 to C. Then f is conti-
nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every point x0 of R1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of R1 such that
x1 ∈ X and ‖x1 − x0‖ < s holds |fx1 − fx0 | < r.

(71) For every partial function f from C2 to C3 holds f is continuous on X

iff f¹X is continuous on X.

(72) For every partial function f from C1 to R1 holds f is continuous on X

iff f¹X is continuous on X.
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(73) For every partial function f from R1 to C1 holds f is continuous on X

iff f¹X is continuous on X.

(74) Let f be a partial function from the carrier of C1 to C. Then f is conti-
nuous on X if and only if f¹X is continuous on X.

(75) Let f be a partial function from the carrier of C1 to R. Then f is conti-
nuous on X if and only if f¹X is continuous on X.

(76) Let f be a partial function from the carrier of R1 to C. Then f is conti-
nuous on X if and only if f¹X is continuous on X.

(77) For every partial function f from C2 to C3 such that f is continuous on
X and X1 ⊆ X holds f is continuous on X1.

(78) For every partial function f from C1 to R1 such that f is continuous on
X and X1 ⊆ X holds f is continuous on X1.

(79) For every partial function f from R1 to C1 such that f is continuous on
X and X1 ⊆ X holds f is continuous on X1.

(80) For every partial function f from C2 to C3 and for every point x0 of C2

such that x0 ∈ dom f holds f is continuous on {x0}.
(81) For every partial function f from C1 to R1 and for every point x0 of C1

such that x0 ∈ dom f holds f is continuous on {x0}.
(82) For every partial function f from R1 to C1 and for every point x0 of R1

such that x0 ∈ dom f holds f is continuous on {x0}.
(83) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is continuous

on X and f2 is continuous on X. Then f1 + f2 is continuous on X and
f1 − f2 is continuous on X.

(84) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is continuous
on X and f2 is continuous on X. Then f1 + f2 is continuous on X and
f1 − f2 is continuous on X.

(85) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is continuous
on X and f2 is continuous on X. Then f1 + f2 is continuous on X and
f1 − f2 is continuous on X.

(86) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is continuous
on X and f2 is continuous on X1. Then f1 + f2 is continuous on X ∩X1

and f1 − f2 is continuous on X ∩X1.

(87) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is continuous
on X and f2 is continuous on X1. Then f1 + f2 is continuous on X ∩X1

and f1 − f2 is continuous on X ∩X1.

(88) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is continuous
on X and f2 is continuous on X1. Then f1 + f2 is continuous on X ∩X1

and f1 − f2 is continuous on X ∩X1.

(89) For every partial function f from C2 to C3 such that f is continuous on
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X holds z f is continuous on X.

(90) For every partial function f from C1 to R1 such that f is continuous on
X holds r f is continuous on X.

(91) For every partial function f from R1 to C1 such that f is continuous on
X holds z f is continuous on X.

(92) Let f be a partial function from C2 to C3. If f is continuous on X, then
‖f‖ is continuous on X and −f is continuous on X.

(93) Let f be a partial function from C1 to R1. If f is continuous on X, then
‖f‖ is continuous on X and −f is continuous on X.

(94) Let f be a partial function from R1 to C1. If f is continuous on X, then
‖f‖ is continuous on X and −f is continuous on X.

(95) Let f be a partial function from C2 to C3. Suppose f is total and for all
points x1, x2 of C2 holds fx1+x2 = fx1 + fx2 and there exists a point x0 of
C2 such that f is continuous in x0. Then f is continuous on the carrier of
C2.

(96) Let f be a partial function from C1 to R1. Suppose f is total and for all
points x1, x2 of C1 holds fx1+x2 = fx1 + fx2 and there exists a point x0 of
C1 such that f is continuous in x0. Then f is continuous on the carrier of
C1.

(97) Let f be a partial function from R1 to C1. Suppose f is total and for all
points x1, x2 of R1 holds fx1+x2 = fx1 + fx2 and there exists a point x0 of
R1 such that f is continuous in x0. Then f is continuous on the carrier of
R1.

(98) For every partial function f from C2 to C3 such that dom f is compact
and f is continuous on dom f holds rng f is compact.

(99) For every partial function f from C1 to R1 such that dom f is compact
and f is continuous on dom f holds rng f is compact.

(100) For every partial function f from R1 to C1 such that dom f is compact
and f is continuous on dom f holds rng f is compact.

(101) Let f be a partial function from the carrier of C1 to C. If dom f is
compact and f is continuous on dom f, then rng f is compact.

(102) Let f be a partial function from the carrier of C1 to R. If dom f is
compact and f is continuous on dom f, then rng f is compact.

(103) Let f be a partial function from the carrier of R1 to C. If dom f is
compact and f is continuous on dom f, then rng f is compact.

(104) Let Y be a subset of C2 and f be a partial function from C2 to C3.
If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is
compact.

(105) Let Y be a subset of C1 and f be a partial function from C1 to R1.
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If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is
compact.

(106) Let Y be a subset of R1 and f be a partial function from R1 to C1.
If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is
compact.

(107) Let f be a partial function from the carrier of C1 to R. Suppose dom f 6=
∅ and dom f is compact and f is continuous on dom f. Then there exist
points x1, x2 of C1 such that x1 ∈ dom f and x2 ∈ dom f and fx1 =
sup rng f and fx2 = inf rng f.

(108) Let f be a partial function from C2 to C3. Suppose dom f 6= ∅ and dom f

is compact and f is continuous on dom f. Then there exist points x1, x2

of C2 such that x1 ∈ dom f and x2 ∈ dom f and ‖f‖x1 = sup rng‖f‖ and
‖f‖x2 = inf rng‖f‖.

(109) Let f be a partial function from C1 to R1. Suppose dom f 6= ∅ and dom f

is compact and f is continuous on dom f. Then there exist points x1, x2

of C1 such that x1 ∈ dom f and x2 ∈ dom f and ‖f‖x1 = sup rng‖f‖ and
‖f‖x2 = inf rng‖f‖.

(110) Let f be a partial function from R1 to C1. Suppose dom f 6= ∅ and dom f

is compact and f is continuous on dom f. Then there exist points x1, x2

of R1 such that x1 ∈ dom f and x2 ∈ dom f and ‖f‖x1 = sup rng‖f‖ and
‖f‖x2 = inf rng‖f‖.

(111) For every partial function f from C2 to C3 holds ‖f‖¹X = ‖f¹X‖.
(112) For every partial function f from C1 to R1 holds ‖f‖¹X = ‖f¹X‖.
(113) For every partial function f from R1 to C1 holds ‖f‖¹X = ‖f¹X‖.
(114) Let f be a partial function from C2 to C3 and Y be a subset of C2.

Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on
Y . Then there exist points x1, x2 of C2 such that x1 ∈ Y and x2 ∈ Y and
‖f‖x1 = sup(‖f‖◦Y ) and ‖f‖x2 = inf(‖f‖◦Y ).

(115) Let f be a partial function from C1 to R1 and Y be a subset of C1.
Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on
Y . Then there exist points x1, x2 of C1 such that x1 ∈ Y and x2 ∈ Y and
‖f‖x1 = sup(‖f‖◦Y ) and ‖f‖x2 = inf(‖f‖◦Y ).

(116) Let f be a partial function from R1 to C1 and Y be a subset of R1.
Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on
Y . Then there exist points x1, x2 of R1 such that x1 ∈ Y and x2 ∈ Y and
‖f‖x1 = sup(‖f‖◦Y ) and ‖f‖x2 = inf(‖f‖◦Y ).

(117) Let f be a partial function from the carrier of C1 to R and Y be a
subset of C1. Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is
continuous on Y . Then there exist points x1, x2 of C1 such that x1 ∈ Y

and x2 ∈ Y and fx1 = sup(f◦Y ) and fx2 = inf(f◦Y ).
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Let C2, C3 be complex normed spaces, let X be a set, and let f be a partial
function from C2 to C3. We say that f is Lipschitzian on X if and only if:

(Def. 27) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C2 such that x1 ∈ X and x2 ∈ X holds ‖fx1 − fx2‖ ¬ r · ‖x1 − x2‖.
Let C1 be a complex normed space, let R1 be a real normed space, let X be a

set, and let f be a partial function from C1 to R1. We say that f is Lipschitzian
on X if and only if:

(Def. 28) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C1 such that x1 ∈ X and x2 ∈ X holds ‖fx1 − fx2‖ ¬ r · ‖x1 − x2‖.
Let R1 be a real normed space, let C1 be a complex normed space, let X be a

set, and let f be a partial function from R1 to C1. We say that f is Lipschitzian
on X if and only if:

(Def. 29) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of R1 such that x1 ∈ X and x2 ∈ X holds ‖fx1 − fx2‖ ¬ r · ‖x1 − x2‖.
Let C1 be a complex normed space, let X be a set, and let f be a partial

function from the carrier of C1 to C. We say that f is Lipschitzian on X if and
only if:

(Def. 30) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C1 such that x1 ∈ X and x2 ∈ X holds |fx1 − fx2 | ¬ r · ‖x1 − x2‖.
Let C1 be a complex normed space, let X be a set, and let f be a partial

function from the carrier of C1 to R. We say that f is Lipschitzian on X if and
only if:

(Def. 31) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C1 such that x1 ∈ X and x2 ∈ X holds |fx1 − fx2 | ¬ r · ‖x1 − x2‖.
Let R1 be a real normed space, let X be a set, and let f be a partial function

from the carrier of R1 to C. We say that f is Lipschitzian on X if and only if:

(Def. 32) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of R1 such that x1 ∈ X and x2 ∈ X holds |fx1 − fx2 | ¬ r · ‖x1 − x2‖.
Next we state a number of propositions:

(118) For every partial function f from C2 to C3 such that f is Lipschitzian
on X and X1 ⊆ X holds f is Lipschitzian on X1.

(119) For every partial function f from C1 to R1 such that f is Lipschitzian
on X and X1 ⊆ X holds f is Lipschitzian on X1.

(120) For every partial function f from R1 to C1 such that f is Lipschitzian
on X and X1 ⊆ X holds f is Lipschitzian on X1.

(121) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is Lipschitzian
on X and f2 is Lipschitzian on X1. Then f1 +f2 is Lipschitzian on X∩X1.

(122) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is Lipschitzian
on X and f2 is Lipschitzian on X1. Then f1 +f2 is Lipschitzian on X∩X1.
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(123) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is Lipschitzian
on X and f2 is Lipschitzian on X1. Then f1 +f2 is Lipschitzian on X∩X1.

(124) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is Lipschitzian
on X and f2 is Lipschitzian on X1. Then f1−f2 is Lipschitzian on X∩X1.

(125) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is Lipschitzian
on X and f2 is Lipschitzian on X1. Then f1−f2 is Lipschitzian on X∩X1.

(126) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is Lipschitzian
on X and f2 is Lipschitzian on X1. Then f1−f2 is Lipschitzian on X∩X1.

(127) For every partial function f from C2 to C3 such that f is Lipschitzian
on X holds z f is Lipschitzian on X.

(128) For every partial function f from C1 to R1 such that f is Lipschitzian
on X holds r f is Lipschitzian on X.

(129) For every partial function f from R1 to C1 such that f is Lipschitzian
on X holds z f is Lipschitzian on X.

(130) Let f be a partial function from C2 to C3. Suppose f is Lipschitzian on
X. Then −f is Lipschitzian on X and ‖f‖ is Lipschitzian on X.

(131) Let f be a partial function from C1 to R1. Suppose f is Lipschitzian on
X. Then −f is Lipschitzian on X and ‖f‖ is Lipschitzian on X.

(132) Let f be a partial function from R1 to C1. Suppose f is Lipschitzian on
X. Then −f is Lipschitzian on X and ‖f‖ is Lipschitzian on X.

(133) Let X be a set and f be a partial function from C2 to C3. If X ⊆ dom f

and f is a constant on X, then f is Lipschitzian on X.

(134) Let X be a set and f be a partial function from C1 to R1. If X ⊆ dom f

and f is a constant on X, then f is Lipschitzian on X.

(135) Let X be a set and f be a partial function from R1 to C1. If X ⊆ dom f

and f is a constant on X, then f is Lipschitzian on X.

(136) For every subset Y of C1 holds idY is Lipschitzian on Y .

(137) For every partial function f from C2 to C3 such that f is Lipschitzian
on X holds f is continuous on X.

(138) For every partial function f from C1 to R1 such that f is Lipschitzian
on X holds f is continuous on X.

(139) For every partial function f from R1 to C1 such that f is Lipschitzian
on X holds f is continuous on X.

(140) Let f be a partial function from the carrier of C1 to C. If f is Lipschitzian
on X, then f is continuous on X.

(141) Let f be a partial function from the carrier of C1 to R. If f is Lipschitzian
on X, then f is continuous on X.

(142) Let f be a partial function from the carrier of R1 to C. If f is Lipschitzian
on X, then f is continuous on X.
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(143) For every partial function f from C2 to C3 such that there exists a point
r of C3 such that rng f = {r} holds f is continuous on dom f.

(144) For every partial function f from C1 to R1 such that there exists a point
r of R1 such that rng f = {r} holds f is continuous on dom f.

(145) For every partial function f from R1 to C1 such that there exists a point
r of C1 such that rng f = {r} holds f is continuous on dom f.

(146) For every partial function f from C2 to C3 such that X ⊆ dom f and f

is a constant on X holds f is continuous on X.

(147) For every partial function f from C1 to R1 such that X ⊆ dom f and f

is a constant on X holds f is continuous on X.

(148) For every partial function f from R1 to C1 such that X ⊆ dom f and f

is a constant on X holds f is continuous on X.

(149) Let f be a partial function from C1 to C1. Suppose that for every point
x0 of C1 such that x0 ∈ dom f holds fx0 = x0. Then f is continuous on
dom f.

(150) For every partial function f from C1 to C1 such that f = iddom f holds
f is continuous on dom f.

(151) Let f be a partial function from C1 to C1 and Y be a subset of C1. If
Y ⊆ dom f and f¹Y = idY , then f is continuous on Y .

(152) Let f be a partial function from C1 to C1, z be a complex number, and
p be a point of C1. Suppose X ⊆ dom f and for every point x0 of C1 such
that x0 ∈ X holds fx0 = z · x0 + p. Then f is continuous on X.

(153) Let f be a partial function from the carrier of C1 to R. Suppose that for
every point x0 of C1 such that x0 ∈ dom f holds fx0 = ‖x0‖. Then f is
continuous on dom f.

(154) Let f be a partial function from the carrier of C1 to R. Suppose X ⊆
dom f and for every point x0 of C1 such that x0 ∈ X holds fx0 = ‖x0‖.
Then f is continuous on X.
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Summary. In the paper we show that fundamental group of the product
of two topological spaces is isomorphic to the product of fundamental groups of
the spaces.
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The articles [15], [7], [14], [19], [5], [20], [6], [3], [4], [1], [2], [12], [17], [18], [10],
[13], [16], [8], [9], and [11] provide the terminology and notation for this paper.

1. On the Product of Groups

The following proposition is true

(1) Let G, H be non empty groupoids and x be an element of
∏〈G,H〉.

Then there exists an element g of G and there exists an element h of H

such that x = 〈g, h〉.
Let G1, G2, H1, H2 be non empty groupoids, let f be a map from G1 into

H1, and let g be a map from G2 into H2. The functor Gr2Iso(f, g) yields a map
from

∏〈G1, G2〉 into
∏〈H1,H2〉 and is defined by the condition (Def. 1).

(Def. 1) Let x be an element of
∏〈G1, G2〉. Then there exists an element x1

of G1 and there exists an element x2 of G2 such that x = 〈x1, x2〉 and
(Gr2Iso(f, g))(x) = 〈f(x1), g(x2)〉.

The following proposition is true

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.
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(2) Let G1, G2, H1, H2 be non empty groupoids, f be a map from G1 into
H1, g be a map from G2 into H2, x1 be an element of G1, and x2 be an
element of G2. Then (Gr2Iso(f, g))(〈x1, x2〉) = 〈f(x1), g(x2)〉.

Let G1, G2, H1, H2 be groups, let f be a homomorphism from G1 to H1, and
let g be a homomorphism from G2 to H2. Then Gr2Iso(f, g) is a homomorphism
from

∏〈G1, G2〉 to
∏〈H1,H2〉.

One can prove the following four propositions:

(3) Let G1, G2, H1, H2 be non empty groupoids, f be a map from G1 into
H1, and g be a map from G2 into H2. If f is one-to-one and g is one-to-one,
then Gr2Iso(f, g) is one-to-one.

(4) Let G1, G2, H1, H2 be non empty groupoids, f be a map from G1 into
H1, and g be a map from G2 into H2. If f is onto and g is onto, then
Gr2Iso(f, g) is onto.

(5) Let G1, G2, H1, H2 be groups, f be a homomorphism from G1 to H1,
and g be a homomorphism from G2 to H2. If f is an isomorphism and g

is an isomorphism, then Gr2Iso(f, g) is an isomorphism.

(6) Let G1, G2, H1, H2 be groups. Suppose G1 and H1 are isomorphic and G2

and H2 are isomorphic. Then
∏〈G1, G2〉 and

∏〈H1,H2〉 are isomorphic.

2. On the Fundamental Groups of Products of Topological Spaces

For simplicity, we adopt the following rules: S, T , Y denote non empty
topological spaces, s, s1, s2, s3 denote points of S, t, t1, t2, t3 denote points
of T , l1, l2 denote paths from 〈〈s1, t1〉〉 to 〈〈s2, t2〉〉, and H denotes a homotopy
between l1 and l2.

We now state two propositions:

(7) For all functions f , g such that dom f = dom g holds pr1(〈f, g〉) = f.

(8) For all functions f , g such that dom f = dom g holds pr2(〈f, g〉) = g.

Let us consider S, T , Y , let f be a map from Y into S, and let g be a map
from Y into T . Then 〈f, g〉 is a map from Y into [:S, T :].

Let us consider S, T , Y and let f be a map from Y into [:S, T :]. Then pr1(f)
is a map from Y into S. Then pr2(f) is a map from Y into T .

The following propositions are true:

(9) For every continuous map f from Y into [:S, T :] holds pr1(f) is conti-
nuous.

(10) For every continuous map f from Y into [:S, T :] holds pr2(f) is conti-
nuous.

(11) If 〈〈s1, t1〉〉, 〈〈s2, t2〉〉 are connected, then s1, s2 are connected.

(12) If 〈〈s1, t1〉〉, 〈〈s2, t2〉〉 are connected, then t1, t2 are connected.
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(13) If 〈〈s1, t1〉〉, 〈〈s2, t2〉〉 are connected, then for every path L from 〈〈s1, t1〉〉 to
〈〈s2, t2〉〉 holds pr1(L) is a path from s1 to s2.

(14) If 〈〈s1, t1〉〉, 〈〈s2, t2〉〉 are connected, then for every path L from 〈〈s1, t1〉〉 to
〈〈s2, t2〉〉 holds pr2(L) is a path from t1 to t2.

(15) If s1, s2 are connected and t1, t2 are connected, then 〈〈s1, t1〉〉, 〈〈s2, t2〉〉
are connected.

(16) Suppose s1, s2 are connected and t1, t2 are connected. Let L1 be a path
from s1 to s2 and L2 be a path from t1 to t2. Then 〈L1, L2〉 is a path from
〈〈s1, t1〉〉 to 〈〈s2, t2〉〉.

Let S, T be non empty arcwise connected topological spaces, let s1, s2 be
points of S, let t1, t2 be points of T , let L1 be a path from s1 to s2, and let L2

be a path from t1 to t2. Then 〈L1, L2〉 is a path from 〈〈s1, t1〉〉 to 〈〈s2, t2〉〉.
Let S, T be non empty topological spaces, let s be a point of S, let t be a

point of T , let L1 be a loop of s, and let L2 be a loop of t. Then 〈L1, L2〉 is a
loop of 〈〈s, t〉〉.

Let S, T be non empty arcwise connected topological spaces. One can verify
that [:S, T :] is arcwise connected.

Let S, T be non empty arcwise connected topological spaces, let s1, s2 be
points of S, let t1, t2 be points of T , and let L be a path from 〈〈s1, t1〉〉 to 〈〈s2,

t2〉〉. Then pr1(L) is a path from s1 to s2. Then pr2(L) is a path from t1 to t2.
Let S, T be non empty topological spaces, let s be a point of S, let t be a

point of T , and let L be a loop of 〈〈s, t〉〉. Then pr1(L) is a loop of s. Then pr2(L)
is a loop of t.

Next we state a number of propositions:

(17) Let p, q be paths from s1 to s2. Suppose p = pr1(l1) and q = pr1(l2) and
l1, l2 are homotopic. Then pr1(H) is a homotopy between p and q.

(18) Let p, q be paths from t1 to t2. Suppose p = pr2(l1) and q = pr2(l2) and
l1, l2 are homotopic. Then pr2(H) is a homotopy between p and q.

(19) For all paths p, q from s1 to s2 such that p = pr1(l1) and q = pr1(l2)
and l1, l2 are homotopic holds p, q are homotopic.

(20) For all paths p, q from t1 to t2 such that p = pr2(l1) and q = pr2(l2) and
l1, l2 are homotopic holds p, q are homotopic.

(21) Let p, q be paths from s1 to s2, x, y be paths from t1 to t2, f be
a homotopy between p and q, and g be a homotopy between x and y.
Suppose p = pr1(l1) and q = pr1(l2) and x = pr2(l1) and y = pr2(l2) and
p, q are homotopic and x, y are homotopic. Then 〈f, g〉 is a homotopy
between l1 and l2.

(22) Let p, q be paths from s1 to s2 and x, y be paths from t1 to t2. Suppose
p = pr1(l1) and q = pr1(l2) and x = pr2(l1) and y = pr2(l2) and p, q are
homotopic and x, y are homotopic. Then l1, l2 are homotopic.
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(23) Let l1 be a path from 〈〈s1, t1〉〉 to 〈〈s2, t2〉〉, l2 be a path from 〈〈s2, t2〉〉 to 〈〈s3,

t3〉〉, p1 be a path from s1 to s2, and p2 be a path from s2 to s3. Suppose
〈〈s1, t1〉〉, 〈〈s2, t2〉〉 are connected and 〈〈s2, t2〉〉, 〈〈s3, t3〉〉 are connected and
p1 = pr1(l1) and p2 = pr1(l2). Then pr1(l1 + l2) = p1 + p2.

(24) Let S, T be non empty arcwise connected topological spaces, s1, s2, s3

be points of S, t1, t2, t3 be points of T , l1 be a path from 〈〈s1, t1〉〉 to
〈〈s2, t2〉〉, and l2 be a path from 〈〈s2, t2〉〉 to 〈〈s3, t3〉〉. Then pr1(l1 + l2) =
pr1(l1) + pr1(l2).

(25) Let l1 be a path from 〈〈s1, t1〉〉 to 〈〈s2, t2〉〉, l2 be a path from 〈〈s2, t2〉〉 to 〈〈s3,

t3〉〉, p1 be a path from t1 to t2, and p2 be a path from t2 to t3. Suppose
〈〈s1, t1〉〉, 〈〈s2, t2〉〉 are connected and 〈〈s2, t2〉〉, 〈〈s3, t3〉〉 are connected and
p1 = pr2(l1) and p2 = pr2(l2). Then pr2(l1 + l2) = p1 + p2.

(26) Let S, T be non empty arcwise connected topological spaces, s1, s2, s3

be points of S, t1, t2, t3 be points of T , l1 be a path from 〈〈s1, t1〉〉 to
〈〈s2, t2〉〉, and l2 be a path from 〈〈s2, t2〉〉 to 〈〈s3, t3〉〉. Then pr2(l1 + l2) =
pr2(l1) + pr2(l2).

Let S, T be non empty topological spaces, let s be a point of S, and let t be
a point of T . The functor FGPrIso(s, t) yielding a map from π1([:S, T :], 〈〈s, t〉〉)
into

∏〈π1(S, s), π1(T, t)〉 is defined as follows:

(Def. 2) For every point x of π1([:S, T :], 〈〈s, t〉〉) there exists a loop l of 〈〈s, t〉〉 such
that x = [l]EqRel([: S, T :],〈〈s, t〉〉) and (FGPrIso(s, t))(x) = 〈[pr1(l)]EqRel(S,s),

[pr2(l)]EqRel(T,t)〉.
The following propositions are true:

(27) For every point x of π1([:S, T :], 〈〈s, t〉〉) and for every loop l of 〈〈s, t〉〉 such
that x = [l]EqRel([: S, T :],〈〈s, t〉〉) holds (FGPrIso(s, t))(x) = 〈[pr1(l)]EqRel(S,s),

[pr2(l)]EqRel(T,t)〉.
(28) For every loop l of 〈〈s, t〉〉 holds (FGPrIso(s, t))([l]EqRel([: S, T :],〈〈s, t〉〉)) =
〈[pr1(l)]EqRel(S,s), [pr2(l)]EqRel(T,t)〉.

Let S, T be non empty topological spaces, let s be a point of S, and let t be
a point of T . Observe that FGPrIso(s, t) is one-to-one and onto.

Let S, T be non empty topological spaces, let s be a point of S, and let t be
a point of T . Then FGPrIso(s, t) is a homomorphism from π1([:S, T :], 〈〈s, t〉〉) to∏〈π1(S, s), π1(T, t)〉.

The following propositions are true:

(29) FGPrIso(s, t) is an isomorphism.

(30) π1([:S, T :], 〈〈s, t〉〉) and
∏〈π1(S, s), π1(T, t)〉 are isomorphic.

(31) Let f be a homomorphism from π1(S, s1) to π1(S, s2) and g be a homo-
morphism from π1(T, t1) to π1(T, t2). Suppose f is an isomorphism and g

is an isomorphism. Then Gr2Iso(f, g) ·FGPrIso(s1, t1) is an isomorphism.
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(32) Let S, T be non empty arcwise connected topological spaces, s1, s2

be points of S, and t1, t2 be points of T . Then π1([:S, T :], 〈〈s1, t1〉〉) and∏〈π1(S, s2), π1(T, t2)〉 are isomorphic.
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