
FORMALIZED MATHEMATICS

Volume 12, Number 2, 2004
University of Białystok

Banach Space of Bounded Real Sequences

Yasumasa Suzuki
Take, Yokosuka-shi

Japan

Summary. We introduce the arithmetic addition and multiplication in
the set of bounded real sequences and also introduce the norm. This set has the
structure of the Banach space.

MML Identifier: RSSPACE4.

The articles [23], [6], [27], [29], [28], [15], [21], [3], [1], [2], [20], [24], [9], [4], [5],
[7], [26], [22], [16], [17], [14], [11], [12], [10], [25], [13], [8], [19], and [18] provide
the notation and terminology for this paper.

1. The Banach Space of Bounded Real Sequences

The subset the set of bounded real sequences of the linear space of real
sequences is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ the set of bounded real sequences if and only
if x ∈ the set of real sequences and idseq(x) is bounded.

Let us note that the set of bounded real sequences is non empty and the set
of bounded real sequences is linearly closed.

One can prove the following proposition

(1) 〈the set of bounded real sequences, Zero (the set of bounded real
sequences, the linear space of real sequences), Add (the set of bounded
real sequences, the linear space of real sequences), Mult (the set of boun-
ded real sequences, the linear space of real sequences)〉 is a subspace of the
linear space of real sequences.

One can verify that 〈the set of bounded real sequences, Zero (the set of boun-
ded real sequences, the linear space of real sequences), Add (the set of bounded
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real sequences, the linear space of real sequences), Mult (the set of bounded real
sequences, the linear space of real sequences)〉 is Abelian, add-associative, right
zeroed, right complementable, and real linear space-like.

The function linfty-norm from the set of bounded real sequences into R is
defined by:

(Def. 2) For every set x such that x ∈ the set of bounded real sequences holds
linfty-norm(x) = sup rng|idseq(x)|.

The following proposition is true

(2) Let r1 be a sequence of real numbers. Then r1 is bounded and
sup rng|r1| = 0 if and only if for every natural number n holds r1(n) = 0.

Let us mention that 〈the set of bounded real sequences, Zero (the set of
bounded real sequences, the linear space of real sequences), Add (the set of bo-
unded real sequences, the linear space of real sequences), Mult (the set of boun-
ded real sequences, the linear space of real sequences), linfty-norm〉 is Abelian,
add-associative, right zeroed, right complementable, and real linear space-like.

The non empty normed structure linfty-Space is defined by the condition
(Def. 3).

(Def. 3) linfty-Space = 〈the set of bounded real sequences, Zero (the set of bo-
unded real sequences, the linear space of real sequences), Add (the set of
bounded real sequences, the linear space of real sequences), Mult (the set
of bounded real sequences, the linear space of real sequences), linfty-norm〉.

We now state two propositions:

(3) The carrier of linfty-Space = the set of bounded real sequences and for
every set x holds x is a vector of linfty-Space iff x is a sequence of real
numbers and idseq(x) is bounded and 0linfty-Space = Zeroseq and for every
vector u of linfty-Space holds u = idseq(u) and for all vectors u, v of
linfty-Space holds u + v = idseq(u) + idseq(v) and for every real number r

and for every vector u of linfty-Space holds r ·u = r idseq(u) and for every
vector u of linfty-Space holds −u = −idseq(u) and idseq(−u) = −idseq(u)
and for all vectors u, v of linfty-Space holds u−v = idseq(u)− idseq(v) and
for every vector v of linfty-Space holds idseq(v) is bounded and for every
vector v of linfty-Space holds ‖v‖ = sup rng|idseq(v)|.

(4) Let x, y be points of linfty-Space and a be a real number. Then ‖x‖ = 0 iff
x = 0linfty-Space and 0 ¬ ‖x‖ and ‖x+y‖ ¬ ‖x‖+‖y‖ and ‖a·x‖ = |a|·‖x‖.

Let us observe that linfty-Space is real normed space-like, real linear space-
like, Abelian, add-associative, right zeroed, and right complementable.

Next we state the proposition

(5) For every sequence v1 of linfty-Space such that v1 is Cauchy sequence
by norm holds v1 is convergent.
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2. The Banach Space of Bounded Functions

Let X be a non empty set, let Y be a real normed space, and let I1 be a
function from X into the carrier of Y . We say that I1 is bounded if and only if:

(Def. 4) There exists a real number K such that 0 ¬ K and for every element x

of X holds ‖I1(x)‖ ¬ K.

The following proposition is true

(6) Let X be a non empty set, Y be a real normed space, and f be a function
from X into the carrier of Y . If for every element x of X holds f(x) = 0Y ,

then f is bounded.

Let X be a non empty set and let Y be a real normed space. Note that there
exists a function from X into the carrier of Y which is bounded.

Let X be a non empty set and let Y be a real normed space. The functor
BdFuncs(X,Y ) yields a subset of RealVectSpace(X,Y ) and is defined by:

(Def. 5) For every set x holds x ∈ BdFuncs(X,Y ) iff x is a bounded function
from X into the carrier of Y .

Let X be a non empty set and let Y be a real normed space. Observe that
BdFuncs(X,Y ) is non empty.

The following propositions are true:

(7) For every non empty set X and for every real normed space Y holds
BdFuncs(X, Y ) is linearly closed.

(8) For every non empty set X and for every real normed space Y holds
〈BdFuncs(X, Y ), Zero (BdFuncs(X,Y ), RealVectSpace(X, Y )),
Add (BdFuncs(X,Y ), RealVectSpace(X, Y )), Mult (BdFuncs(X, Y ),
RealVectSpace(X, Y ))〉 is a subspace of RealVectSpace(X,Y ).

Let X be a non empty set and let Y be a real normed space. One can verify
that 〈BdFuncs(X, Y ), Zero (BdFuncs(X, Y ), RealVectSpace(X,Y )),

Add (BdFuncs(X,Y ), RealVectSpace(X, Y )), Mult (BdFuncs(X,Y ),
RealVectSpace(X,Y ))〉 is Abelian, add-associative, right zeroed, right com-

plementable, and real linear space-like.
One can prove the following proposition

(9) For every non empty set X and for every real normed space Y holds
〈BdFuncs(X, Y ), Zero (BdFuncs(X,Y ), RealVectSpace(X, Y )),
Add (BdFuncs(X,Y ), RealVectSpace(X, Y )), Mult (BdFuncs(X, Y ),
RealVectSpace(X, Y ))〉 is a real linear space.

Let X be a non empty set and let Y be a real normed space. The set of
bounded real sequences from X into Y yields a real linear space and is defined
as follows:

(Def. 6) The set of bounded real sequences from X into Y = 〈BdFuncs(X,Y ),
Zero (BdFuncs(X,Y ), RealVectSpace(X, Y )), Add (BdFuncs(X, Y ),



80 yasumasa suzuki

RealVectSpace(X, Y )), Mult (BdFuncs(X,Y ), RealVectSpace(X, Y ))〉.
Let X be a non empty set and let Y be a real normed space. Observe that

the set of bounded real sequences from X into Y is strict.
One can prove the following three propositions:

(10) Let X be a non empty set, Y be a real normed space, f , g, h be vectors of
the set of bounded real sequences from X into Y , and f ′, g′, h′ be bounded
functions from X into the carrier of Y . Suppose f ′ = f and g′ = g and
h′ = h. Then h = f + g if and only if for every element x of X holds
h′(x) = f ′(x) + g′(x).

(11) Let X be a non empty set, Y be a real normed space, f , h be vectors of
the set of bounded real sequences from X into Y , and f ′, h′ be bounded
functions from X into the carrier of Y . Suppose f ′ = f and h′ = h. Let a

be a real number. Then h = a · f if and only if for every element x of X

holds h′(x) = a · f ′(x).
(12) Let X be a non empty set and Y be a real normed space. Then

0the set of bounded real sequences from X into Y = X 7−→ 0Y .

Let X be a non empty set, let Y be a real normed space, and let f be a set.
Let us assume that f ∈ BdFuncs(X, Y ). The functor modetrans(f,X, Y ) yields
a bounded function from X into the carrier of Y and is defined as follows:

(Def. 7) modetrans(f, X, Y ) = f.

Let X be a non empty set, let Y be a real normed space, and let u be a
function from X into the carrier of Y . The functor PreNorms(u) yielding a non
empty subset of R is defined as follows:

(Def. 8) PreNorms(u) = {‖u(t)‖ : t ranges over elements of X}.
Next we state three propositions:

(13) Let X be a non empty set, Y be a real normed space, and g be a bounded
function from X into the carrier of Y . Then PreNorms(g) is non empty
and upper bounded.

(14) Let X be a non empty set, Y be a real normed space, and g be a function
from X into the carrier of Y . Then g is bounded if and only if PreNorms(g)
is upper bounded.

(15) Let X be a non empty set and Y be a real normed space. Then there
exists a function N1 from BdFuncs(X,Y ) into R such that for every set f

if f ∈ BdFuncs(X,Y ), then N1(f) = sup PreNorms(modetrans(f,X, Y )).
Let X be a non empty set and let Y be a real normed space. The functor

BdFuncsNorm(X, Y ) yielding a function from BdFuncs(X, Y ) into R is defined
by:

(Def. 9) For every set x such that x ∈ BdFuncs(X, Y ) holds
BdFuncsNorm(X,Y )(x) = sup PreNorms(modetrans(x,X, Y )).

One can prove the following two propositions:
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(16) Let X be a non empty set, Y be a real normed space, and f be a bounded
function from X into the carrier of Y . Then modetrans(f,X, Y ) = f.

(17) Let X be a non empty set, Y be a real normed space, and f be a bounded
function from X into the carrier of Y . Then BdFuncsNorm(X, Y )(f) =
sup PreNorms(f).

Let X be a non empty set and let Y be a real normed space. The real
normed space of bounded functions from X into Y yielding a non empty normed
structure is defined as follows:

(Def. 10) The real normed space of bounded functions from X into Y =
〈BdFuncs(X, Y ), Zero (BdFuncs(X,Y ), RealVectSpace(X, Y )),
Add (BdFuncs(X,Y ), RealVectSpace(X, Y )), Mult (BdFuncs(X, Y ),
RealVectSpace(X, Y )), BdFuncsNorm(X, Y )〉.

We now state several propositions:

(18) Let X be a non empty set and Y be a real normed space. Then X 7−→
0Y = 0the real normed space of bounded functions from X into Y .

(19) Let X be a non empty set, Y be a real normed space, f be a point of
the real normed space of bounded functions from X into Y , and g be a
bounded function from X into the carrier of Y . If g = f, then for every
element t of X holds ‖g(t)‖ ¬ ‖f‖.

(20) Let X be a non empty set, Y be a real normed space, and f be a point of
the real normed space of bounded functions from X into Y . Then 0 ¬ ‖f‖.

(21) Let X be a non empty set, Y be a real normed space, and f be a point
of the real normed space of bounded functions from X into Y . Suppose
f = 0the real normed space of bounded functions from X into Y . Then 0 = ‖f‖.

(22) Let X be a non empty set, Y be a real normed space, f , g, h be points
of the real normed space of bounded functions from X into Y , and f ′, g′,
h′ be bounded functions from X into the carrier of Y . Suppose f ′ = f and
g′ = g and h′ = h. Then h = f + g if and only if for every element x of X

holds h′(x) = f ′(x) + g′(x).
(23) Let X be a non empty set, Y be a real normed space, f , h be points

of the real normed space of bounded functions from X into Y , and f ′, h′

be bounded functions from X into the carrier of Y . Suppose f ′ = f and
h′ = h. Let a be a real number. Then h = a · f if and only if for every
element x of X holds h′(x) = a · f ′(x).

(24) Let X be a non empty set, Y be a real normed space, f , g be points of
the real normed space of bounded functions from X into Y , and a be a
real number. Then

(i) ‖f‖ = 0 iff f = 0the real normed space of bounded functions from X into Y ,

(ii) ‖a · f‖ = |a| · ‖f‖, and
(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.
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(25) Let X be a non empty set and Y be a real normed space. Then the
real normed space of bounded functions from X into Y is real normed
space-like.

(26) Let X be a non empty set and Y be a real normed space. Then the real
normed space of bounded functions from X into Y is a real normed space.

Let X be a non empty set and let Y be a real normed space. Observe
that the real normed space of bounded functions from X into Y is real normed
space-like, real linear space-like, Abelian, add-associative, right zeroed, and right
complementable.

We now state three propositions:

(27) Let X be a non empty set, Y be a real normed space, f , g, h be points
of the real normed space of bounded functions from X into Y , and f ′, g′,
h′ be bounded functions from X into the carrier of Y . Suppose f ′ = f and
g′ = g and h′ = h. Then h = f − g if and only if for every element x of X

holds h′(x) = f ′(x)− g′(x).
(28) Let X be a non empty set and Y be a real normed space. Suppose Y

is complete. Let s1 be a sequence of the real normed space of bounded
functions from X into Y . If s1 is Cauchy sequence by norm, then s1 is
convergent.

(29) Let X be a non empty set and Y be a real Banach space. Then the real
normed space of bounded functions from X into Y is a real Banach space.

Let X be a non empty set and let Y be a real Banach space. One can verify
that the real normed space of bounded functions from X into Y is complete.
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Summary. In the article, solving complex roots of polynomial equation of
degree 2 and 3 with real coefficients and complex roots of polynomial equation
of degree 2 and 3 with complex coefficients is discussed.

MML Identifier: POLYEQ 3.

The terminology and notation used here are introduced in the following articles:
[20], [15], [2], [5], [3], [8], [17], [16], [14], [10], [12], [7], [18], [1], [13], [21], [9], [19],
[11], [6], and [4].

1. Solving Complex Roots of Polynomial Equation of Degree 2
and 3 with Real Coefficients

We follow the rules: a, b, c, d, a′, b′, c′, d′, x, y, x1, u, v are real numbers
and s, t, h, z, z1, z2, z3, z4, s1, s2, s3, p, q are elements of C.

Let a be a real number and let us consider z. Then a · z is an element of C
and it can be characterized by the condition:

(Def. 1) a · z = (a + 0i) · z.

Then a + z is an element of C and it can be characterized by the condition:

(Def. 2) a + z = z + (a + 0i).
Let us consider z. Then z2 is an element of C and it can be characterized

by the condition:

(Def. 3) z2 = (<(z)2 −=(z)2) + (2 · (<(z) · =(z)))i.
Let us consider a, b, c, z. Then Poly2(a, b, c, z) is an element of C.
The following propositions are true:
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(1) (a + ci) · (b + di) = (a · b− c · d) + (a · d + b · c)i.
(2) If z = x + yi, then z2 = (x2 − y2) + (2 · x · y)i.
(3) For all a, b holds (a + 0i) · (b + 0i) = a · b + 0i.

(4) If a 6= 0 and ∆(a, b, c) ­ 0 and Poly2(a, b, c, z) = 0, then z = −b+
√

∆(a,b,c)

2·a
or z = −b−

√
∆(a,b,c)

2·a or z = − b
2·a .

(5) If a 6= 0 and ∆(a, b, c) < 0 and Poly2(a, b, c, z) = 0C, then z = − b
2·a +√

−∆(a,b,c)

2·a i or z = − b
2·a + (−

√
−∆(a,b,c)

2·a )i.
(6) If b 6= 0 and for every z holds Poly2(0, b, c, z) = 0C, then z = − c

b .

(7) Let a, b, c be real numbers and z, z1, z2 be elements of C. Suppose
a 6= 0. Suppose that for every element z of C holds Poly2(a, b, c, z) =
Quard(a, z1, z2, z). Then b

a + 0i = −(z1 + z2) and c
a + 0i = z1 · z2.

Let z be an element of C. The functor z3 yielding an element of C is defined
by:

(Def. 4) z3 = z2 · z.

Let a, b, c, d be real numbers and let z be an element of C. The functor
Poly3(a, b, c, d, z) yielding an element of C is defined as follows:

(Def. 5) Poly3(a, b, c, d, z) = a · z3 + b · z2 + c · z + d.

We now state a number of propositions:

(8) (0C)3 = 0C.

(9) (1C)3 = 1C.

(10) (−1C)3 = −1C.

(11) <(z3) = <(z)3 − 3 · <(z) · =(z)2 and =(z3) = −=(z)3 + 3 · <(z)2 · =(z).
(12) If for every z holds Poly3(a, b, c, d, z) = Poly3(a′, b′, c′, d′, z), then a = a′

and b = b′ and c = c′ and d = d′.
(13) (z + h)3 = z3 + 3 · h · z2 + 3 · h2 · z + h3.

(14) (z · h)3 = z3 · h3.

(15) If b 6= 0 and Poly3(0, b, c, d, z) = 0C and ∆(b, c, d) ­ 0, then z =
−c+
√

∆(b,c,d)

2·b or z = −c−
√

∆(b,c,d)

2·b or z = − c
2·b .

(16) If b 6= 0 and Poly3(0, b, c, d, z) = 0C and ∆(b, c, d) < 0, then z = − c
2·b +√

−∆(b,c,d)

2·b i or z = − c
2·b + (−

√
−∆(b,c,d)

2·b )i.

(17) If a 6= 0 and Poly3(a, 0, c, 0, z) = 0 and 4 · a · c ¬ 0, then z =
√−4·a·c

2·a or

z = −√−4·a·c
2·a or z = 0.

(18) If a 6= 0 and Poly3(a, b, c, 0, z) = 0 and ∆(a, b, c) ­ 0, then z =
−b+
√

∆(a,b,c)

2·a or z = −b−
√

∆(a,b,c)

2·a or z = − b
2·a or z = 0.

(19) If a 6= 0 and Poly3(a, b, c, 0, z) = 0C and ∆(a, b, c) < 0, then z = − b
2·a +√

−∆(a,b,c)

2·a i or z = − b
2·a + (−

√
−∆(a,b,c)

2·a )i or z = 0C.
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(20) If a ­ 0 and y2 = a, then y =
√

a or y = −√a.

(21) Suppose a 6= 0 and Poly3(a, 0, c, d, z) = 0C and =(z) = 0. Let given u, v.
Suppose <(z) = u + v and 3 · v · u + c

a = 0. Then

(i) z = 3

√
− d

2·a +
√

d2

4·a2 + ( c
3·a)3 + 3

√
− d

2·a −
√

d2

4·a2 + ( c
3·a)3, or

(ii) z = 3

√
− d

2·a +
√

d2

4·a2 + ( c
3·a)3 + 3

√
− d

2·a +
√

d2

4·a2 + ( c
3·a)3, or

(iii) z = 3

√
− d

2·a −
√

d2

4·a2 + ( c
3·a)3 + 3

√
− d

2·a −
√

d2

4·a2 + ( c
3·a)3.

(22) Suppose a 6= 0 and Poly3(a, 0, c, d, z) = 0C and =(z) 6= 0. Let given u, v.
Suppose <(z) = u + v and 3 · v · u + c

4·a = 0 and c
a ­ 0. Then

(i) z = ( 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3 + 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3) +
√

3 · ( 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3 + 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3)2 + c
a i, or

(ii) z = ( 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3 + 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3) +

(−
√

3 · ( 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3 + 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3)2 + c
a)i,

or

(iii) z = 2 · 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3+
√

3 · (2 · 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3)2 + c
a i, or

(iv) z = 2 · 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3+

(−
√

3 · (2 · 3

√
d

16·a +
√

( d
16·a)2 + ( c

12·a)3)2 + c
a)i, or

(v) z = 2 · 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3+
√

3 · (2 · 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3)2 + c
a i, or

(vi) z = 2 · 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3+

(−
√

3 · (2 · 3

√
d

16·a −
√

( d
16·a)2 + ( c

12·a)3)2 + c
a)i.

(23) Suppose a 6= 0 and Poly3(a, b, c, d, z) = 0C and =(z) = 0. Let given u, v,
x1. Suppose x1 = <(z)+ b

3·a and <(z) = (u+v)− b
3·a and 3·u·v+3·a·c−b2

3·a2 = 0.

Then
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(i) z = ((
3

√
(−( b

3·a)3 − 3·a·d−b·c
6·a2 ) +

√
(2·( b

3·a )3+ 3·a·d−b·c
3·a2 )2

4 + (3·a·c−b2

9·a2 )3 +

3

√
−( b

3·a)3 − 3·a·d−b·c
6·a2 −

√
(2·( b

3·a )3+ 3·a·d−b·c
3·a2 )2

4 + (3·a·c−b2

9·a2 )3)− b
3·a) + 0i, or

(ii) z = ((
3

√
(−( b

3·a)3 − 3·a·d−b·c
6·a2 ) +

√
(2·( b

3·a )3+ 3·a·d−b·c
3·a2 )2

4 + (3·a·c−b2

9·a2 )3 +

3

√
(−( b

3·a)3 − 3·a·d−b·c
6·a2 ) +

√
(2·( b

3·a )3+ 3·a·d−b·c
3·a2 )2

4 + (3·a·c−b2

9·a2 )3)− b
3·a) + 0i, or

(iii) z = ((
3

√
−( b

3·a)3 − 3·a·d−b·c
6·a2 −

√
(2·( b

3·a )3+ 3·a·d−b·c
3·a2 )2

4 + (3·a·c−b2

9·a2 )3 +

3

√
−( b

3·a)3 − 3·a·d−b·c
6·a2 −

√
(2·( b

3·a )3+ 3·a·d−b·c
3·a2 )2

4 + (3·a·c−b2

9·a2 )3)− b
3·a) + 0i.

(24) If z1 6= 0 and Poly1(z1, z2, z) = 0, then z = − z2
z1

.

(25) If z2 6= 0, then it is not true that there exists z such that Poly1(0, z2, z) =
0.

2. Complex Roots of Polynomial Equation of Degree 2 and 3 with
Complex Coefficients

Let us consider z1, z2, z3, z. The functor CPoly2(z1, z2, z3, z) yields an ele-
ment of C and is defined by:

(Def. 6) CPoly2(z1, z2, z3, z) = z1 · z2 + z2 · z + z3.

We now state a number of propositions:

(26) If for every z holds CPoly2(z1, z2, z3, z) = CPoly2(s1, s2, s3, z), then z1 =
s1 and z2 = s2 and z3 = s3.

(27) −a+
√

a2+b2

2 ­ 0 and a+
√

a2+b2

2 ­ 0.

(28) If z2 = s and =(s) ­ 0, then z =√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i or z =

−
√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i.

(29) If z2 = s and =(s) = 0 and <(s) > 0, then z =
√
<(s) or z = −

√
<(s).

(30) If z2 = s and =(s) = 0 and <(s) < 0, then z = 0 +
√
−<(s)i or

z = 0 + (−
√
−<(s))i.

(31) If z2 = s and =(s) < 0, then z =√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i or z =

−
√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i.
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(32) Suppose z2 = s. Then

(i) z =
√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i, or

(ii) z = −
√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i, or

(iii) z =
√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i, or

(iv) z = −
√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i.

(33) CPoly2(0C, 0C, 0C, z) = 0.

(34) If z1 6= 0 and CPoly2(z1, 0C, 0C, z) = 0, then z = 0.

(35) If z1 6= 0 and CPoly2(z1, z2, 0C, z) = 0, then z = − z2
z1

or z = 0.

(36) Suppose z1 6= 0C and CPoly2(z1, 0C, z3, z) = 0C. Let given s. Suppose
s = − z3

z1
. Then

(i) z =
√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i, or

(ii) z = −
√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i, or

(iii) z =
√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i, or

(iv) z = −
√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i.

(37) Suppose z1 6= 0 and CPoly2(z1, z2, z3, z) = 0C. Let given h, t. Suppose
h = ( z2

2·z1
)2 − z3

z1
and t = z2

2·z1
. Then

(i) z = (
√
<(h)+

√
<(h)2+=(h)2

2 +
√
−<(h)+

√
<(h)2+=(h)2

2 i)− t, or

(ii) z = (−
√
<(h)+

√
<(h)2+=(h)2

2 + (−
√
−<(h)+

√
<(h)2+=(h)2

2 )i)− t, or

(iii) z = (
√
<(h)+

√
<(h)2+=(h)2

2 + (−
√
−<(h)+

√
<(h)2+=(h)2

2 )i)− t, or

(iv) z = (−
√
<(h)+

√
<(h)2+=(h)2

2 +
√
−<(h)+

√
<(h)2+=(h)2

2 i)− t.

Let us consider z1, z2, z3, z4, z. The functor CPoly2(z1, z2, z3, z4, z) yields
an element of C and is defined as follows:

(Def. 7) CPoly2(z1, z2, z3, z4, z) = z1 · z3 + z2 · z2 + z3 · z + z4.

One can prove the following propositions:

(38) If z2 = 1, then z = 1 or z = −1.

(39) z3
N = z · z · z and z3

N = z2 · z and z3
N = z3.

(40) If z1 6= 0 and CPoly2(z1, z2, 0C, 0C, z) = 0C, then z = − z2
z1

or z = 0.

(41) Suppose z1 6= 0C and CPoly2(z1, 0C, z3, 0C, z) = 0C. Let given s. Suppose
s = − z3

z1
. Then

(i) z = 0C, or

(ii) z =
√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i, or

(iii) z = −
√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i, or
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(iv) z =
√
<(s)+

√
<(s)2+=(s)2

2 + (−
√
−<(s)+

√
<(s)2+=(s)2

2 )i, or

(v) z = −
√
<(s)+

√
<(s)2+=(s)2

2 +
√
−<(s)+

√
<(s)2+=(s)2

2 i.

(42) Suppose z1 6= 0 and CPoly2(z1, z2, z3, 0C, z) = 0C. Let given s, h, t.
Suppose s = − z3

z1
and h = ( z2

2·z1
)2 − z3

z1
and t = z2

2·z1
. Then

(i) z = 0, or

(ii) z = (
√
<(h)+

√
<(h)2+=(h)2

2 +
√
−<(h)+

√
<(h)2+=(h)2

2 i)− t, or

(iii) z = (−
√
<(h)+

√
<(h)2+=(h)2

2 + (−
√
−<(h)+

√
<(h)2+=(h)2

2 )i)− t, or

(iv) z = (
√
<(h)+

√
<(h)2+=(h)2

2 + (−
√
−<(h)+

√
<(h)2+=(h)2

2 )i)− t, or

(v) z = (−
√
<(h)+

√
<(h)2+=(h)2

2 +
√
−<(h)+

√
<(h)2+=(h)2

2 i)− t.

(43) If z = s− (1
3 + 0i) · z1, then z2 = s2 + (−(2

3 + 0i)) · z1 · s + (1
9 + 0i) · z1

2.

(44) If z = s−(1
3+0i)·z1, then z3 = ((s3−z1·s2)+(1

3+0i)·z1
2·s)−( 1

27+0i)·z1
3.

(45) Suppose CPoly2(1C, z1, z2, z3, z) = 0C. Let given p, q, s. Suppose z =
s− (1

3 +0i) · z1 and p = −(1
3 + 0i) · z1

2 + z2 and q = (( 2
27 +0i) · z1

3− (1
3 +

0i) · z1 · z2) + z3. Then CPoly2(1C, 0C, p, q, s) = 0C.

(46) For every element z of C holds |z| · cos Arg z + (|z| · sin Arg z)i = (|z|+
0i) · (cos Arg z + sin Arg zi).

(47) For every element z of C and for every natural number n holds zn+1
N =

(zn
N) · z.

(48) For every element z of C holds z1
N = z.

(49) For every element z of C holds z2
N = z · z.

(50) For every natural number n such that n > 0 holds 0n
N = 0.

(51) For all elements x, y of C and for every natural number n holds (x·y)n
N =

(xn
N) · yn

N.

(52) For every real number x such that x > 0 and for every natural number
n holds (x + 0i)n

N = xn + 0i.

(53) For every real number x and for every natural number n holds (cos x +
sin xi)n

N = cos(n · x) + sin(n · x)i.
(54) For every element z of C and for every natural number n such that

z 6= 0C or n > 0 holds zn
N = |z|n · cos(n ·Arg z) + (|z|n · sin(n ·Arg z))i.

(55) For all natural numbers n, k and for every real number x such that n 6= 0
holds (cos(x+2·π·k

n ) + sin(x+2·π·k
n )i)n

N = cos x + sin xi.

(56) Let z be an element of C and n, k be natural numbers. If n 6= 0, then
z = ( n

√
|z| · cos(Arg z+2·π·k

n ) + ( n
√
|z| · sin(Arg z+2·π·k

n ))i)n
N.

Let z be an element of C and let n be a non empty natural number. An
element of C is called a complex root of n, z if:

(Def. 8) Itn
N = z.
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Next we state several propositions:

(57) Let z be an element of C, n be a non empty natural number, and k be
a natural number. Then n

√
|z| · cos(Arg z+2·π·k

n ) + ( n
√
|z| · sin(Arg z+2·π·k

n ))i
is a complex root of n, z.

(58) For every element z of C and for every complex root v of 1, z holds
v = z.

(59) For every non empty natural number n and for every complex root v of
n, 0C holds v = 0C.

(60) Let n be a non empty natural number, z be an element of C, and v be
a complex root of n, z. If v = 0C, then z = 0C.

(61) Let n be a non empty natural number and k be a natural number. Then
cos(2·π·k

n ) + sin(2·π·k
n )i is a complex root of n, 1C.

(62) For every natural number k holds cos(2·π·k
3 ) + sin(2·π·k

3 )i is a complex
root of 3, 1C.

(63) For all elements z, s of C and for every natural number n such that s 6= 0
and z 6= 0 and n ­ 1 and sn

N = zn
N holds |s| = |z|.
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Summary. In this article, we introduce the notion of complex linear space
and complex normed space.

MML Identifier: CLVECT 1.

The articles [16], [7], [18], [1], [14], [13], [15], [8], [19], [4], [5], [2], [11], [17], [6],
[10], [9], [3], and [12] provide the terminology and notation for this paper.

1. Complex Linear Space

We consider CLS structures as extensions of loop structure as systems
〈 a carrier, a zero, an addition, an external multiplication 〉,

where the carrier is a set, the zero is an element of the carrier, the addition is
a binary operation on the carrier, and the external multiplication is a function
from [:C, the carrier :] into the carrier.

Let us observe that there exists a CLS structure which is non empty.
Let V be a CLS structure. A vector of V is an element of V .
Let V be a non empty CLS structure, let v be a vector of V , and let z be a

Complex. The functor z · v yielding an element of V is defined as follows:

(Def. 1) z · v = (the external multiplication of V )(〈〈z, v〉〉).
Let Z1 be a non empty set, let O be an element of Z1, let F be a binary

operation on Z1, and let G be a function from [:C, Z1 :] into Z1. One can verify
that 〈Z1, O, F, G〉 is non empty.

Let I1 be a non empty CLS structure. We say that I1 is complex linear
space-like if and only if the conditions (Def. 2) are satisfied.
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(Def. 2)(i) For every Complex z and for all vectors v, w of I1 holds z · (v + w) =
z · v + z · w,

(ii) for all Complexes z1, z2 and for every vector v of I1 holds (z1 +z2) ·v =
z1 · v + z2 · v,

(iii) for all Complexes z1, z2 and for every vector v of I1 holds (z1 · z2) · v =
z1 · (z2 · v), and

(iv) for every vector v of I1 holds 1C · v = v.

Let us observe that there exists a non empty CLS structure which is non
empty, strict, Abelian, add-associative, right zeroed, right complementable, and
complex linear space-like.

A complex linear space is an Abelian add-associative right zeroed right com-
plementable complex linear space-like non empty CLS structure.

One can prove the following proposition

(1) Let V be a non empty CLS structure. Suppose that for all vectors v,
w of V holds v + w = w + v and for all vectors u, v, w of V holds
(u+v)+w = u+(v +w) and for every vector v of V holds v +0V = v and
for every vector v of V there exists a vector w of V such that v + w = 0V

and for every Complex z and for all vectors v, w of V holds z · (v + w) =
z · v + z ·w and for all Complexes z1, z2 and for every vector v of V holds
(z1 + z2) · v = z1 · v + z2 · v and for all Complexes z1, z2 and for every
vector v of V holds (z1 · z2) · v = z1 · (z2 · v) and for every vector v of V

holds 1C · v = v. Then V is a complex linear space.

We adopt the following convention: V , X, Y are complex linear spaces, u,
v, v1, v2 are vectors of V , and z, z1, z2 are Complexes.

The following propositions are true:

(2) If z = 0C or v = 0V , then z · v = 0V .

(3) If z · v = 0V , then z = 0C or v = 0V .

(4) −v = (−1C) · v.

(5) If v = −v, then v = 0V .

(6) If v + v = 0V , then v = 0V .

(7) z · −v = (−z) · v.

(8) z · −v = −z · v.

(9) (−z) · −v = z · v.

(10) z · (v − u) = z · v − z · u.

(11) (z1 − z2) · v = z1 · v − z2 · v.

(12) If z 6= 0 and z · v = z · u, then v = u.

(13) If v 6= 0V and z1 · v = z2 · v, then z1 = z2.

(14) Let F , G be finite sequences of elements of the carrier of V . Suppose
len F = len G and for every natural number k and for every vector v of V
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such that k ∈ dom F and v = G(k) holds F (k) = z·v. Then
∑

F = z·∑G.

(15) z ·∑(ε(the carrier of V )) = 0V .

(16) z ·∑〈v, u〉 = z · v + z · u.

(17) z ·∑〈u, v1, v2〉 = z · u + z · v1 + z · v2.

(18)
∑〈v, v〉 = (2 + 0i) · v.

(19)
∑〈−v,−v〉 = (−2 + 0i) · v.

(20)
∑〈v, v, v〉 = (3 + 0i) · v.

2. Subspace and Cosets of Subspaces in Complex Linear Space

In the sequel V1, V2, V3 are subsets of V .
Let us consider V , V1. We say that V1 is linearly closed if and only if the

conditions (Def. 3) are satisfied.

(Def. 3)(i) For all vectors v, u of V such that v ∈ V1 and u ∈ V1 holds v+u ∈ V1,

and
(ii) for every Complex z and for every vector v of V such that v ∈ V1 holds

z · v ∈ V1.

Next we state several propositions:

(21) If V1 6= ∅ and V1 is linearly closed, then 0V ∈ V1.

(22) If V1 is linearly closed, then for every vector v of V such that v ∈ V1

holds −v ∈ V1.

(23) If V1 is linearly closed, then for all vectors v, u of V such that v ∈ V1

and u ∈ V1 holds v − u ∈ V1.

(24) {0V } is linearly closed.

(25) If the carrier of V = V1, then V1 is linearly closed.

(26) If V1 is linearly closed and V2 is linearly closed and V3 = {v + u : v ∈
V1 ∧ u ∈ V2}, then V3 is linearly closed.

(27) If V1 is linearly closed and V2 is linearly closed, then V1 ∩ V2 is linearly
closed.

Let us consider V . A complex linear space is said to be a subspace of V if it
satisfies the conditions (Def. 4).

(Def. 4)(i) The carrier of it ⊆ the carrier of V ,
(ii) the zero of it = the zero of V ,
(iii) the addition of it = (the addition of V )¹[: the carrier of it, the carrier

of it :], and
(iv) the external multiplication of it = (the external multiplication of

V )¹[:C, the carrier of it :].
We use the following convention: W , W1, W2 denote subspaces of V , x

denotes a set, and w, w1, w2 denote vectors of W .



96 noboru endou

We now state a number of propositions:

(28) If x ∈W1 and W1 is a subspace of W2, then x ∈W2.

(29) If x ∈W, then x ∈ V.

(30) w is a vector of V .

(31) 0W = 0V .

(32) 0(W1) = 0(W2).

(33) If w1 = v and w2 = u, then w1 + w2 = v + u.

(34) If w = v, then z · w = z · v.

(35) If w = v, then −v = −w.

(36) If w1 = v and w2 = u, then w1 − w2 = v − u.

(37) 0V ∈W.

(38) 0(W1) ∈W2.

(39) 0W ∈ V.

(40) If u ∈W and v ∈W, then u + v ∈W.

(41) If v ∈W, then z · v ∈W.

(42) If v ∈W, then −v ∈W.

(43) If u ∈W and v ∈W, then u− v ∈W.

In the sequel D denotes a non empty set, d1 denotes an element of D, A

denotes a binary operation on D, and M denotes a function from [:C, D :] into
D.

Next we state several propositions:

(44) Suppose V1 = D and d1 = 0V and A = (the addition of V )¹[:V1, V1 :] and
M = (the external multiplication of V )¹[:C, V1 :]. Then 〈D, d1, A,M〉 is a
subspace of V .

(45) V is a subspace of V .

(46) Let V , X be strict complex linear spaces. If V is a subspace of X and
X is a subspace of V , then V = X.

(47) If V is a subspace of X and X is a subspace of Y , then V is a subspace
of Y .

(48) If the carrier of W1 ⊆ the carrier of W2, then W1 is a subspace of W2.

(49) If for every v such that v ∈ W1 holds v ∈ W2, then W1 is a subspace of
W2.

Let us consider V . Observe that there exists a subspace of V which is strict.
The following propositions are true:

(50) For all strict subspaces W1, W2 of V such that the carrier of W1 = the
carrier of W2 holds W1 = W2.

(51) For all strict subspaces W1, W2 of V such that for every v holds v ∈W1

iff v ∈W2 holds W1 = W2.
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(52) Let V be a strict complex linear space and W be a strict subspace of V .
If the carrier of W = the carrier of V , then W = V.

(53) Let V be a strict complex linear space and W be a strict subspace of V .
If for every vector v of V holds v ∈W iff v ∈ V, then W = V.

(54) If the carrier of W = V1, then V1 is linearly closed.

(55) If V1 6= ∅ and V1 is linearly closed, then there exists a strict subspace W

of V such that V1 = the carrier of W .

Let us consider V . The functor 0V yields a strict subspace of V and is defined
by:

(Def. 5) The carrier of 0V = {0V }.
Let us consider V . The functor ΩV yields a strict subspace of V and is

defined as follows:

(Def. 6) ΩV = the CLS structure of V .

We now state several propositions:

(56) 0W = 0V .

(57) 0(W1) = 0(W2).

(58) 0W is a subspace of V .

(59) 0V is a subspace of W .

(60) 0(W1) is a subspace of W2.

(61) Every strict complex linear space V is a subspace of ΩV .

Let us consider V and let us consider v, W . The functor v + W yielding a
subset of V is defined by:

(Def. 7) v + W = {v + u : u ∈W}.
Let us consider V and let us consider W . A subset of V is called a coset of

W if:

(Def. 8) There exists v such that it = v + W.

In the sequel B, C denote cosets of W .
The following propositions are true:

(62) 0V ∈ v + W iff v ∈W.

(63) v ∈ v + W.

(64) 0V + W = the carrier of W .

(65) v + 0V = {v}.
(66) v + ΩV = the carrier of V .

(67) 0V ∈ v + W iff v + W = the carrier of W .

(68) v ∈W iff v + W = the carrier of W .

(69) If v ∈W, then z · v + W = the carrier of W .

(70) If z 6= 0C and z · v + W = the carrier of W , then v ∈W.

(71) v ∈W iff −v + W = the carrier of W .
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(72) u ∈W iff v + W = v + u + W.

(73) u ∈W iff v + W = (v − u) + W.

(74) v ∈ u + W iff u + W = v + W.

(75) v + W = −v + W iff v ∈W.

(76) If u ∈ v1 + W and u ∈ v2 + W, then v1 + W = v2 + W.

(77) If u ∈ v + W and u ∈ −v + W, then v ∈W.

(78) If z 6= 1C and z · v ∈ v + W, then v ∈W.

(79) If v ∈W, then z · v ∈ v + W.

(80) −v ∈ v + W iff v ∈W.

(81) u + v ∈ v + W iff u ∈W.

(82) v − u ∈ v + W iff u ∈W.

(83) u ∈ v + W iff there exists v1 such that v1 ∈W and u = v + v1.

(84) u ∈ v + W iff there exists v1 such that v1 ∈W and u = v − v1.

(85) There exists v such that v1 ∈ v + W and v2 ∈ v + W iff v1 − v2 ∈W.

(86) If v +W = u+W, then there exists v1 such that v1 ∈W and v + v1 = u.

(87) If v +W = u+W, then there exists v1 such that v1 ∈W and v− v1 = u.

(88) For all strict subspaces W1, W2 of V holds v+W1 = v+W2 iff W1 = W2.

(89) For all strict subspaces W1, W2 of V such that v + W1 = u + W2 holds
W1 = W2.

(90) C is linearly closed iff C = the carrier of W .

(91) For all strict subspaces W1, W2 of V and for every coset C1 of W1 and
for every coset C2 of W2 such that C1 = C2 holds W1 = W2.

(92) {v} is a coset of 0V .

(93) If V1 is a coset of 0V , then there exists v such that V1 = {v}.
(94) The carrier of W is a coset of W .

(95) The carrier of V is a coset of ΩV .

(96) If V1 is a coset of ΩV , then V1 = the carrier of V .

(97) 0V ∈ C iff C = the carrier of W .

(98) u ∈ C iff C = u + W.

(99) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈W and u+v1 = v.

(100) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈W and u−v1 = v.

(101) There exists C such that v1 ∈ C and v2 ∈ C iff v1 − v2 ∈W.

(102) If u ∈ B and u ∈ C, then B = C.
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3. Complex Normed Space

We consider complex normed space structures as extensions of CLS structure
as systems
〈 a carrier, a zero, an addition, an external multiplication, a norm 〉,

where the carrier is a set, the zero is an element of the carrier, the addition is
a binary operation on the carrier, the external multiplication is a function from
[:C, the carrier :] into the carrier, and the norm is a function from the carrier
into R.

Let us mention that there exists a complex normed space structure which is
non empty.

In the sequel X is a non empty complex normed space structure and x is a
point of X.

Let us consider X, x. The functor ‖x‖ yielding a real number is defined by:

(Def. 9) ‖x‖ = (the norm of X)(x).
Let I1 be a non empty complex normed space structure. We say that I1 is

complex normed space-like if and only if:

(Def. 10) For all points x, y of I1 and for every z holds ‖x‖ = 0 iff x = 0(I1) and
‖z · x‖ = |z| · ‖x‖ and ‖x + y‖ ¬ ‖x‖+ ‖y‖.

One can verify that there exists a non empty complex normed space structure
which is complex normed space-like, complex linear space-like, Abelian, add-
associative, right zeroed, right complementable, and strict.

A complex normed space is a complex normed space-like complex linear
space-like Abelian add-associative right zeroed right complementable non empty
complex normed space structure.

We follow the rules: C3 is a complex normed space and x, y, w, g are points
of C3.

The following propositions are true:

(103) ‖0(C3)‖ = 0.

(104) ‖−x‖ = ‖x‖.
(105) ‖x− y‖ ¬ ‖x‖+ ‖y‖.
(106) 0 ¬ ‖x‖.
(107) ‖z1 · x + z2 · y‖ ¬ |z1| · ‖x‖+ |z2| · ‖y‖.
(108) ‖x− y‖ = 0 iff x = y.

(109) ‖x− y‖ = ‖y − x‖.
(110) ‖x‖ − ‖y‖ ¬ ‖x− y‖.
(111) |‖x‖ − ‖y‖| ¬ ‖x− y‖.
(112) ‖x− w‖ ¬ ‖x− y‖+ ‖y − w‖.
(113) If x 6= y, then ‖x− y‖ 6= 0.
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We adopt the following rules: S, S1, S2 are sequences of C3, n, m are natural
numbers, and r is a real number.

One can prove the following proposition

(114) There exists S such that rng S = {0(C3)}.
In this article we present several logical schemes. The scheme ExCNSSeq

deals with a complex normed space A and a unary functor F yielding a point
of A, and states that:

There exists a sequence S of A such that for every n holds S(n) =
F(n)

for all values of the parameters.
The scheme ExCLSSeq deals with a complex linear space A and a unary

functor F yielding an element of A, and states that:
There exists a sequence S of A such that for every n holds S(n) =
F(n)

for all values of the parameters.
Let C3 be a complex linear space and let S1, S2 be sequences of C3. The

functor S1 + S2 yielding a sequence of C3 is defined by:

(Def. 11) For every n holds (S1 + S2)(n) = S1(n) + S2(n).
Let C3 be a complex linear space and let S1, S2 be sequences of C3. The

functor S1 − S2 yielding a sequence of C3 is defined by:

(Def. 12) For every n holds (S1 − S2)(n) = S1(n)− S2(n).
Let C3 be a complex linear space, let S be a sequence of C3, and let x be an

element of C3. The functor S − x yielding a sequence of C3 is defined by:

(Def. 13) For every n holds (S − x)(n) = S(n)− x.

Let C3 be a complex linear space, let S be a sequence of C3, and let us
consider z. The functor z · S yields a sequence of C3 and is defined as follows:

(Def. 14) For every n holds (z · S)(n) = z · S(n).
Let us consider C3 and let us consider S. We say that S is convergent if and

only if:

(Def. 15) There exists g such that for every r such that 0 < r there exists m such
that for every n such that m ¬ n holds ‖S(n)− g‖ < r.

The following four propositions are true:

(115) If S1 is convergent and S2 is convergent, then S1 + S2 is convergent.

(116) If S1 is convergent and S2 is convergent, then S1 − S2 is convergent.

(117) If S is convergent, then S − x is convergent.

(118) If S is convergent, then z · S is convergent.

Let us consider C3 and let us consider S. The functor ‖S‖ yielding a sequence
of real numbers is defined as follows:

(Def. 16) For every n holds ‖S‖(n) = ‖S(n)‖.
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The following proposition is true

(119) If S is convergent, then ‖S‖ is convergent.

Let us consider C3 and let us consider S. Let us assume that S is convergent.
The functor lim S yields a point of C3 and is defined as follows:

(Def. 17) For every r such that 0 < r there exists m such that for every n such
that m ¬ n holds ‖S(n)− lim S‖ < r.

The following propositions are true:

(120) If S is convergent and lim S = g, then ‖S−g‖ is convergent and lim‖S−
g‖ = 0.

(121) If S1 is convergent and S2 is convergent, then lim(S1 + S2) = lim S1 +
lim S2.

(122) If S1 is convergent and S2 is convergent, then lim(S1 − S2) = lim S1 −
lim S2.

(123) If S is convergent, then lim(S − x) = lim S − x.

(124) If S is convergent, then lim(z · S) = z · lim S.
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Summary. In this article, the basic properties of Banach algebra are de-
scribed. This algebra is defined as the set of all bounded linear operators from
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Let X be a non empty set and let f , g be elements of XX . Then g · f is an
element of XX .

One can prove the following propositions:

(1) Let X, Y , Z be real linear spaces, f be a linear operator from X into Y ,
and g be a linear operator from Y into Z. Then g · f is a linear operator
from X into Z.

(2) Let X, Y , Z be real normed spaces, f be a bounded linear operator from
X into Y , and g be a bounded linear operator from Y into Z. Then

(i) g · f is a bounded linear operator from X into Z, and
(ii) for every vector x of X holds ‖(g ·f)(x)‖ ¬ (BdLinOpsNorm(Y, Z))(g) ·

(BdLinOpsNorm(X,Y ))(f) · ‖x‖ and (BdLinOpsNorm(X, Z))(g · f) ¬
(BdLinOpsNorm(Y, Z))(g) · (BdLinOpsNorm(X, Y ))(f).

Let X be a real normed space and let f , g be bounded linear operators from
X into X. Then g · f is a bounded linear operator from X into X.

Let X be a real normed space and let f , g be elements of BdLinOps(X,X).
The functor f+g yields an element of BdLinOps(X,X) and is defined as follows:
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(Def. 1) f + g = (Add (BdLinOps(X,X),
RVectorSpaceOfLinearOperators(X, X)))(f, g).

Let X be a real normed space and let f , g be elements of BdLinOps(X,X).
The functor g · f yielding an element of BdLinOps(X, X) is defined as follows:

(Def. 2) g · f = modetrans(g, X,X) ·modetrans(f, X, X).

Let X be a real normed space, let f be an element of BdLinOps(X,X), and
let a be a real number. The functor a · f yields an element of BdLinOps(X,X)
and is defined by:

(Def. 3) a · f = (Mult (BdLinOps(X, X),
RVectorSpaceOfLinearOperators(X, X)))(a, f).

Let X be a real normed space. The functor FuncMult(X) yielding a binary
operation on BdLinOps(X, X) is defined as follows:

(Def. 4) For all elements f , g of BdLinOps(X, X) holds (FuncMult(X))(f, g) =
f · g.

The following proposition is true

(3) For every real normed space X holds idthe carrier of X is a bounded linear
operator from X into X.

Let X be a real normed space. The functor FuncUnit(X) yields an element
of BdLinOps(X, X) and is defined as follows:

(Def. 5) FuncUnit(X) = idthe carrier of X .

One can prove the following propositions:

(4) Let X be a real normed space and f , g, h be bounded linear operators
from X into X. Then h = f · g if and only if for every vector x of X holds
h(x) = f(g(x)).

(5) For every real normed space X and for all bounded linear operators f ,
g, h from X into X holds f · (g · h) = (f · g) · h.

(6) Let X be a real normed space and f be a bounded linear operator from
X into X. Then f · idthe carrier of X = f and idthe carrier of X · f = f.

(7) For every real normed space X and for all elements f , g, h of
BdLinOps(X,X) holds f · (g · h) = (f · g) · h.

(8) For every real normed space X and for every element f of
BdLinOps(X,X) holds f · FuncUnit(X) = f and FuncUnit(X) · f = f.

(9) For every real normed space X and for all elements f , g, h of
BdLinOps(X,X) holds f · (g + h) = f · g + f · h.

(10) For every real normed space X and for all elements f , g, h of
BdLinOps(X,X) holds (g + h) · f = g · f + h · f.

(11) Let X be a real normed space, f , g be elements of BdLinOps(X, X), and
a, b be real numbers. Then (a · b) · (f · g) = a · f · (b · g).
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(12) For every real normed space X and for all elements f , g of
BdLinOps(X, X) and for every real number a holds a · (f · g) = (a · f) · g.

Let X be a real normed space. The functor RingOfBoundedLinearOperators(X)
yielding a double loop structure is defined as follows:

(Def. 6) RingOfBoundedLinearOperators(X) = 〈BdLinOps(X, X), Add (BdLinOps
(X, X), RVectorSpaceOfLinearOperators(X, X)), FuncMult(X), FuncUnit(X),
Zero (BdLinOps(X,X), RVectorSpaceOfLinearOperators(X, X))〉.

Let X be a real normed space. Observe that RingOfBoundedLinearOperators(X)
is non empty and strict.

One can prove the following propositions:

(13) Let X be a real normed space and x, y, z be elements of
RingOfBoundedLinearOperators(X). Then x + y = y + x and (x +
y) + z = x + (y + z) and x + 0RingOfBoundedLinearOperators(X) = x and
there exists an element t of RingOfBoundedLinearOperators(X) such that
x + t = 0RingOfBoundedLinearOperators(X) and (x · y) · z = x · (y · z) and
x · 1RingOfBoundedLinearOperators(X) = x and 1RingOfBoundedLinearOperators(X) ·
x = x and x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x.

(14) For every real normed space X holds RingOfBoundedLinearOperators(X)
is a ring.

Let X be a real normed space. Note that RingOfBoundedLinearOperators(X)
is Abelian, add-associative, right zeroed, right complementable, associative, left
unital, right unital, and distributive.

Let X be a real normed space.
The functor RAlgebraOfBoundedLinearOperators(X) yielding an algebra

structure is defined as follows:

(Def. 7) RAlgebraOfBoundedLinearOperators(X) = 〈BdLinOps(X,X),
FuncMult(X), Add (BdLinOps(X, X), RVectorSpaceOfLinearOperators
(X, X)), Mult (BdLinOps(X, X), RVectorSpaceOfLinearOperators(X, X)),
FuncUnit(X), Zero (BdLinOps(X, X), RVectorSpaceOfLinearOperators
(X, X))〉.

Let X be a real normed space.
Observe that RAlgebraOfBoundedLinearOperators(X) is non empty and

strict.
Next we state the proposition

(15) Let X be a real normed space, x, y, z be elements of
RAlgebraOfBoundedLinearOperators(X), and a, b be real numbers.
Then x + y = y + x and (x + y) + z = x + (y + z)
and x + 0RAlgebraOfBoundedLinearOperators(X) = x and there exists
an element t of RAlgebraOfBoundedLinearOperators(X) such that
x + t = 0RAlgebraOfBoundedLinearOperators(X) and (x · y) · z =
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x · (y · z) and x · 1RAlgebraOfBoundedLinearOperators(X) = x and
1RAlgebraOfBoundedLinearOperators(X) · x = x and x · (y + z) = x · y + x · z and
(y+z)·x = y ·x+z ·x and a·(x·y) = (a·x)·y and a·(x+y) = a·x+a·y and
(a+b) ·x = a ·x+b ·x and (a ·b) ·x = a ·(b ·x) and (a ·b) ·(x ·y) = a ·x ·(b ·y).

A BL algebra is an Abelian add-associative right zeroed right complemen-
table associative algebra-like non empty algebra structure.

The following proposition is true

(16) For every real normed space X holds
RAlgebraOfBoundedLinearOperators(X) is a BL algebra.

One can check that l1-Space is complete.
Let us mention that l1-Space is non trivial.
One can verify that there exists a real Banach space which is non trivial.
One can prove the following propositions:

(17) For every non trivial real normed space X there exists a vector w of X

such that ‖w‖ = 1.

(18) For every non trivial real normed space X holds (BdLinOpsNorm(X, X))
(idthe carrier of X) = 1.

We introduce normed algebra structures which are extensions of algebra
structure and normed structure and are systems
〈 a carrier, a multiplication, an addition, an external multiplication, a unity,

a zero, a norm 〉,
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from [:R, the
carrier :] into the carrier, the unity and the zero are elements of the carrier, and
the norm is a function from the carrier into R.

Let us mention that there exists a normed algebra structure which is non
empty.

Let X be a real normed space.
The functor RNormedAlgebraOfBoundedLinearOperators(X) yields a nor-

med algebra structure and is defined by:

(Def. 8) RNormedAlgebraOfBoundedLinearOperators(X) = 〈BdLinOps(X,X),
FuncMult(X), Add (BdLinOps(X, X), RVectorSpaceOfLinearOperators
(X, X)), Mult (BdLinOps(X, X), RVectorSpaceOfLinearOperators(X,X)),
FuncUnit(X), Zero (BdLinOps(X,X), RVectorSpaceOfLinearOperators
(X, X)), BdLinOpsNorm(X, X)〉.

Let X be a real normed space. One can verify that
RNormedAlgebraOfBoundedLinearOperators(X) is non empty and strict.
Next we state two propositions:

(19) Let X be a real normed space, x, y, z be elements of
RNormedAlgebraOfBoundedLinearOperators(X), and a, b be real num-
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bers. Then x + y = y + x and (x + y) + z = x + (y + z) and
x + 0RNormedAlgebraOfBoundedLinearOperators(X) = x and there exists an
element t of RNormedAlgebraOfBoundedLinearOperators(X) such that
x + t = 0RNormedAlgebraOfBoundedLinearOperators(X) and (x · y) · z =
x · (y · z) and x · 1RNormedAlgebraOfBoundedLinearOperators(X) = x and
1RNormedAlgebraOfBoundedLinearOperators(X) ·x = x and x · (y+z) = x ·y+x ·z
and (y+z)·x = y·x+z·x and a·(x·y) = (a·x)·y and (a·b)·(x·y) = a·x·(b·y)
and a ·(x+y) = a ·x+a ·y and (a+b) ·x = a ·x+b ·x and (a ·b) ·x = a ·(b ·x)
and 1 · x = x.

(20) Let X be a real normed space.
Then RNormedAlgebraOfBoundedLinearOperators(X) is real normed
space-like, Abelian, add-associative, right zeroed, right complementable,
associative, algebra-like, and real linear space-like.

Let us observe that there exists a non empty normed algebra structure which
is real normed space-like, Abelian, add-associative, right zeroed, right comple-
mentable, associative, algebra-like, real linear space-like, and strict.

A normed algebra is a real normed space-like Abelian add-associative right
zeroed right complementable associative algebra-like real linear space-like non
empty normed algebra structure.

Let X be a real normed space.
Observe that RNormedAlgebraOfBoundedLinearOperators(X) is real nor-

med space-like, Abelian, add-associative, right zeroed, right complementable,
associative, algebra-like, and real linear space-like.

Let X be a non empty normed algebra structure. We say that X is Banach
Algebra-like1 if and only if:

(Def. 9) For all elements x, y of X holds ‖x · y‖ ¬ ‖x‖ · ‖y‖.
We say that X is Banach Algebra-like2 if and only if:

(Def. 10) ‖1X‖ = 1.

We say that X is Banach Algebra-like3 if and only if:

(Def. 11) For every real number a and for all elements x, y of X holds a · (x · y) =
x · (a · y).

Let X be a normed algebra. We say that X is Banach Algebra-like if and
only if the condition (Def. 12) is satisfied.

(Def. 12) X is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3,
left unital, left distributive, and complete.

Let us mention that every normed algebra which is Banach Algebra-like
is also Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left
distributive, left unital, and complete and every normed algebra which is Banach
Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left distributive, left
unital, and complete is also Banach Algebra-like.
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Let X be a non trivial real Banach space.
Note that RNormedAlgebraOfBoundedLinearOperators(X) is Banach

Algebra-like.
One can verify that there exists a normed algebra which is Banach Algebra-

like.
A Banach algebra is a Banach Algebra-like normed algebra.
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Summary. In this article, we introduce a notion of complex linear space
of complex sequence and complex unitary space.

MML Identifier: CSSPACE.

The notation and terminology used here are introduced in the following papers:
[18], [21], [22], [17], [5], [6], [10], [3], [7], [16], [9], [12], [19], [4], [1], [11], [15], [14],
[2], [20], [13], and [8].

1. Linear Space of Complex Sequence

The non empty set the set of complex sequences is defined by:

(Def. 1) For every set x holds x ∈ the set of complex sequences iff x is a complex
sequence.

Let z be a set. Let us assume that z ∈ the set of complex sequences. The
functor idseq(z) yields a complex sequence and is defined by:

(Def. 2) idseq(z) = z.

Let z be a set. Let us assume that z ∈ C. The functor idC(z) yielding a
Complex is defined by:

(Def. 3) idC(z) = z.

One can prove the following propositions:

(1) There exists a binary operation A1 on the set of complex sequences such
that

(i) for all elements a, b of the set of complex sequences holds A1(a, b) =
idseq(a) + idseq(b), and

(ii) A1 is commutative and associative.
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(2) There exists a function f from [:C, the set of complex sequences :] into
the set of complex sequences such that for all sets r, x if r ∈ C and x ∈ the
set of complex sequences, then f(〈〈r, x〉〉) = idC(r) idseq(x).

The binary operation addseq on the set of complex sequences is defined as
follows:

(Def. 4) For all elements a, b of the set of complex sequences holds addseq(a,

b) = idseq(a) + idseq(b).

The function multseq from [:C, the set of complex sequences :] into the set of
complex sequences is defined as follows:

(Def. 5) For all sets z, x such that z ∈ C and x ∈ the set of complex sequences
holds multseq(〈〈z, x〉〉) = idC(z) idseq(x).

The element CZeroseq of the set of complex sequences is defined by:

(Def. 6) For every natural number n holds (idseq(CZeroseq))(n) = 0C.

One can prove the following propositions:

(3) For every complex sequence x holds idseq(x) = x.

(4) For all vectors v, w of 〈the set of complex sequences, CZeroseq, addseq,

multseq〉 holds v + w = idseq(v) + idseq(w).

(5) For every Complex z and for every vector v of 〈the set of complex
sequences, CZeroseq, addseq, multseq〉 holds z · v = z idseq(v).

One can check that 〈the set of complex sequences, CZeroseq, addseq, multseq〉
is Abelian.

Next we state several propositions:

(6) For all vectors u, v, w of 〈the set of complex sequences, CZeroseq, addseq,

multseq〉 holds (u + v) + w = u + (v + w).

(7) For every vector v of 〈the set of complex sequences, CZeroseq, addseq,

multseq〉 holds v + 0〈the set of complex sequences,CZeroseq,addseq,multseq〉 = v.

(8) Let v be a vector of 〈the set of complex sequences, CZeroseq, addseq,

multseq〉. Then there exists a vector w of 〈the set of complex
sequences, CZeroseq, addseq, multseq〉 such that v + w =
0〈the set of complex sequences,CZeroseq,addseq,multseq〉.

(9) For every Complex z and for all vectors v, w of 〈the set of complex
sequences, CZeroseq, addseq, multseq〉 holds z · (v + w) = z · v + z · w.

(10) For all Complexes z1, z2 and for every vector v of 〈the set of complex
sequences, CZeroseq, addseq, multseq〉 holds (z1 + z2) · v = z1 · v + z2 · v.

(11) For all Complexes z1, z2 and for every vector v of 〈the set of complex
sequences, CZeroseq, addseq, multseq〉 holds (z1 · z2) · v = z1 · (z2 · v).

(12) For every vector v of 〈the set of complex sequences, CZeroseq, addseq,

multseq〉 holds 1C · v = v.
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The complex linear space the linear space of complex sequences is defined
as follows:

(Def. 7) The linear space of complex sequences = 〈the set of complex
sequences, CZeroseq, addseq, multseq〉.

Let X be a complex linear space and let X1 be a subset of X. Let us assume
that X1 is linearly closed and non empty. The functor Add (X1, X) yields a
binary operation on X1 and is defined by:

(Def. 8) Add (X1, X) = (the addition of X)¹[:X1, X1 :].

Let X be a complex linear space and let X1 be a subset of X. Let us assume
that X1 is linearly closed and non empty. The functor Mult (X1, X) yields a
function from [:C, X1 :] into X1 and is defined as follows:

(Def. 9) Mult (X1, X) = (the external multiplication of X)¹[:C, X1 :].

Let X be a complex linear space and let X1 be a subset of X. Let us assume
that X1 is linearly closed and non empty. The functor Zero (X1, X) yielding an
element of X1 is defined by:

(Def. 10) Zero (X1, X) = 0X .

One can prove the following proposition

(13) Let V be a complex linear space and V1 be a subset of V . Suppose V1 is
linearly closed and non empty. Then 〈V1, Zero (V1, V ), Add (V1, V ),
Mult (V1, V )〉 is a subspace of V .

The subset the set of l2-complex sequences of the linear space of complex
sequences is defined by the conditions (Def. 11).

(Def. 11)(i) The set of l2-complex sequences is non empty, and
(ii) for every set x holds x ∈ the set of l2-complex sequences iff x ∈ the set

of complex sequences and | idseq(x)| | idseq(x)| is summable.

One can prove the following propositions:

(14) The set of l2-complex sequences is linearly closed and the set of l2-
complex sequences is non empty.

(15) 〈the set of l2-complex sequences, Zero (the set of l2-complex
sequences, the linear space of complex sequences), Add (the set of l2-
complex sequences, the linear space of complex sequences), Mult (the set
of l2-complex sequences, the linear space of complex sequences)〉 is a sub-
space of the linear space of complex sequences.

(16) 〈the set of l2-complex sequences, Zero (the set of l2-complex
sequences, the linear space of complex sequences), Add (the set of l2-
complex sequences, the linear space of complex sequences), Mult (the set of
l2-complex sequences, the linear space of complex sequences)〉 is a complex
linear space.
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(17)(i) The carrier of the linear space of complex sequences = the set of
complex sequences,

(ii) for every set x holds x is an element of the linear space of complex
sequences iff x is a complex sequence,

(iii) for every set x holds x is a vector of the linear space of complex sequ-
ences iff x is a complex sequence,

(iv) for every vector u of the linear space of complex sequences holds u =
idseq(u),

(v) for all vectors u, v of the linear space of complex sequences holds
u + v = idseq(u) + idseq(v), and

(vi) for every Complex z and for every vector u of the linear space of complex
sequences holds z · u = z idseq(u).

2. Unitary Space with Complex Coefficient

We introduce complex unitary space structures which are extensions of CLS
structure and are systems
〈 a carrier, a zero, an addition, an external multiplication, a scalar product

〉,
where the carrier is a set, the zero is an element of the carrier, the addition is
a binary operation on the carrier, the external multiplication is a function from
[:C, the carrier :] into the carrier, and the scalar product is a function from [: the
carrier, the carrier :] into C.

Let us note that there exists a complex unitary space structure which is non
empty and strict.

Let D be a non empty set, let Z be an element of D, let a be a binary
operation on D, let m be a function from [:C, D :] into D, and let s be a function
from [:D, D :] into C. Note that 〈D, Z, a,m, s〉 is non empty.

We adopt the following rules: X is a non empty complex unitary space
structure, a, b are Complexes, and x, y are points of X.

Let us consider X and let us consider x, y. The functor (x|y) yields a Complex
and is defined by:

(Def. 12) (x|y) = (the scalar product of X)(〈〈x, y〉〉).
Let I1 be a non empty complex unitary space structure. We say that I1 is

complex unitary space-like if and only if the condition (Def. 13) is satisfied.

(Def. 13) Let x, y, w be points of I1 and given a. Then (x|x) = 0 iff x = 0(I1)

and 0 ¬ <((x|x)) and 0 = =((x|x)) and (x|y) = (y|x) and ((x + y)|w) =
(x|w) + (y|w) and ((a · x)|y) = a · (x|y).

Let us note that there exists a non empty complex unitary space structure
which is complex unitary space-like, complex linear space-like, Abelian, add-
associative, right zeroed, right complementable, and strict.
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A complex unitary space is a complex unitary space-like complex linear
space-like Abelian add-associative right zeroed right complementable non empty
complex unitary space structure.

We use the following convention: X is a complex unitary space and x, y, z,
u, v are points of X.

Next we state a number of propositions:

(18) (0X |0X) = 0.
(19) (x|(y + z)) = (x|y) + (x|z).
(20) (x|(a · y)) = a · (x|y).
(21) ((a · x)|y) = (x|(a · y)).
(22) ((a · x + b · y)|z) = a · (x|z) + b · (y|z).
(23) (x|(a · y + b · z)) = a · (x|y) + b · (x|z).
(24) ((−x)|y) = (x|−y).
(25) ((−x)|y) = −(x|y).
(26) (x|−y) = −(x|y).
(27) ((−x)|−y) = (x|y).
(28) ((x− y)|z) = (x|z)− (y|z).
(29) (x|(y − z)) = (x|y)− (x|z).
(30) ((x− y)|(u− v)) = ((x|u)− (x|v)− (y|u)) + (y|v).
(31) (0X |x) = 0.

(32) (x|0X) = 0.

(33) ((x + y)|(x + y)) = (x|x) + (x|y) + (y|x) + (y|y).
(34) ((x + y)|(x− y)) = (((x|x)− (x|y)) + (y|x))− (y|y).
(35) ((x− y)|(x− y)) = ((x|x)− (x|y)− (y|x)) + (y|y).
(36) |(x|x)| = <((x|x)).
(37) |(x|y)| ¬

√
|(x|x)| ·

√
|(y|y)|.

Let us consider X and let us consider x, y. We say that x, y are orthogonal
if and only if:

(Def. 14) (x|y) = 0.
Let us note that the predicate x, y are orthogonal is symmetric.

We now state several propositions:

(38) If x, y are orthogonal, then x, −y are orthogonal.

(39) If x, y are orthogonal, then −x, y are orthogonal.

(40) If x, y are orthogonal, then −x, −y are orthogonal.

(41) x, 0X are orthogonal.

(42) If x, y are orthogonal, then ((x + y)|(x + y)) = (x|x) + (y|y).
(43) If x, y are orthogonal, then ((x− y)|(x− y)) = (x|x) + (y|y).
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Let us consider X, x. The functor ‖x‖ yields a real number and is defined
as follows:

(Def. 15) ‖x‖ =
√
|(x|x)|.

We now state several propositions:

(44) ‖x‖ = 0 iff x = 0X .

(45) ‖a · x‖ = |a| · ‖x‖.
(46) 0 ¬ ‖x‖.
(47) |(x|y)| ¬ ‖x‖ · ‖y‖.
(48) ‖x + y‖ ¬ ‖x‖+ ‖y‖.
(49) ‖−x‖ = ‖x‖.
(50) ‖x‖ − ‖y‖ ¬ ‖x− y‖.
(51) |‖x‖ − ‖y‖| ¬ ‖x− y‖.

Let us consider X, x, y. The functor ρ(x, y) yielding a real number is defined
as follows:

(Def. 16) ρ(x, y) = ‖x− y‖.
One can prove the following proposition

(52) ρ(x, y) = ρ(y, x).

Let us consider X, x, y. Let us observe that the functor ρ(x, y) is commuta-
tive.

We now state a number of propositions:

(53) ρ(x, x) = 0.
(54) ρ(x, z) ¬ ρ(x, y) + ρ(y, z).
(55) x 6= y iff ρ(x, y) 6= 0.

(56) ρ(x, y) ­ 0.

(57) x 6= y iff ρ(x, y) > 0.

(58) ρ(x, y) =
√
|((x− y)|(x− y))|.

(59) ρ(x + y, u + v) ¬ ρ(x, u) + ρ(y, v).
(60) ρ(x− y, u− v) ¬ ρ(x, u) + ρ(y, v).
(61) ρ(x− z, y − z) = ρ(x, y).
(62) ρ(x− z, y − z) ¬ ρ(z, x) + ρ(z, y).

We follow the rules: s1, s2, s3, s4 are sequences of X and k, n, m are natural
numbers.

The scheme Ex Seq in CUS deals with a non empty complex unitary space
structure A and a unary functor F yielding a point of A, and states that:

There exists a sequence s1 ofA such that for every n holds s1(n) =
F(n)

for all values of the parameters.
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Let us consider X and let us consider s1. The functor −s1 yielding a sequence
of X is defined by:

(Def. 17) For every n holds (−s1)(n) = −s1(n).

Let us consider X, let us consider s1, and let us consider x. The functor
s1 + x yielding a sequence of X is defined by:

(Def. 18) For every n holds (s1 + x)(n) = s1(n) + x.

One can prove the following proposition

(63) s2 + s3 = s3 + s2.

Let us consider X, s2, s3. Let us observe that the functor s2 + s3 is commu-
tative.

One can prove the following propositions:

(64) s2 + (s3 + s4) = (s2 + s3) + s4.

(65) If s2 is constant and s3 is constant and s1 = s2 + s3, then s1 is constant.

(66) If s2 is constant and s3 is constant and s1 = s2− s3, then s1 is constant.

(67) If s2 is constant and s1 = a · s2, then s1 is constant.

(68) s1 is constant iff for every n holds s1(n) = s1(n + 1).

(69) s1 is constant iff for all n, k holds s1(n) = s1(n + k).

(70) s1 is constant iff for all n, m holds s1(n) = s1(m).

(71) s2 − s3 = s2 +−s3.

(72) s1 = s1 + 0X .

(73) a · (s2 + s3) = a · s2 + a · s3.

(74) (a + b) · s1 = a · s1 + b · s1.

(75) (a · b) · s1 = a · (b · s1).

(76) 1C · s1 = s1.

(77) (−1C) · s1 = −s1.

(78) s1 − x = s1 +−x.

(79) s2 − s3 = −(s3 − s2).

(80) s1 = s1 − 0X .

(81) s1 = −−s1.

(82) s2 − (s3 + s4) = s2 − s3 − s4.

(83) (s2 + s3)− s4 = s2 + (s3 − s4).

(84) s2 − (s3 − s4) = (s2 − s3) + s4.

(85) a · (s2 − s3) = a · s2 − a · s3.
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3. Complex Unitary Space of Complex Sequence

Next we state the proposition

(86) There exists a function f from [: the set of l2-complex sequences, the set
of l2-complex sequences :] into C such that for all sets x, y if x ∈ the set of
l2-complex sequences and y ∈ the set of l2-complex sequences, then f(〈〈x,

y〉〉) =
∑

(idseq(x) idseq(y)).
The function scalarcl from [: the set of l2-complex sequences, the set of l2-

complex sequences :] into C is defined by the condition (Def. 19).

(Def. 19) Let x, y be sets. Suppose x ∈ the set of l2-complex sequences and y ∈ the
set of l2-complex sequences. Then scalarcl(〈〈x, y〉〉) =

∑
(idseq(x) idseq(y)).

Let us observe that 〈the set of l2-complex sequences, Zero (the set of l2-
complex sequences, the linear space of complex sequences), Add (the set of l2-
complex sequences, the linear space of complex sequences), Mult (the set of
l2-complex sequences, the linear space of complex sequences), scalarcl〉 is non
empty.

The non empty complex unitary space structure Complexl2-Space is defined
by the condition (Def. 20).

(Def. 20) Complexl2-Space = 〈the set of l2-complex sequences, Zero (the set of l2-
complex sequences, the linear space of complex sequences), Add (the set of
l2-complex sequences, the linear space of complex sequences), Mult (the set
of l2-complex sequences, the linear space of complex sequences), scalarcl〉.

The following propositions are true:

(87) Let l be a complex unitary space structure. Suppose 〈the carrier of l, the
zero of l, the addition of l, the external multiplication of l〉 is a complex
linear space. Then l is a complex linear space.

(88) For every complex sequence s1 such that for every natural number n

holds s1(n) = 0C holds s1 is summable and
∑

s1 = 0C.

Let us observe that Complexl2-Space is Abelian, add-associative, right ze-
roed, right complementable, and complex linear space-like.
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Summary. In two-dimensional Euclidean space, we examine behaviour of
an arc when it crosses a vertical line. There are three types when an arc enters
into a line, which are: “Left-In”, “Right-In” and “Oscillating-In”. Also, there are
three types when an arc goes out from a line, which are: “Left-Out”, “Right-Out”
and “Oscillating-Out”. If an arc is a special polygonal arc, there are only two
types for each case, entering in and going out. They are “Left-In” and “Right-In”
for entering in, and “Left-Out” and “Right-Out” for going out.

MML Identifier: JORDAN20.

The articles [23], [26], [27], [7], [20], [16], [5], [15], [19], [24], [11], [6], [12], [9], [21],
[10], [22], [2], [3], [14], [17], [18], [25], [4], [13], [1], and [8] provide the terminology
and notation for this paper.

The following propositions are true:

(1) For every subset P of E2
T and for all points p1, p2, p of E2

T such that P

is an arc from p1 to p2 and p ∈ P holds Segment(P, p1, p2, p, p) = {p}.
(2) For all points p1, p2, p of E2

T and for every real number a such that
p ∈ L(p1, p2) and (p1)1 ¬ a and (p2)1 ¬ a holds p1 ¬ a.

(3) For all points p1, p2, p of E2
T and for every real number a such that

p ∈ L(p1, p2) and (p1)1 ­ a and (p2)1 ­ a holds p1 ­ a.

(4) For all points p1, p2, p of E2
T and for every real number a such that

p ∈ L(p1, p2) and (p1)1 < a and (p2)1 < a holds p1 < a.

(5) For all points p1, p2, p of E2
T and for every real number a such that

p ∈ L(p1, p2) and (p1)1 > a and (p2)1 > a holds p1 > a.

In the sequel j is a natural number.
Next we state two propositions:
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(6) Let f be a S-sequence in R2 and p, q be points of E2
T. Suppose 1 ¬ j

and j < len f and p ∈ L(f, j) and q ∈ L(f, j) and (fj)2 = (fj+1)2 and
(fj)1 > (fj+1)1 and LE p, q, L̃(f), f1, flen f . Then p1 ­ q1.

(7) Let f be a S-sequence in R2 and p, q be points of E2
T. Suppose 1 ¬ j

and j < len f and p ∈ L(f, j) and q ∈ L(f, j) and (fj)2 = (fj+1)2 and
(fj)1 < (fj+1)1 and LE p, q, L̃(f), f1, flen f . Then p1 ¬ q1.

Let P be a subset of E2
T, let p1, p2, p be points of E2

T, and let e be a real
number. We say that p is LIn of P , p1, p2, e if and only if the conditions (Def. 1)
are satisfied.

(Def. 1)(i) P is an arc from p1 to p2,
(ii) p ∈ P,

(iii) p1 = e, and
(iv) there exists a point p4 of E2

T such that (p4)1 < e and LE p4, p, P , p1,
p2 and for every point p5 of E2

T such that LE p4, p5, P , p1, p2 and LE p5,
p, P , p1, p2 holds (p5)1 ¬ e.

We say that p is RIn of P , p1, p2, e if and only if the conditions (Def. 2) are
satisfied.

(Def. 2)(i) P is an arc from p1 to p2,
(ii) p ∈ P,

(iii) p1 = e, and
(iv) there exists a point p4 of E2

T such that (p4)1 > e and LE p4, p, P , p1,
p2 and for every point p5 of E2

T such that LE p4, p5, P , p1, p2 and LE p5,
p, P , p1, p2 holds (p5)1 ­ e.

We say that p is LOut of P , p1, p2, e if and only if the conditions (Def. 3) are
satisfied.

(Def. 3)(i) P is an arc from p1 to p2,
(ii) p ∈ P,

(iii) p1 = e, and
(iv) there exists a point p4 of E2

T such that (p4)1 < e and LE p, p4, P , p1,
p2 and for every point p5 of E2

T such that LE p5, p4, P , p1, p2 and LE p,
p5, P , p1, p2 holds (p5)1 ¬ e.

We say that p is ROut of P , p1, p2, e if and only if the conditions (Def. 4) are
satisfied.

(Def. 4)(i) P is an arc from p1 to p2,
(ii) p ∈ P,

(iii) p1 = e, and
(iv) there exists a point p4 of E2

T such that (p4)1 > e and LE p, p4, P , p1,
p2 and for every point p5 of E2

T such that LE p5, p4, P , p1, p2 and LE p,
p5, P , p1, p2 holds (p5)1 ­ e.
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We say that p is OsIn of P , p1, p2, e if and only if the conditions (Def. 5) are
satisfied.

(Def. 5)(i) P is an arc from p1 to p2,
(ii) p ∈ P,

(iii) p1 = e, and
(iv) there exists a point p7 of E2

T such that LE p7, p, P , p1, p2 and for every
point p8 of E2

T such that LE p7, p8, P , p1, p2 and LE p8, p, P , p1, p2 holds
(p8)1 = e and for every point p4 of E2

T such that LE p4, p7, P , p1, p2 and
p4 6= p7 holds there exists a point p5 of E2

T such that LE p4, p5, P , p1, p2

and LE p5, p7, P , p1, p2 and (p5)1 > e and there exists a point p6 of E2
T

such that LE p4, p6, P , p1, p2 and LE p6, p7, P , p1, p2 and (p6)1 < e.

We say that p is OsOut of P , p1, p2, e if and only if the conditions (Def. 6) are
satisfied.

(Def. 6)(i) P is an arc from p1 to p2,
(ii) p ∈ P,

(iii) p1 = e, and
(iv) there exists a point p7 of E2

T such that LE p, p7, P , p1, p2 and for every
point p8 of E2

T such that LE p8, p7, P , p1, p2 and LE p, p8, P , p1, p2 holds
(p8)1 = e and for every point p4 of E2

T such that LE p7, p4, P , p1, p2 and
p4 6= p7 holds there exists a point p5 of E2

T such that LE p5, p4, P , p1, p2

and LE p7, p5, P , p1, p2 and (p5)1 > e and there exists a point p6 of E2
T

such that LE p6, p4, P , p1, p2 and LE p7, p6, P , p1, p2 and (p6)1 < e.

We now state a number of propositions:

(8) Let P be a subset of E2
T, p1, p2, p be points of E2

T, and e be a real number.
Suppose P is an arc from p1 to p2 and (p1)1 ¬ e and (p2)1 ­ e. Then there
exists a point p3 of E2

T such that p3 ∈ P and (p3)1 = e.

(9) Let P be a non empty subset of E2
T, p1, p2, p be points of E2

T, and e

be a real number. Suppose P is an arc from p1 to p2 and (p1)1 < e and
(p2)1 > e and p ∈ P and p1 = e. Then p is LIn of P , p1, p2, e, RIn of P ,
p1, p2, e, and OsIn of P , p1, p2, e.

(10) Let P be a non empty subset of E2
T, p1, p2, p be points of E2

T, and e

be a real number. Suppose P is an arc from p1 to p2 and (p1)1 < e and
(p2)1 > e and p ∈ P and p1 = e. Then p is LOut of P , p1, p2, e, ROut of
P , p1, p2, e, and OsOut of P , p1, p2, e.

(11) For every subset P of I and for every real number s such that P = [0, s[
holds P is open.

(12) For every subset P of I and for every real number s such that P = ]s, 1]
holds P is open.

(13) Let P be a non empty subset of E2
T, P1 be a subset of (E2

T)¹P, Q be a
subset of I, f be a map from I into (E2

T)¹P, and s be a real number. Suppose
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s ¬ 1 and P1 = {q0; q0 ranges over points of E2
T:

∨
s1 : real number (0 ¬

s1 ∧ s1 < s ∧ q0 = f(s1))} and Q = [0, s[. Then f◦Q = P1.

(14) Let P be a non empty subset of E2
T, P1 be a subset of (E2

T)¹P, Q be a
subset of I, f be a map from I into (E2

T)¹P, and s be a real number. Suppose
s ­ 0 and P1 = {q0; q0 ranges over points of E2

T:
∨

s1 : real number (s <

s1 ∧ s1 ¬ 1 ∧ q0 = f(s1))} and Q = ]s, 1]. Then f◦Q = P1.

(15) Let P be a non empty subset of E2
T, P1 be a subset of (E2

T)¹P, f be
a map from I into (E2

T)¹P, and s be a real number. Suppose s ¬ 1
and f is a homeomorphism and P1 = {q0; q0 ranges over points of E2

T:∨
s1 : real number (0 ¬ s1 ∧ s1 < s ∧ q0 = f(s1))}. Then P1 is open.

(16) Let P be a non empty subset of E2
T, P1 be a subset of (E2

T)¹P, f be
a map from I into (E2

T)¹P, and s be a real number. Suppose s ­ 0
and f is a homeomorphism and P1 = {q0; q0 ranges over points of E2

T:∨
s1 : real number (s < s1 ∧ s1 ¬ 1 ∧ q0 = f(s1))}. Then P1 is open.

(17) Let T be a non empty topological structure, Q1, Q2 be subsets of T , and
p1, p2 be points of T . Suppose Q1 ∩Q2 = ∅ and Q1 ∪Q2 = the carrier of
T and p1 ∈ Q1 and p2 ∈ Q2 and Q1 is open and Q2 is open. Then it is not
true that there exists a map P from I into T such that P is continuous
and P (0) = p1 and P (1) = p2.

(18) Let P be a non empty subset of E2
T, Q be a subset of (E2

T)¹P, and p1,
p2, q be points of E2

T. Suppose P is an arc from p1 to p2 and q ∈ P and
q 6= p1 and q 6= p2 and Q = P \ {q}. Then Q is not connected and it is
not true that there exists a map R from I into (E2

T)¹P ¹Q such that R is
continuous and R(0) = p1 and R(1) = p2.

(19) Let P be a non empty subset of E2
T and p1, p2, q1, q2 be points of E2

T.
Suppose P is an arc from p1 to p2 and q1 ∈ P and q2 ∈ P. Then LE q1,
q2, P , p1, p2 or LE q2, q1, P , p1, p2.

(20) Let P be a non empty subset of E2
T and p1, p2, q1 be points of E2

T.
Suppose P is an arc from p1 to p2 and q1 ∈ P and p1 6= q1. Then
Segment(P, p1, p2, p1, q1) is an arc from p1 to q1.

(21) Let n be a natural number, p1, p2 be points of En
T, and P , P1 be non

empty subsets of En
T. If P is an arc from p1 to p2 and P1 is an arc from p1

to p2 and P1 ⊆ P, then P1 = P.

(22) Let P be a non empty subset of E2
T and p1, p2, q1 be points of E2

T.
Suppose P is an arc from p1 to p2 and q1 ∈ P and p2 6= q1. Then
Segment(P, p1, p2, q1, p2) is an arc from q1 to p2.

(23) Let P be a non empty subset of E2
T and p1, p2, q1, q2, q3 be points of

E2
T. Suppose P is an arc from p1 to p2 and LE q1, q2, P , p1, p2 and LE q2,

q3, P , p1, p2. Then Segment(P, p1, p2, q1, q2) ∪ Segment(P, p1, p2, q2, q3) =
Segment(P, p1, p2, q1, q3).
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(24) Let P be a non empty subset of E2
T and p1, p2, q1, q2, q3 be points of E2

T.
Suppose P is an arc from p1 to p2 and LE q1, q2, P , p1, p2 and LE q2, q3, P ,
p1, p2. Then Segment(P, p1, p2, q1, q2) ∩ Segment(P, p1, p2, q2, q3) = {q2}.

(25) For every non empty subset P of E2
T and for all points p1, p2 of E2

T such
that P is an arc from p1 to p2 holds Segment(P, p1, p2, p1, p2) = P.

(26) Let T be a non empty topological space, w1, w2, w3 be points of T , and
h1, h2 be maps from I into T . Suppose h1 is continuous and w1 = h1(0)
and w2 = h1(1) and h2 is continuous and w2 = h2(0) and w3 = h2(1).
Then there exists a map h3 from I into T such that h3 is continuous and
w1 = h3(0) and w3 = h3(1).

(27) Let T be a non empty topological space, a, b, c be points of T , G1 be a
path from a to b, and G2 be a path from b to c. Suppose G1 is continuous
and G2 is continuous and G1(0) = a and G1(1) = b and G2(0) = b

and G2(1) = c. Then G1 + G2 is continuous and (G1 + G2)(0) = a and
(G1 + G2)(1) = c.

(28) Let P , Q1 be non empty subsets of E2
T and p1, p2, q1, q2 be points of E2

T.
Suppose P is an arc from p1 to p2 and Q1 is an arc from q1 to q2 and LE
q1, q2, P , p1, p2 and Q1 ⊆ P. Then Q1 = Segment(P, p1, p2, q1, q2).

(29) Let P be a non empty subset of E2
T, p1, p2, q1, q2, p be points of E2

T, and
e be a real number. Suppose (p1)1 < e and (p2)1 > e and q1 is LIn of P ,
p1, p2, e and (q2)1 = e and L(q1, q2) ⊆ P and p ∈ L(q1, q2). Then p is LIn
of P , p1, p2, e.

(30) Let P be a non empty subset of E2
T, p1, p2, q1, q2, p be points of E2

T, and
e be a real number. Suppose (p1)1 < e and (p2)1 > e and q1 is RIn of P ,
p1, p2, e and (q2)1 = e and L(q1, q2) ⊆ P and p ∈ L(q1, q2). Then p is RIn
of P , p1, p2, e.

(31) Let P be a non empty subset of E2
T, p1, p2, q1, q2, p be points of E2

T, and
e be a real number. Suppose (p1)1 < e and (p2)1 > e and q1 is LOut of
P , p1, p2, e and (q2)1 = e and L(q1, q2) ⊆ P and p ∈ L(q1, q2). Then p is
LOut of P , p1, p2, e.

(32) Let P be a non empty subset of E2
T, p1, p2, q1, q2, p be points of E2

T, and
e be a real number. Suppose (p1)1 < e and (p2)1 > e and q1 is ROut of
P , p1, p2, e and (q2)1 = e and L(q1, q2) ⊆ P and p ∈ L(q1, q2). Then p is
ROut of P , p1, p2, e.

(33) Let P be a non empty subset of E2
T, p1, p2, p be points of E2

T, and e be
a real number. Suppose P is a special polygonal arc joining p1 and p2 and
(p1)1 < e and (p2)1 > e and p ∈ P and p1 = e. Then p is LIn of P , p1, p2,
e and RIn of P , p1, p2, e.

(34) Let P be a non empty subset of E2
T, p1, p2, p be points of E2

T, and e be
a real number. Suppose P is a special polygonal arc joining p1 and p2 and
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(p1)1 < e and (p2)1 > e and p ∈ P and p1 = e. Then p is LOut of P , p1,
p2, e and ROut of P , p1, p2, e.
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Summary. First we give a definition of “inflation” of a set in finite to-
pological spaces. Then a concept of “deflation” of a set is also defined. In the
remaining part, we give a concept of the “set series” for a subset of a finite topo-
logical space. Using this, we can define a series of neighbourhoods for each point
in the space. The work is done according to [7].

MML Identifier: FINTOPO3.

The articles [9], [5], [10], [2], [8], [1], [12], [11], [3], [4], and [6] provide the notation
and terminology for this paper.

We adopt the following rules: T denotes a non empty finite topology space,
A, B denote subsets of T , and x, y denote elements of T .

Let us consider T and let A be a subset of T . The functor Ad yields a subset
of T and is defined by:

(Def. 1) Ad = {x; x ranges over elements of T :
∧

y : element of T (y ∈ Ac ⇒ x /∈
U(y))}.

We now state a number of propositions:

(1) If T is filled, then A ⊆ Af .

(2) x ∈ Ad iff for every y such that y ∈ Ac holds x /∈ U(y).
(3) If T is filled, then Ad ⊆ A.

(4) Ad = ((Ac)f )c.

(5) If A ⊆ B, then Af ⊆ Bf .
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(6) If A ⊆ B, then Ad ⊆ Bd.

(7) (A ∩B)b ⊆ Ab ∩Bb.

(8) (A ∪B)b = Ab ∪Bb.

(9) Ai ∪Bi ⊆ (A ∪B)i.

(10) Ai ∩Bi = (A ∩B)i.

(11) Af ∪Bf = (A ∪B)f .

(12) Ad ∩Bd = A ∩Bd.

Let T be a non empty finite topology space and let A be a subset of T . The
functor Fcl(A) yields a function from N into 2the carrier of T and is defined as
follows:

(Def. 2) For every natural number n and for every subset B of T such that
B = (Fcl(A))(n) holds (Fcl(A))(n + 1) = Bb and (Fcl(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let n

be a natural number. The functor Fcl(A,n) yields a subset of T and is defined
by:

(Def. 3) Fcl(A,n) = (Fcl(A))(n).
Let T be a non empty finite topology space and let A be a subset of T . The

functor Fint(A) yields a function from N into 2the carrier of T and is defined by:

(Def. 4) For every natural number n and for every subset B of T such that
B = (Fint(A))(n) holds (Fint(A))(n + 1) = Bi and (Fint(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let n

be a natural number. The functor Fint(A,n) yields a subset of T and is defined
as follows:

(Def. 5) Fint(A,n) = (Fint(A))(n).
The following propositions are true:

(13) For every natural number n holds Fcl(A,n + 1) = (Fcl(A,n))b.

(14) Fcl(A, 0) = A.

(15) Fcl(A, 1) = Ab.

(16) Fcl(A, 2) = (Ab)b.

(17) For every natural number n holds Fcl(A∪B, n) = Fcl(A,n)∪Fcl(B, n).
(18) For every natural number n holds Fint(A,n + 1) = (Fint(A,n))i.

(19) Fint(A, 0) = A.

(20) Fint(A, 1) = Ai.

(21) Fint(A, 2) = (Ai)i.

(22) For every natural number n holds Fint(A ∩ B,n) = Fint(A,n) ∩
Fint(B, n).

(23) If T is filled, then for every natural number n holds A ⊆ Fcl(A,n).
(24) If T is filled, then for every natural number n holds Fint(A,n) ⊆ A.
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(25) If T is filled, then for every natural number n holds Fcl(A, n) ⊆
Fcl(A, n + 1).

(26) If T is filled, then for every natural number n holds Fint(A,n + 1) ⊆
Fint(A, n).

(27) For every natural number n holds (Fint(Ac, n))c = Fcl(A,n).
(28) For every natural number n holds (Fcl(Ac, n))c = Fint(A,n).
(29) For every natural number n holds Fcl(A,n) ∪ Fcl(B, n) = (Fint((A ∪

B)c, n))c.

(30) For every natural number n holds Fint(A,n) ∩ Fint(B, n) = (Fcl((A ∩
B)c, n))c.

Let T be a non empty finite topology space and let A be a subset of T . The
functor Finf(A) yielding a function from N into 2the carrier of T is defined by:

(Def. 6) For every natural number n and for every subset B of T such that
B = (Finf(A))(n) holds (Finf(A))(n + 1) = Bf and (Finf(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let
n be a natural number. The functor Finf(A,n) yielding a subset of T is defined
as follows:

(Def. 7) Finf(A, n) = (Finf(A))(n).
Let T be a non empty finite topology space and let A be a subset of T . The

functor Fdfl(A) yields a function from N into 2the carrier of T and is defined as
follows:

(Def. 8) For every natural number n and for every subset B of T such that
B = (Fdfl(A))(n) holds (Fdfl(A))(n + 1) = Bd and (Fdfl(A))(0) = A.

Let T be a non empty finite topology space, let A be a subset of T , and let n

be a natural number. The functor Fdfl(A,n) yields a subset of T and is defined
as follows:

(Def. 9) Fdfl(A,n) = (Fdfl(A))(n).
Next we state a number of propositions:

(31) For every natural number n holds Finf(A,n + 1) = (Finf(A,n))f .

(32) Finf(A, 0) = A.

(33) Finf(A, 1) = Af .

(34) Finf(A, 2) = (Af )f .

(35) For every natural number n holds Finf(A ∪ B, n) = Finf(A,n) ∪
Finf(B, n).

(36) If T is filled, then for every natural number n holds A ⊆ Finf(A,n).
(37) If T is filled, then for every natural number n holds Finf(A,n) ⊆

Finf(A,n + 1).
(38) For every natural number n holds Fdfl(A,n + 1) = Fdfl(A,n)d.
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(39) Fdfl(A, 0) = A.

(40) Fdfl(A, 1) = Ad.

(41) Fdfl(A, 2) = (Ad)d.

(42) For every natural number n holds Fdfl(A ∩ B, n) = Fdfl(A,n) ∩
Fdfl(B, n).

(43) If T is filled, then for every natural number n holds Fdfl(A,n) ⊆ A.

(44) If T is filled, then for every natural number n holds Fdfl(A,n + 1) ⊆
Fdfl(A,n).

(45) For every natural number n holds Fdfl(A,n) = (Finf(Ac, n))c.

(46) For every natural number n holds Fdfl(A,n) ∩ Fdfl(B, n) = (Finf((A ∩
B)c, n))c.

Let T be a non empty finite topology space, let n be a natural number, and
let x be an element of T . The functor U(x, n) yields a subset of T and is defined
as follows:

(Def. 10) U(x, n) = Finf(U(x), n).
Next we state two propositions:

(47) U(x, 0) = U(x).
(48) For every natural number n holds U(x, n + 1) = (U(x, n))f .

Let S, T be non empty finite topology spaces. We say that S, T are mutually
symmetric if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) The carrier of S = the carrier of T , and
(ii) for all sets x, y such that x ∈ the carrier of S and y ∈ the carrier of

T holds y ∈ (the neighbour-map of S)(x) iff x ∈ (the neighbour-map of
T )(y).

Let us note that the predicate S, T are mutually symmetric is symmetric.
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The notation and terminology used in this paper are introduced in the following
articles: [19], [21], [22], [4], [5], [3], [2], [18], [6], [1], [20], [10], [11], [12], [17], [9],
[7], [8], [14], [13], [15], and [16].

1. Basic Properties of Sequences of Norm Space

Let X be a non empty normed structure and let s1 be a sequence of X. The
functor (

∑κ
α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows:

(Def. 1) (
∑κ

α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds
(
∑κ

α=0(s1)(α))κ∈N(n + 1) = (
∑κ

α=0(s1)(α))κ∈N(n) + s1(n + 1).
One can prove the following proposition

(1) Let X be an add-associative right zeroed right complementable non
empty normed structure and s1 be a sequence of X. Suppose that for
every natural number n holds s1(n) = 0X . Let m be a natural number.
Then (

∑κ
α=0(s1)(α))κ∈N(m) = 0X .

Let X be a real normed space and let s1 be a sequence of X. We say that
s1 is summable if and only if:

(Def. 2) (
∑κ

α=0(s1)(α))κ∈N is convergent.

Let X be a real normed space. One can verify that there exists a sequence
of X which is summable.

Let X be a real normed space and let s1 be a sequence of X. The functor∑
s1 yields an element of X and is defined by:
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(Def. 3)
∑

s1 = lim((
∑κ

α=0(s1)(α))κ∈N).
Let X be a real normed space and let s1 be a sequence of X. We say that

s1 is norm-summable if and only if:

(Def. 4) ‖s1‖ is summable.

Next we state several propositions:

(2) For every real normed space X and for every sequence s1 of X and for
every natural number m holds 0 ¬ ‖s1‖(m).

(3) For every real normed space X and for all elements x, y, z of X holds
‖x− y‖ = ‖(x− z) + (z − y)‖.

(4) Let X be a real normed space and s1 be a sequence of X. Suppose s1 is
convergent. Let s be a real number. Suppose 0 < s. Then there exists a
natural number n such that for every natural number m if n ¬ m, then
‖s1(m)− s1(n)‖ < s.

(5) Let X be a real normed space and s1 be a sequence of X. Then s1 is
Cauchy sequence by norm if and only if for every real number p such that
p > 0 there exists a natural number n such that for every natural number
m such that n ¬ m holds ‖s1(m)− s1(n)‖ < p.

(6) Let X be a real normed space and s1 be a sequence of X. Suppose that
for every natural number n holds s1(n) = 0X . Let m be a natural number.
Then (

∑κ
α=0‖s1‖(α))κ∈N(m) = 0.

Let X be a real normed space and let s1 be a sequence of X. Let us observe
that s1 is constant if and only if:

(Def. 5) There exists an element r of X such that for every natural number n

holds s1(n) = r.

Let X be a real normed space, let s1 be a sequence of X, and let k be a
natural number. The functor s1↑k yielding a sequence of X is defined as follows:

(Def. 6) For every natural number n holds (s1 ↑ k)(n) = s1(n + k).
Let X be a non empty 1-sorted structure, let N1 be an increasing sequence

of naturals, and let s1 be a sequence of X. Then s1 · N1 is a function from N
into the carrier of X.

Let X be a non empty 1-sorted structure, let N1 be an increasing sequence
of naturals, and let s1 be a sequence of X. Then s1 ·N1 is a sequence of X.

Let X be a real normed space and let s1, s2 be sequences of X. We say that
s1 is a subsequence of s2 if and only if:

(Def. 7) There exists an increasing sequence N1 of naturals such that s1 = s2 ·N1.

Next we state a number of propositions:

(7) Let X be a non empty 1-sorted structure, s1 be a sequence of X, N1

be an increasing sequence of naturals, and n be a natural number. Then
(s1 ·N1)(n) = s1(N1(n)).
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(8) For every real normed space X and for every sequence s1 of X holds
s1 ↑ 0 = s1.

(9) For every real normed space X and for every sequence s1 of X and for
all natural numbers k, m holds s1 ↑ k ↑m = s1 ↑m ↑ k.

(10) For every real normed space X and for every sequence s1 of X and for
all natural numbers k, m holds s1 ↑ k ↑m = s1 ↑ (k + m).

(11) Let X be a real normed space and s1, s2 be sequences of X. If s2 is a
subsequence of s1 and s1 is convergent, then s2 is convergent.

(12) Let X be a real normed space and s1, s2 be sequences of X. If s2 is a
subsequence of s1 and s1 is convergent, then lim s2 = lim s1.

(13) Let X be a real normed space, s1 be a sequence of X, and k be a natural
number. Then s1 ↑ k is a subsequence of s1.

(14) Let X be a real normed space, s1, s2 be sequences of X, and k be a
natural number. If s1 is convergent, then s1 ↑ k is convergent and lim(s1 ↑
k) = lim s1.

(15) Let X be a real normed space and s1, s2 be sequences of X. Suppose s1

is convergent and there exists a natural number k such that s1 = s2 ↑ k.

Then s2 is convergent.

(16) Let X be a real normed space and s1, s2 be sequences of X. Suppose s1

is convergent and there exists a natural number k such that s1 = s2 ↑ k.

Then lim s2 = lim s1.

(17) For every real normed space X and for every sequence s1 of X such that
s1 is constant holds s1 is convergent.

(18) Let X be a real normed space and s1 be a sequence of X. If for every
natural number n holds s1(n) = 0X , then s1 is norm-summable.

Let X be a real normed space. Observe that there exists a sequence of X

which is norm-summable.
Next we state three propositions:

(19) Let X be a real normed space and s be a sequence of X. If s is summable,
then s is convergent and lim s = 0X .

(20) For every real normed space X and for all sequences s3, s4 of X holds
(
∑κ

α=0(s3)(α))κ∈N + (
∑κ

α=0(s4)(α))κ∈N = (
∑κ

α=0(s3 + s4)(α))κ∈N.

(21) For every real normed space X and for all sequences s3, s4 of X holds
(
∑κ

α=0(s3)(α))κ∈N − (
∑κ

α=0(s4)(α))κ∈N = (
∑κ

α=0(s3 − s4)(α))κ∈N.

Let X be a real normed space and let s1 be a norm-summable sequence of
X. Observe that ‖s1‖ is summable.

Let X be a real normed space. One can check that every sequence of X

which is summable is also convergent.
The following propositions are true:
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(22) Let X be a real normed space and s2, s5 be sequences of X. If s2 is
summable and s5 is summable, then s2+s5 is summable and

∑
(s2+s5) =∑

s2 +
∑

s5.

(23) Let X be a real normed space and s2, s5 be sequences of X. If s2 is
summable and s5 is summable, then s2−s5 is summable and

∑
(s2−s5) =∑

s2 −
∑

s5.

Let X be a real normed space and let s2, s5 be summable sequences of X.
One can verify that s2 + s5 is summable and s2 − s5 is summable.

We now state two propositions:

(24) For every real normed space X and for every sequence s1 of X and for
every real number z holds (

∑κ
α=0(z · s1)(α))κ∈N = z · (∑κ

α=0(s1)(α))κ∈N.

(25) Let X be a real normed space, s1 be a summable sequence of X, and z

be a real number. Then z · s1 is summable and
∑

(z · s1) = z ·∑ s1.

Let X be a real normed space, let z be a real number, and let s1 be a
summable sequence of X. Observe that z · s1 is summable.

One can prove the following two propositions:

(26) Let X be a real normed space and s, s3 be sequences of X. If for
every natural number n holds s3(n) = s(0), then (

∑κ
α=0(s ↑ 1)(α))κ∈N =

(
∑κ

α=0 s(α))κ∈N ↑ 1− s3.

(27) Let X be a real normed space and s be a sequence of X. If s is summable,
then for every natural number n holds s ↑ n is summable.

Let X be a real normed space, let s1 be a summable sequence of X, and let
n be a natural number. Observe that s1 ↑ n is summable.

Next we state the proposition

(28) Let X be a real normed space and s1 be a sequence of X. Then
(
∑κ

α=0‖s1‖(α))κ∈N is upper bounded if and only if s1 is norm-summable.

Let X be a real normed space and let s1 be a norm-summable sequence of
X. One can check that (

∑κ
α=0‖s1‖(α))κ∈N is upper bounded.

One can prove the following propositions:

(29) Let X be a real Banach space and s1 be a sequence of X. Then s1 is
summable if and only if for every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n ¬ m holds ‖(∑κ

α=0(s1)(α))κ∈N(m)− (
∑κ

α=0(s1)(α))κ∈N(n)‖ < p.

(30) Let X be a real normed space, s be a sequence of X, and n, m be natural
numbers. If n ¬ m, then ‖(∑κ

α=0 s(α))κ∈N(m) − (
∑κ

α=0 s(α))κ∈N(n)‖ ¬
|(∑κ

α=0‖s‖(α))κ∈N(m)− (
∑κ

α=0‖s‖(α))κ∈N(n)|.
(31) For every real Banach space X and for every sequence s1 of X such that

s1 is norm-summable holds s1 is summable.

(32) Let X be a real normed space, r1 be a sequence of real numbers, and s5

be a sequence of X. Suppose r1 is summable and there exists a natural
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number m such that for every natural number n such that m ¬ n holds
‖s5(n)‖ ¬ r1(n). Then s5 is norm-summable.

(33) Let X be a real normed space and s2, s5 be sequences of X. Suppose for
every natural number n holds 0 ¬ ‖s2‖(n) and ‖s2‖(n) ¬ ‖s5‖(n) and s5

is norm-summable. Then s2 is norm-summable and
∑‖s2‖ ¬

∑‖s5‖.
(34) Let X be a real normed space and s1 be a sequence of X. Suppose that

(i) for every natural number n holds ‖s1‖(n) > 0, and
(ii) there exists a natural number m such that for every natural number n

such that n ­ m holds ‖s1‖(n+1)
‖s1‖(n) ­ 1.

Then s1 is not norm-summable.

(35) Let X be a real normed space, s1 be a sequence of X, and r1 be a
sequence of real numbers. Suppose for every natural number n holds
r1(n) = n

√
‖s1‖(n) and r1 is convergent and lim r1 < 1. Then s1 is norm-

summable.

(36) Let X be a real normed space, s1 be a sequence of X, and r1 be a
sequence of real numbers. Suppose that

(i) for every natural number n holds r1(n) = n
√
‖s1‖(n), and

(ii) there exists a natural number m such that for every natural number n

such that m ¬ n holds r1(n) ­ 1.

Then ‖s1‖ is not summable.

(37) Let X be a real normed space, s1 be a sequence of X, and r1 be a
sequence of real numbers. Suppose for every natural number n holds
r1(n) = n

√
‖s1‖(n) and r1 is convergent and lim r1 > 1. Then s1 is not

norm-summable.

(38) Let X be a real normed space, s1 be a sequence of X, and r1 be a
sequence of real numbers. Suppose ‖s1‖ is non-increasing and for every
natural number n holds r1(n) = 2n · ‖s1‖(2n). Then s1 is norm-summable
if and only if r1 is summable.

(39) Let X be a real normed space, s1 be a sequence of X, and p be a real
number. Suppose p > 1 and for every natural number n such that n ­ 1
holds ‖s1‖(n) = 1

np . Then s1 is norm-summable.

(40) Let X be a real normed space, s1 be a sequence of X, and p be a real
number. Suppose p ¬ 1 and for every natural number n such that n ­ 1
holds ‖s1‖(n) = 1

np . Then s1 is not norm-summable.

(41) Let X be a real normed space, s1 be a sequence of X, and r1 be a sequence
of real numbers. Suppose for every natural number n holds s1(n) 6= 0X

and r1(n) = ‖s1‖(n+1)
‖s1‖(n) and r1 is convergent and lim r1 < 1. Then s1 is

norm-summable.

(42) Let X be a real normed space and s1 be a sequence of X. Suppose that
(i) for every natural number n holds s1(n) 6= 0X , and
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(ii) there exists a natural number m such that for every natural number n

such that n ­ m holds ‖s1‖(n+1)
‖s1‖(n) ­ 1.

Then s1 is not norm-summable.

Let X be a real Banach space. Observe that every sequence of X which is
norm-summable is also summable.

2. Basic Properties of Sequences of Banach Algebra

The scheme ExNCBASeq deals with a non empty normed algebra structure
A and a unary functor F yielding a point of A, and states that:

There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)

for all values of the parameters.
The following proposition is true

(43) Let X be a Banach algebra, x, y, z be elements of X, and a, b be real
numbers. Then x+y = y+x and (x+y)+z = x+(y+z) and x+0X = x and
there exists an element t of X such that x+t = 0X and (x ·y) ·z = x ·(y ·z)
and 1·x = x and 0·x = 0X and a·0X = 0X and (−1)·x = −x and x·1X = x

and 1X ·x = x and x · (y + z) = x ·y +x · z and (y + z) ·x = y ·x+ z ·x and
a·(x·y) = (a·x)·y and a·(x+y) = a·x+a·y and (a+b)·x = a·x+b·x and
(a · b) ·x = a · (b ·x) and (a · b) · (x ·y) = a ·x · (b ·y) and a · (x ·y) = x · (a ·y)
and 0X · x = 0X and x · 0X = 0X and x · (y − z) = x · y − x · z and
(y − z) · x = y · x− z · x and (x + y)− z = x + (y − z) and (x− y) + z =
x− (y − z) and x− y − z = x− (y + z) and x + y = (x− z) + (z + y) and
x − y = (x − z) + (z − y) and x = (x − y) + y and x = y − (y − x) and
‖x‖ = 0 iff x = 0X and ‖a · x‖ = |a| · ‖x‖ and ‖x + y‖ ¬ ‖x‖ + ‖y‖ and
‖x · y‖ ¬ ‖x‖ · ‖y‖ and ‖1X‖ = 1 and X is complete.

Let X be a non empty multiplicative loop structure and let v be an element
of X. We say that v is invertible if and only if:

(Def. 8) There exists an element w of X such that v · w = 1X and w · v = 1X .

Let X be a non empty normed algebra structure, let S be a sequence of X,
and let a be an element of X. The functor a · S yielding a sequence of X is
defined by:

(Def. 9) For every natural number n holds (a · S)(n) = a · S(n).
Let X be a non empty normed algebra structure, let S be a sequence of X,

and let a be an element of X. The functor S · a yields a sequence of X and is
defined by:

(Def. 10) For every natural number n holds (S · a)(n) = S(n) · a.

Let X be a non empty normed algebra structure and let s2, s5 be sequences
of X. The functor s2 · s5 yielding a sequence of X is defined as follows:
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(Def. 11) For every natural number n holds (s2 · s5)(n) = s2(n) · s5(n).
Let X be a Banach algebra and let x be an element of X. Let us assume that

x is invertible. The functor x−1 yielding an element of X is defined as follows:

(Def. 12) x · x−1 = 1X and x−1 · x = 1X .

Let X be a Banach algebra and let z be an element of X. The functor (zκ)κ∈N
yielding a sequence of X is defined as follows:

(Def. 13) (zκ)κ∈N(0) = 1X and for every natural number n holds (zκ)κ∈N(n+1) =
(zκ)κ∈N(n) · z.

Let X be a Banach algebra, let z be an element of X, and let n be a natural
number. The functor zn

N yields an element of X and is defined by:

(Def. 14) zn
N = (zκ)κ∈N(n).

One can prove the following four propositions:

(44) For every Banach algebra X and for every element z of X holds z0
N = 1X .

(45) For every Banach algebra X and for every element z of X such that
‖z‖ < 1 holds (zκ)κ∈N is summable and norm-summable.

(46) Let X be a Banach algebra and x be a point of X. If ‖1X −x‖ < 1, then
((1X − x)κ)κ∈N is summable and ((1X − x)κ)κ∈N is norm-summable.

(47) For every Banach algebra X and for every point x of X such that ‖1X −
x‖ < 1 holds x is invertible and x−1 =

∑
(((1X − x)κ)κ∈N).
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Summary. In this article, we concentrated especially on addition formulas
of fundamental trigonometric functions, and their identities.

MML Identifier: SIN COS4.

The articles [1] and [2] provide the notation and terminology for this paper.
In this paper t1, t2, t3, t4 denote real numbers.
Let us consider t1. The functor tan t1 yielding a real number is defined by:

(Def. 1) tan t1 = sin t1
cos t1

.

Let us consider t1. The functor cot t1 yields a real number and is defined by:

(Def. 2) cot t1 = cos t1
sin t1

.

Let us consider t1. The functor cosec t1 yielding a real number is defined as
follows:

(Def. 3) cosec t1 = 1
sin t1

.

Let us consider t1. The functor sec t1 yielding a real number is defined by:

(Def. 4) sec t1 = 1
cos t1

.

Next we state a number of propositions:

(1) tan t1 = 1
cot t1

.

(2) tan(−t1) = −tan t1.

(3) cosec(−t1) = − 1
sin t1

.

(4) cot(−t1) = −cot t1.

(5) If cos t2 6= 0, then cos t2 · sec t2 = 1.

(6) sin t1 · sin t1 = 1− cos t1 · cos t1.
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(7) cos t1 · cos t1 = 1− sin t1 · sin t1.

(8) If cos t1 6= 0, then sin t1 = cos t1 · tan t1.

(9) sin(t2 − t3) = sin t2 · cos t3 − cos t2 · sin t3.

(10) cos(t2 − t3) = cos t2 · cos t3 + sin t2 · sin t3.

(11) If cos t2 6= 0 and cos t3 6= 0, then tan(t2 + t3) = tan t2+tan t3
1−tan t2·tan t3

.

(12) If cos t2 6= 0 and cos t3 6= 0, then tan(t2 − t3) = tan t2−tan t3
1+tan t2·tan t3

.

(13) If sin t2 6= 0 and sin t3 6= 0, then cot(t2 + t3) = cot t2·cot t3−1
cot t3+cot t2

.

(14) If sin t2 6= 0 and sin t3 6= 0, then cot(t2 − t3) = cot t2·cot t3+1
cot t3−cot t2

.

(15) If cos t2 6= 0 and cos t3 6= 0 and cos t4 6= 0, then sin(t2 + t3 + t4) =
cos t2 · cos t3 · cos t4 · ((tan t2 + tan t3 + tan t4)− tan t2 · tan t3 · tan t4).

(16) If cos t2 6= 0 and cos t3 6= 0 and cos t4 6= 0, then cos(t2 + t3 + t4) =
cos t2 · cos t3 · cos t4 · (1− tan t3 · tan t4 − tan t4 · tan t2 − tan t2 · tan t3).

(17) If cos t2 6= 0 and cos t3 6= 0 and cos t4 6= 0, then tan(t2 + t3 + t4) =
(tan t2+tan t3+tan t4)−tan t2·tan t3·tan t4
1−tan t3·tan t4−tan t4·tan t2−tan t2·tan t3

.

(18) If sin t2 6= 0 and sin t3 6= 0 and sin t4 6= 0, then cot(t2 + t3 + t4) =
cot t2·cot t3·cot t4−cot t2−cot t3−cot t4

(cot t3·cot t4+cot t4·cot t2+cot t2·cot t3)−1 .

(19) sin t2 + sin t3 = 2 · (cos( t2−t3
2 ) · sin( t2+t3

2 )).
(20) sin t2 − sin t3 = 2 · (cos( t2+t3

2 ) · sin( t2−t3
2 )).

(21) cos t2 + cos t3 = 2 · (cos( t2+t3
2 ) · cos( t2−t3

2 )).
(22) cos t2 − cos t3 = −2 · (sin( t2+t3

2 ) · sin( t2−t3
2 )).

(23) If cos t2 6= 0 and cos t3 6= 0, then tan t2 + tan t3 = sin(t2+t3)
cos t2·cos t3

.

(24) If cos t2 6= 0 and cos t3 6= 0, then tan t2 − tan t3 = sin(t2−t3)
cos t2·cos t3

.

(25) If cos t2 6= 0 and sin t3 6= 0, then tan t2 + cot t3 = cos(t2−t3)
cos t2·sin t3

.

(26) If cos t2 6= 0 and sin t3 6= 0, then tan t2 − cot t3 = − cos(t2+t3)
cos t2·sin t3

.

(27) If sin t2 6= 0 and sin t3 6= 0, then cot t2 + cot t3 = sin(t2+t3)
sin t2·sin t3

.

(28) If sin t2 6= 0 and sin t3 6= 0, then cot t2 − cot t3 = − sin(t2−t3)
sin t2·sin t3

.

(29) sin(t2 + t3) + sin(t2 − t3) = 2 · (sin t2 · cos t3).
(30) sin(t2 + t3)− sin(t2 − t3) = 2 · (cos t2 · sin t3).
(31) cos(t2 + t3) + cos(t2 − t3) = 2 · (cos t2 · cos t3).
(32) cos(t2 + t3)− cos(t2 − t3) = −2 · (sin t2 · sin t3).
(33) sin t2 · sin t3 = −1

2 · (cos(t2 + t3)− cos(t2 − t3)).
(34) sin t2 · cos t3 = 1

2 · (sin(t2 + t3) + sin(t2 − t3)).
(35) cos t2 · sin t3 = 1

2 · (sin(t2 + t3)− sin(t2 − t3)).
(36) cos t2 · cos t3 = 1

2 · (cos(t2 + t3) + cos(t2 − t3)).
(37) sin t2 · sin t3 · sin t4 = 1

4 · ((sin((t2 + t3)− t4)+ sin((t3 + t4)− t2)+ sin((t4 +
t2)− t3))− sin(t2 + t3 + t4)).
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(38) sin t2 · sin t3 · cos t4 = 1
4 · ((−cos((t2 + t3)− t4) + cos((t3 + t4) − t2) +

cos((t4 + t2)− t3))− cos(t2 + t3 + t4)).
(39) sin t2 ·cos t3 ·cos t4 = 1

4 ·((sin((t2 +t3)−t4)−sin((t3 +t4)−t2))+sin((t4 +
t2)− t3) + sin(t2 + t3 + t4)).

(40) cos t2 ·cos t3 ·cos t4 = 1
4 · (cos((t2 + t3)− t4)+cos((t3 + t4)− t2)+cos((t4 +

t2)− t3) + cos(t2 + t3 + t4)).
(41) sin(t2 + t3) · sin(t2 − t3) = sin t2 · sin t2 − sin t3 · sin t3.

(42) sin(t2 + t3) · sin(t2 − t3) = cos t3 · cos t3 − cos t2 · cos t2.

(43) sin(t2 + t3) · cos(t2 − t3) = sin t2 · cos t2 + sin t3 · cos t3.

(44) cos(t2 + t3) · sin(t2 − t3) = sin t2 · cos t2 − sin t3 · cos t3.

(45) cos(t2 + t3) · cos(t2 − t3) = cos t2 · cos t2 − sin t3 · sin t3.

(46) cos(t2 + t3) · cos(t2 − t3) = cos t3 · cos t3 − sin t2 · sin t2.

(47) If cos t2 6= 0 and cos t3 6= 0, then sin(t2+t3)
sin(t2−t3) = tan t2+tan t3

tan t2−tan t3
.

(48) If cos t2 6= 0 and cos t3 6= 0, then cos(t2+t3)
cos(t2−t3) = 1−tan t2·tan t3

1+tan t2·tan t3
.

(49) sin t2+sin t3
sin t2−sin t3

= tan( t2+t3
2 ) · cot( t2−t3

2 ).

(50) If cos( t2−t3
2 ) 6= 0, then sin t2+sin t3

cos t2+cos t3
= tan( t2+t3

2 ).

(51) If cos( t2+t3
2 ) 6= 0, then sin t2−sin t3

cos t2+cos t3
= tan( t2−t3

2 ).

(52) If sin( t2+t3
2 ) 6= 0, then sin t2+sin t3

cos t3−cos t2
= cot( t2−t3

2 ).

(53) If sin( t2−t3
2 ) 6= 0, then sin t2−sin t3

cos t3−cos t2
= cot( t2+t3

2 ).

(54) cos t2+cos t3
cos t2−cos t3

= cot( t2+t3
2 ) · cot( t3−t2

2 ).
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Summary. This paper contains some facts and theorems relating to the
following operations on graphs: union, sum, complement and “embeds”. We also
introduce connected graphs to prove that a finite irreflexive symmetric N-free
graph is a finite series-parallel graph. This article continues the formalization of
[22].

MML Identifier: NECKLA 3.

The papers [25], [24], [28], [12], [29], [31], [30], [2], [13], [1], [27], [18], [17], [8],
[14], [16], [20], [23], [7], [10], [26], [11], [4], [6], [19], [15], [5], [21], [3], and [9]
provide the notation and terminology for this paper.

1. Preliminaries

In this paper A, B, a, b, c, d, e, f , g, h denote sets.
One can prove the following three propositions:

(1) idA¹B = idA ∩ [:B, B :].
(2) id{a,b,c,d} = {〈〈a, a〉〉, 〈〈b, b〉〉, 〈〈c, c〉〉, 〈〈d, d〉〉}.
(3) [: {a, b, c, d}, {e, f, g, h} :] = {〈〈a, e〉〉, 〈〈a, f〉〉, 〈〈b, e〉〉, 〈〈b, f〉〉, 〈〈a, g〉〉, 〈〈a, h〉〉, 〈〈b,

g〉〉, 〈〈b, h〉〉} ∪ {〈〈c, e〉〉, 〈〈c, f〉〉, 〈〈d, e〉〉, 〈〈d, f〉〉, 〈〈c, g〉〉, 〈〈c, h〉〉, 〈〈d, g〉〉, 〈〈d, h〉〉}.
Let X, Y be trivial sets. Observe that every relation between X and Y is

trivial.
We now state the proposition

(4) For every trivial set X and for every binary relation R on X such that
R is non empty there exists a set x such that R = {〈〈x, x〉〉}.
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Let X be a trivial set. Observe that every binary relation on X is trivial,
reflexive, symmetric, transitive, and strongly connected.

We now state the proposition

(5) For every non empty trivial set X holds every binary relation on X is
symmetric in X.

One can verify that there exists a relational structure which is non empty,
strict, finite, irreflexive, and symmetric.

Let L be an irreflexive relational structure. Observe that every full relational
substructure of L is irreflexive.

Let L be a symmetric relational structure. Note that every full relational
substructure of L is symmetric.

One can prove the following proposition

(6) Let R be an irreflexive symmetric relational structure. Suppose
the carrier of R = 2. Then there exist sets a, b such that the carrier of
R = {a, b} but the internal relation of R = {〈〈a, b〉〉, 〈〈b, a〉〉} or the internal
relation of R = ∅.

2. Some Facts about Operations “UnionOf” and “SumOf”

Let R be a non empty relational structure and let S be a relational structure.
Note that UnionOf(R,S) is non empty and SumOf(R, S) is non empty.

Let R be a relational structure and let S be a non empty relational structure.
Observe that UnionOf(R,S) is non empty and SumOf(R,S) is non empty.

Let R, S be finite relational structures. One can check that UnionOf(R, S)
is finite and SumOf(R, S) is finite.

Let R, S be symmetric relational structures. One can check that
UnionOf(R, S) is symmetric and SumOf(R, S) is symmetric.

Let R, S be irreflexive relational structures. Observe that UnionOf(R, S) is
irreflexive.

The following four propositions are true:

(7) Let R, S be irreflexive relational structures. Suppose the carrier of R

misses the carrier of S. Then SumOf(R,S) is irreflexive.

(8) For all relational structures R1, R2 holds UnionOf(R1, R2) =
UnionOf(R2, R1) and SumOf(R1, R2) = SumOf(R2, R1).

(9) Let G be an irreflexive relational structure and G1, G2 be relational
structures. If G = UnionOf(G1, G2) or G = SumOf(G1, G2), then G1 is
irreflexive and G2 is irreflexive.

(10) Let G be a non empty relational structure and H1, H2 be relational
structures. Suppose that

(i) the carrier of H1 misses the carrier of H2, and
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(ii) the relational structure of G = UnionOf(H1,H2) or the relational struc-
ture of G = SumOf(H1,H2).
Then H1 is a full relational substructure of G and H2 is a full relational
substructure of G.

3. Theorems Relating to the Complement of Relational
Structure

One can prove the following proposition

(11) The internal relation of ComplRelStr Necklace 4 = {〈〈0, 2〉〉, 〈〈2, 0〉〉, 〈〈0,

3〉〉, 〈〈3, 0〉〉, 〈〈1, 3〉〉, 〈〈3, 1〉〉}.
Let R be a relational structure. Note that ComplRelStr R is irreflexive.
Let R be a symmetric relational structure. Note that ComplRelStr R is sym-

metric.
Next we state several propositions:

(12) For every relational structure R holds the internal relation of R misses
the internal relation of ComplRelStr R.

(13) For every relational structure R holds idthe carrier of R misses the internal
relation of ComplRelStr R.

(14) Let G be a relational structure. Then [: the carrier of G, the carrier of
G :] = idthe carrier of G ∪ the internal relation of G∪ the internal relation of
ComplRelStr G.

(15) For every strict irreflexive relational structure G such that G is trivial
holds ComplRelStr G = G.

(16) For every strict irreflexive relational structure G holds
ComplRelStr ComplRelStr G = G.

(17) For all relational structures G1, G2 such that the carrier of
G1 misses the carrier of G2 holds ComplRelStr UnionOf(G1, G2) =
SumOf(ComplRelStr G1, ComplRelStr G2).

(18) For all relational structures G1, G2 such that the carrier of
G1 misses the carrier of G2 holds ComplRelStr SumOf(G1, G2) =
UnionOf(ComplRelStr G1, ComplRelStr G2).

(19) Let G be a relational structure and H be a full relational substructure of
G. Then the internal relation of ComplRelStr H = (the internal relation
of ComplRelStr G) |2 (the carrier of ComplRelStr H).

(20) Let G be a non empty irreflexive relational structure, x be an element
of the carrier of G, and x′ be an element of the carrier of ComplRelStr G.

If x = x′, then ComplRelStr sub(ΩG \ {x}) = sub(ΩComplRelStr G \ {x′}).
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4. Another Facts Relating to Operation “embeds”

Let us observe that every non empty relational structure which is trivial and
strict is also N-free.

The following propositions are true:

(21) Let R be a reflexive antisymmetric relational structure and S be a rela-
tional structure. Then there exists a map f from R into S such that for
all elements x, y of the carrier of R holds 〈〈x, y〉〉 ∈ the internal relation of
R iff 〈〈f(x), f(y)〉〉 ∈ the internal relation of S if and only if S embeds R.

(22) Let G be a non empty relational structure and H be a non empty full
relational substructure of G. Then G embeds H.

(23) Let G be a non empty relational structure and H be a non empty full
relational substructure of G. If G is N-free, then H is N-free.

(24) For every non empty irreflexive relational structure G holds G embeds
Necklace 4 iff ComplRelStr G embeds Necklace 4.

(25) For every non empty irreflexive relational structure G holds G is N-free
iff ComplRelStr G is N-free.

5. Connected Graphs

Let R be a relational structure. A path of R is a reduction sequence w.r.t.
the internal relation of R.

Let R be a relational structure. We say that R is path-connected if and only
if the condition (Def. 1) is satisfied.

(Def. 1) Let x, y be sets. Suppose x ∈ the carrier of R and y ∈ the carrier of R

and x 6= y. Then the internal relation of R reduces x to y or the internal
relation of R reduces y to x.

One can check that every relational structure which is empty is also path-
connected.

One can check that every non empty relational structure which is connected
is also path-connected.

We now state the proposition

(26) Let R be a non empty transitive reflexive relational structure and x, y

be elements of R. Suppose the internal relation of R reduces x to y. Then
〈〈x, y〉〉 ∈ the internal relation of R.

One can check that every non empty transitive reflexive relational structure
which is path-connected is also connected.

Next we state the proposition
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(27) Let R be a symmetric relational structure and x, y be sets. Suppose
x ∈ the carrier of R and y ∈ the carrier of R. Suppose the internal relation
of R reduces x to y. Then the internal relation of R reduces y to x.

Let R be a symmetric relational structure. Let us observe that R is path-
connected if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let x, y be sets. Suppose x ∈ the carrier of R and y ∈ the carrier of R

and x 6= y. Then the internal relation of R reduces x to y.

Let R be a relational structure and let x be an element of R. The functor
component(x) yielding a subset of R is defined as follows:

(Def. 3) component(x) = [x]EqCl(the internal relation of R).

Next we state the proposition

(28) For every non empty relational structure R and for every element x of
R holds x ∈ component(x).

Let R be a non empty relational structure and let x be an element of R.
Note that component(x) is non empty.

Next we state a number of propositions:

(29) Let R be a relational structure, x be an element of R, and y be a set. If
y ∈ component(x), then 〈〈x, y〉〉 ∈ EqCl(the internal relation of R).

(30) Let R be a relational structure, x be an element of R, and A be a set.
Then A = component(x) if and only if for every set y holds y ∈ A iff 〈〈x,

y〉〉 ∈ EqCl(the internal relation of R).

(31) Let R be a non empty irreflexive symmetric relational structure. Suppose
R is not path-connected. Then there exist non empty strict irreflexive
symmetric relational structures G1, G2 such that the carrier of G1 misses
the carrier of G2 and the relational structure of R = UnionOf(G1, G2).

(32) Let R be a non empty irreflexive symmetric relational structure. Sup-
pose ComplRelStr R is not path-connected. Then there exist non empty
strict irreflexive symmetric relational structures G1, G2 such that the
carrier of G1 misses the carrier of G2 and the relational structure of
R = SumOf(G1, G2).

(33) For every irreflexive relational structure G such that G ∈ FinRelStrSp
holds ComplRelStr G ∈ FinRelStrSp .

(34) Let R be an irreflexive symmetric relational structure. Suppose
the carrier of R = 2 and the carrier of R ∈ U0. Then the relational struc-
ture of R ∈ FinRelStrSp .

(35) For every relational structure R such that R ∈ FinRelStrSp holds R is
symmetric.

(36) Let G be a relational structure, H1, H2 be non empty relational struc-
tures, x be an element of the carrier of H1, and y be an element of the
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carrier of H2. Suppose G = UnionOf(H1,H2) and the carrier of H1 misses
the carrier of H2. Then 〈〈x, y〉〉 /∈ the internal relation of G.

(37) Let G be a relational structure, H1, H2 be non empty relational struc-
tures, x be an element of the carrier of H1, and y be an element of the
carrier of H2. If G = SumOf(H1, H2), then 〈〈x, y〉〉 /∈ the internal relation
of ComplRelStr G.

(38) Let G be a non empty symmetric relational structure, x be an element
of the carrier of G, and R1, R2 be non empty relational structures. Sup-
pose the carrier of R1 misses the carrier of R2 and sub(ΩG \ {x}) =
UnionOf(R1, R2) and G is path-connected. Then there exists an element
b of the carrier of R1 such that 〈〈b, x〉〉 ∈ the internal relation of G.

(39) Let G be a non empty symmetric irreflexive relational structure, a, b, c,
d be elements of the carrier of G, and Z be a subset of the carrier of G.
Suppose that Z = {a, b, c, d} and a, b, c, d are mutually different and 〈〈a,

b〉〉 ∈ the internal relation of G and 〈〈b, c〉〉 ∈ the internal relation of G and
〈〈c, d〉〉 ∈ the internal relation of G and 〈〈a, c〉〉 /∈ the internal relation of G

and 〈〈a, d〉〉 /∈ the internal relation of G and 〈〈b, d〉〉 /∈ the internal relation
of G. Then sub(Z) embeds Necklace 4.

(40) Let G be a non empty irreflexive symmetric relational structure, x be an
element of the carrier of G, and R1, R2 be non empty relational structures.
Suppose that

(i) the carrier of R1 misses the carrier of R2,
(ii) sub(ΩG \ {x}) = UnionOf(R1, R2),
(iii) G is non trivial and path-connected, and
(iv) ComplRelStr G is path-connected.

Then G embeds Necklace 4.

(41) Let G be a non empty strict finite irreflexive symmetric relational struc-
ture. Suppose G is N-free and the carrier of G ∈ U0. Then the relational
structure of G ∈ FinRelStrSp .
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1. On the Standard Computers

For simplicity, we use the following convention: i, j, k denote natural num-
bers, n denotes a natural number, N denotes a set with non empty elements, S

denotes a standard IC-Ins-separated definite non empty non void AMI over N ,
l denotes an instruction-location of S, and f denotes a finite partial state of S.

Next we state the proposition

(1) N ≈ the instruction locations of S.

Let us consider N , S. Observe that the instruction locations of S is infinite.
We now state the proposition

(2) ilS(i) + j = ilS(i + j).
Let N be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , let l1 be an instruction-location of S,
and let k be a natural number. The functor l1−′ k yields an instruction-location
of S and is defined as follows:

(Def. 1) l1 −′ k = ilS(locnum(l1)−′ k).
We now state a number of propositions:

(3) l −′ 0 = l.

1The paper was written during the post-doctoral fellowship granted by Shinshu University,
Japan.
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(4) locnum(l)−′ k = locnum(l −′ k).
(5) (l + k)−′ k = l.

(6) ilS(i)−′ j = ilS(i−′ j).
(7) Let S be an IC-Ins-separated definite non empty non void AMI over N

and p be a finite partial state of S. Then dom DataPart(p) ⊆ (the carrier
of S) \ ({ICS} ∪ the instruction locations of S).

(8) Let S be an IC-Ins-separated definite realistic non empty non void AMI
over N and p be a finite partial state of S. Then p is data-only if and only
if dom p ⊆ (the carrier of S) \ ({ICS} ∪ the instruction locations of S).

(9) For all instruction-locations l2, l3 of S holds Start-At(l2 + k) =
Start-At(l3 + k) iff Start-At(l2) = Start-At(l3).

(10) For all instruction-locations l2, l3 of S such that Start-At(l2) =
Start-At(l3) holds Start-At(l2 −′ k) = Start-At(l3 −′ k).

(11) If l ∈ dom f, then (Shift(f, k))(l + k) = f(l).
(12) dom Shift(f, k) = {i1 + k; i1 ranges over instruction-locations of S: i1 ∈

dom f}.
(13) Let S be an Exec-preserving IC-Ins-separated definite realistic steady-

programmed non empty non void AMI over N , s be a state of S, i be an
instruction of S, and p be a programmed finite partial state of S. Then
Exec(i, s+·p) = Exec(i, s)+·p.

2. SCM(R)

For simplicity, we follow the rules: R denotes a good ring, a, b denote Data-
Locations of R, l1 denotes an instruction-location of SCM(R), I denotes an
instruction of SCM(R), p denotes a finite partial state of SCM(R), s, s1, s2

denote states of SCM(R), and q denotes a finite partial state of SCM.
One can prove the following propositions:

(14) The carrier of SCM(R) = {ICSCM(R)} ∪Data-LocSCM ∪ Instr-LocSCM.

(15) ObjectKind(l1) = InstrSCM(R).
(16) dlR(n) = 2 · n + 1.

(17) ilSCM(R)(k) = 2 · k + 2.

(18) For every Data-Location d1 of R there exists a natural number i such
that d1 = dlR(i).

(19) For all natural numbers i, j such that i 6= j holds dlR(i) 6= dlR(j).
(20) a 6= l1.

(21) Data-LocSCM ⊆ dom s.

(22) dom(s¹Data-LocSCM) = Data-LocSCM.

(23) If p = q, then DataPart(p) = DataPart(q).
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(24) DataPart(p) = p¹Data-LocSCM.

(25) p is data-only iff dom p ⊆ Data-LocSCM.

(26) dom DataPart(p) ⊆ Data-LocSCM.

(27) Instr-LocSCM ⊆ dom s.

(28) If p = q, then ProgramPart(p) = ProgramPart(q).

(29) dom ProgramPart(p) ⊆ Instr-LocSCM.

Let us consider R and let I be an element of the instructions of SCM(R).
Observe that InsCode(I) is natural.

Next we state several propositions:

(30) InsCode(I) ¬ 7.

(31) IncAddr(goto l1, k) = goto (l1 + k).

(32) IncAddr(if a = 0 goto l1, k) = if a = 0 goto l1 + k.

(33) s(a) = (s+· Start-At(l1))(a).

(34) Suppose IC(s1) = IC(s2) and for every Data-Location a of R holds
s1(a) = s2(a) and for every instruction-location i of SCM(R) holds
s1(i) = s2(i). Then s1 = s2.

(35) Exec(IncAddr(CurInstr(s), k), s+·Start-At(ICs + k)) =
Following(s)+·Start-At(ICFollowing(s) + k).

(36) If ICs = ilSCM(R)(j + k), then Exec(I, s+· Start-At(ICs −′ k)) =
Exec(IncAddr(I, k), s)+·Start-At(ICExec(IncAddr(I,k),s) −′ k).

Let us consider R. One can check that there exists a finite partial state of
SCM(R) which is autonomic and non programmed.

Let us consider R, let a be a Data-Location of R, and let r be an element
of the carrier of R. Then a7−→. r is a finite partial state of SCM(R).

We now state a number of propositions:

(37) If R is non trivial, then for every autonomic finite partial state p of
SCM(R) such that DataPart(p) 6= ∅ holds ICSCM(R) ∈ dom p.

(38) If R is non trivial, then for every autonomic non programmed finite
partial state p of SCM(R) holds ICSCM(R) ∈ dom p.

(39) For every autonomic finite partial state p of SCM(R) such that
ICSCM(R) ∈ dom p holds ICp ∈ dom p.

(40) Suppose R is non trivial. Let p be an autonomic non programmed fi-
nite partial state of SCM(R). If p ⊆ s, then IC(Computation(s))(n) ∈
dom ProgramPart(p).

(41) Suppose R is non trivial. Let p be an autonomic non pro-
grammed finite partial state of SCM(R). If p ⊆ s1 and
p ⊆ s2, then IC(Computation(s1))(n) = IC(Computation(s2))(n) and
CurInstr((Computation(s1))(n)) = CurInstr((Computation(s2))(n)).
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(42) Suppose R is non trivial. Let p be an autonomic non program-
med finite partial state of SCM(R). If p ⊆ s1 and p ⊆ s2

and CurInstr((Computation(s1))(n)) = a:=b and a ∈ dom p, then
(Computation(s1))(n)(b) = (Computation(s2))(n)(b).

(43) Suppose R is non trivial. Let p be an autonomic non program-
med finite partial state of SCM(R). Suppose p ⊆ s1 and p ⊆
s2 and CurInstr((Computation(s1))(n)) = AddTo(a, b) and a ∈
dom p. Then (Computation(s1))(n)(a) + (Computation(s1))(n)(b) =
(Computation(s2))(n)(a) + (Computation(s2))(n)(b).

(44) Suppose R is non trivial. Let p be an autonomic non program-
med finite partial state of SCM(R). Suppose p ⊆ s1 and p ⊆
s2 and CurInstr((Computation(s1))(n)) = SubFrom(a, b) and a ∈
dom p. Then (Computation(s1))(n)(a) − (Computation(s1))(n)(b) =
(Computation(s2))(n)(a)− (Computation(s2))(n)(b).

(45) Suppose R is non trivial. Let p be an autonomic non program-
med finite partial state of SCM(R). Suppose p ⊆ s1 and p ⊆
s2 and CurInstr((Computation(s1))(n)) = MultBy(a, b) and a ∈
dom p. Then (Computation(s1))(n)(a) · (Computation(s1))(n)(b) =
(Computation(s2))(n)(a) · (Computation(s2))(n)(b).

(46) Suppose R is non trivial. Let p be an autonomic non program-
med finite partial state of SCM(R). Suppose p ⊆ s1 and p ⊆ s2

and CurInstr((Computation(s1))(n)) = if a = 0 goto l1 and l1 6=
Next(IC(Computation(s1))(n)). Then (Computation(s1))(n)(a) = 0R if and
only if (Computation(s2))(n)(a) = 0R.

3. Relocability

Let N be a set with non empty elements, let S be a regular standard IC-Ins-
separated definite non empty non void AMI over N , let k be a natural number,
and let p be a finite partial state of S. The functor Relocated(p, k) yielding a
finite partial state of S is defined as follows:

(Def. 2) Relocated(p, k) = Start-At(ICp + k)+· IncAddr(Shift(ProgramPart(p),
k), k)+·DataPart(p).

In the sequel S denotes a regular standard IC-Ins-separated definite non
empty non void AMI over N , g denotes a finite partial state of S, and i1 denotes
an instruction-location of S.

One can prove the following propositions:

(47) DataPart(Relocated(g, k)) = DataPart(g).
(48) If S is realistic, then ProgramPart(Relocated(g, k)) =

IncAddr(Shift(ProgramPart(g), k), k).
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(49) If S is realistic, then dom ProgramPart(Relocated(g, k)) = {ilS(j +k); j
ranges over natural numbers: ilS(j) ∈ dom ProgramPart(g)}.

(50) If S is realistic, then i1 ∈ dom g iff i1 + k ∈ dom Relocated(g, k).
(51) ICS ∈ dom Relocated(g, k).
(52) If S is realistic, then ICRelocated(g,k) = ICg + k.

(53) Let p be a programmed finite partial state of S and l be an instruction-
location of S. If l ∈ dom p, then (IncAddr(p, k))(l) = IncAddr(πlp, k).

(54) For every programmed finite partial state p of S holds
Shift(IncAddr(p, i), i) = IncAddr(Shift(p, i), i).

(55) If S is realistic, then for every instruction I of S such that
i1 ∈ dom ProgramPart(g) and I = g(i1) holds IncAddr(I, k) =
(Relocated(g, k))(i1 + k).

(56) If S is realistic, then Start-At(ICg + k) ⊆ Relocated(g, k).
(57) If S is realistic, then for every data-only finite partial state q of S such

that ICS ∈ dom g holds Relocated(g+·q, k) = Relocated(g, k)+·q.
(58) For every autonomic finite partial state p of SCM(R) such that p ⊆ s1

and Relocated(p, k) ⊆ s2 holds p ⊆ s1+·s2¹Data-LocSCM.

(59) Suppose R is non trivial. Let p be an autonomic finite par-
tial state of SCM(R). Suppose ICSCM(R) ∈ dom p and p ⊆
s1 and Relocated(p, k) ⊆ s2 and s = s1+·s2¹Data-LocSCM.

Let i be a natural number. Then IC(Computation(s1))(i) + k =
IC(Computation(s2))(i) and IncAddr(CurInstr((Computation(s1))(i)), k) =
CurInstr((Computation(s2))(i)) and (Computation(s1))(i)¹ dom DataPart
(p) = (Computation(s2))(i)¹ dom DataPart(Relocated(p, k)) and
(Computation(s))(i)¹Data-LocSCM = (Computation(s2))(i)¹Data-LocSCM.

(60) Suppose R is non trivial. Let p be an autonomic finite partial state of
SCM(R). If ICSCM(R) ∈ dom p, then p is halting iff Relocated(p, k) is
halting.

(61) Suppose R is non trivial. Let p be an autonomic finite partial
state of SCM(R). Suppose ICSCM(R) ∈ dom p and p ⊆ s. Let i

be a natural number. Then (Computation(s+·Relocated(p, k)))(i) =
(Computation(s))(i)+· Start-At(IC(Computation(s))(i) + k)+·ProgramPart
(Relocated(p, k)).

(62) Suppose R is non trivial. Let p be an autonomic finite partial
state of SCM(R). Suppose ICSCM(R) ∈ dom p and Relocated(p, k) ⊆
s. Let i be a natural number. Then (Computation(s))(i) =
(Computation(s+·p))(i)+· Start-At(IC(Computation(s+·p))(i) + k)+·s¹ dom
ProgramPart(p)+·ProgramPart(Relocated(p, k)).

(63) Suppose R is non trivial and ICSCM(R) ∈ dom p and p ⊆ s

and Relocated(p, k) is autonomic. Let i be a natural number. Then
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(Computation(s))(i) = (Computation(s+·Relocated(p, k)))(i)+· Start-At
(IC(Computation(s+·Relocated(p,k)))(i)−′k)+·s¹ dom ProgramPart(Relocated(p,

k))+·ProgramPart(p).
(64) If R is non trivial and ICSCM(R) ∈ dom p, then p is autonomic iff

Relocated(p, k) is autonomic.

(65) Suppose R is non trivial. Let p be a halting autonomic finite partial
state of SCM(R). If ICSCM(R) ∈ dom p, then DataPart(Result(p)) =
DataPart(Result(Relocated(p, k))).

(66) Suppose R is non trivial. Let F be a partial function from
FinPartSt(SCM(R)) to FinPartSt(SCM(R)). Suppose ICSCM(R) ∈
dom p and F is data-only. Then p computes F if and only if Relocated(p, k)
computes F .
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1. Convergence in Complex Unitary Space

For simplicity, we adopt the following convention: X is a complex unitary
space, x, y, w, g, g1, g2 are points of X, z is a Complex, q, r, M are real numbers,
s1, s2, s3, s4 are sequences of X, k, n, m are natural numbers, and N1 is an
increasing sequence of naturals.

Let us consider X, s1. We say that s1 is convergent if and only if:

(Def. 1) There exists g such that for every r such that r > 0 there exists m such
that for every n such that n ­ m holds ρ(s1(n), g) < r.

Next we state several propositions:

(1) If s1 is constant, then s1 is convergent.

(2) If s2 is convergent and there exists k such that for every n such that
k ¬ n holds s3(n) = s2(n), then s3 is convergent.

(3) If s2 is convergent and s3 is convergent, then s2 + s3 is convergent.

(4) If s2 is convergent and s3 is convergent, then s2 − s3 is convergent.

(5) If s1 is convergent, then z · s1 is convergent.
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(6) If s1 is convergent, then −s1 is convergent.

(7) If s1 is convergent, then s1 + x is convergent.

(8) If s1 is convergent, then s1 − x is convergent.

(9) s1 is convergent if and only if there exists g such that for every r such
that r > 0 there exists m such that for every n such that n ­ m holds
‖s1(n)− g‖ < r.

Let us consider X, s1. Let us assume that s1 is convergent. The functor
lim s1 yields a point of X and is defined as follows:

(Def. 2) For every r such that r > 0 there exists m such that for every n such
that n ­ m holds ρ(s1(n), lim s1) < r.

One can prove the following propositions:

(10) If s1 is constant and x ∈ rng s1, then lim s1 = x.

(11) If s1 is constant and there exists n such that s1(n) = x, then lim s1 = x.

(12) If s2 is convergent and there exists k such that for every n such that
n ­ k holds s3(n) = s2(n), then lim s2 = lim s3.

(13) If s2 is convergent and s3 is convergent, then lim(s2+s3) = lim s2+lim s3.

(14) If s2 is convergent and s3 is convergent, then lim(s2−s3) = lim s2−lim s3.

(15) If s1 is convergent, then lim(z · s1) = z · lim s1.

(16) If s1 is convergent, then lim(−s1) = −lim s1.

(17) If s1 is convergent, then lim(s1 + x) = lim s1 + x.

(18) If s1 is convergent, then lim(s1 − x) = lim s1 − x.

(19) Suppose s1 is convergent. Then lim s1 = g if and only if for every r such
that r > 0 there exists m such that for every n such that n ­ m holds
‖s1(n)− g‖ < r.

Let us consider X, s1. The functor ‖s1‖ yielding a sequence of real numbers
is defined as follows:

(Def. 3) For every n holds ‖s1‖(n) = ‖s1(n)‖.
One can prove the following three propositions:

(20) If s1 is convergent, then ‖s1‖ is convergent.

(21) If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and lim‖s1‖ =
‖g‖.

(22) If s1 is convergent and lim s1 = g, then ‖s1 − g‖ is convergent and
lim‖s1 − g‖ = 0.

Let us consider X, s1, x. The functor ρ(s1, x) yielding a sequence of real
numbers is defined as follows:

(Def. 4) For every n holds (ρ(s1, x))(n) = ρ(s1(n), x).
One can prove the following propositions:

(23) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent.
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(24) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent and
lim ρ(s1, g) = 0.

(25) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖s2 + s3‖ is convergent and lim‖s2 + s3‖ = ‖g1 + g2‖.
(26) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖(s2 +s3)−(g1 +g2)‖ is convergent and lim‖(s2 +s3)−(g1 +g2)‖ = 0.

(27) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖s2 − s3‖ is convergent and lim‖s2 − s3‖ = ‖g1 − g2‖.
(28) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖s2 − s3 − (g1 − g2)‖ is convergent and lim‖s2 − s3 − (g1 − g2)‖ = 0.

(29) If s1 is convergent and lim s1 = g, then ‖z · s1‖ is convergent and lim‖z ·
s1‖ = ‖z · g‖.

(30) If s1 is convergent and lim s1 = g, then ‖z · s1 − z · g‖ is convergent and
lim‖z · s1 − z · g‖ = 0.

(31) If s1 is convergent and lim s1 = g, then ‖−s1‖ is convergent and
lim‖−s1‖ = ‖−g‖.

(32) If s1 is convergent and lim s1 = g, then ‖−s1 − −g‖ is convergent and
lim‖−s1 −−g‖ = 0.

(33) If s1 is convergent and lim s1 = g, then ‖(s1 +x)− (g +x)‖ is convergent
and lim‖(s1 + x)− (g + x)‖ = 0.

(34) If s1 is convergent and lim s1 = g, then ‖s1 − x‖ is convergent and
lim‖s1 − x‖ = ‖g − x‖.

(35) If s1 is convergent and lim s1 = g, then ‖s1 − x− (g − x)‖ is convergent
and lim‖s1 − x− (g − x)‖ = 0.

(36) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ρ(s2 + s3, g1 + g2) is convergent and lim ρ(s2 + s3, g1 + g2) = 0.

(37) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ρ(s2 − s3, g1 − g2) is convergent and lim ρ(s2 − s3, g1 − g2) = 0.

(38) If s1 is convergent and lim s1 = g, then ρ(z · s1, z · g) is convergent and
lim ρ(z · s1, z · g) = 0.

(39) If s1 is convergent and lim s1 = g, then ρ(s1 +x, g +x) is convergent and
lim ρ(s1 + x, g + x) = 0.

Let us consider X, x, r. The functor Ball(x, r) yields a subset of X and is
defined by:

(Def. 5) Ball(x, r) = {y; y ranges over points of X: ‖x− y‖ < r}.
The functor Ball(x, r) yielding a subset of X is defined by:

(Def. 6) Ball(x, r) = {y; y ranges over points of X: ‖x− y‖ ¬ r}.
The functor Sphere(x, r) yielding a subset of X is defined as follows:

(Def. 7) Sphere(x, r) = {y; y ranges over points of X: ‖x− y‖ = r}.
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Next we state a number of propositions:

(40) w ∈ Ball(x, r) iff ‖x− w‖ < r.

(41) w ∈ Ball(x, r) iff ρ(x,w) < r.

(42) If r > 0, then x ∈ Ball(x, r).
(43) If y ∈ Ball(x, r) and w ∈ Ball(x, r), then ρ(y, w) < 2 · r.
(44) If y ∈ Ball(x, r), then y − w ∈ Ball(x− w, r).
(45) If y ∈ Ball(x, r), then y − x ∈ Ball(0X , r).
(46) If y ∈ Ball(x, r) and r ¬ q, then y ∈ Ball(x, q).
(47) w ∈ Ball(x, r) iff ‖x− w‖ ¬ r.

(48) w ∈ Ball(x, r) iff ρ(x,w) ¬ r.

(49) If r ­ 0, then x ∈ Ball(x, r).
(50) If y ∈ Ball(x, r), then y ∈ Ball(x, r).
(51) w ∈ Sphere(x, r) iff ‖x− w‖ = r.

(52) w ∈ Sphere(x, r) iff ρ(x,w) = r.

(53) If y ∈ Sphere(x, r), then y ∈ Ball(x, r).
(54) Ball(x, r) ⊆ Ball(x, r).
(55) Sphere(x, r) ⊆ Ball(x, r).
(56) Ball(x, r) ∪ Sphere(x, r) = Ball(x, r).

2. Cauchy Sequence and Hilbert Space with Complex Coefficient

Let us consider X and let us consider s1. We say that s1 is Cauchy if and
only if:

(Def. 8) For every r such that r > 0 there exists k such that for all n, m such
that n ­ k and m ­ k holds ρ(s1(n), s1(m)) < r.

The following propositions are true:

(57) If s1 is constant, then s1 is Cauchy.

(58) s1 is Cauchy if and only if for every r such that r > 0 there exists k such
that for all n, m such that n ­ k and m ­ k holds ‖s1(n)− s1(m)‖ < r.

(59) If s2 is Cauchy and s3 is Cauchy, then s2 + s3 is Cauchy.

(60) If s2 is Cauchy and s3 is Cauchy, then s2 − s3 is Cauchy.

(61) If s1 is Cauchy, then z · s1 is Cauchy.

(62) If s1 is Cauchy, then −s1 is Cauchy.

(63) If s1 is Cauchy, then s1 + x is Cauchy.

(64) If s1 is Cauchy, then s1 − x is Cauchy.

(65) If s1 is convergent, then s1 is Cauchy.
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Let us consider X and let us consider s2, s3. We say that s2 is compared to
s3 if and only if:

(Def. 9) For every r such that r > 0 there exists m such that for every n such
that n ­ m holds ρ(s2(n), s3(n)) < r.

One can prove the following two propositions:

(66) s1 is compared to s1.

(67) If s2 is compared to s3, then s3 is compared to s2.

Let us consider X and let us consider s2, s3. Let us notice that the predicate
s2 is compared to s3 is reflexive and symmetric.

The following propositions are true:

(68) If s2 is compared to s3 and s3 is compared to s4, then s2 is compared to
s4.

(69) s2 is compared to s3 iff for every r such that r > 0 there exists m such
that for every n such that n ­ m holds ‖s2(n)− s3(n)‖ < r.

(70) If there exists k such that for every n such that n ­ k holds s2(n) =
s3(n), then s2 is compared to s3.

(71) If s2 is Cauchy and compared to s3, then s3 is Cauchy.

(72) If s2 is convergent and compared to s3, then s3 is convergent.

(73) If s2 is convergent and lim s2 = g and s2 is compared to s3, then s3 is
convergent and lim s3 = g.

Let us consider X and let us consider s1. We say that s1 is bounded if and
only if:

(Def. 10) There exists M such that M > 0 and for every n holds ‖s1(n)‖ ¬M.

We now state several propositions:

(74) If s2 is bounded and s3 is bounded, then s2 + s3 is bounded.

(75) If s1 is bounded, then −s1 is bounded.

(76) If s2 is bounded and s3 is bounded, then s2 − s3 is bounded.

(77) If s1 is bounded, then z · s1 is bounded.

(78) If s1 is constant, then s1 is bounded.

(79) For every m there exists M such that M > 0 and for every n such that
n ¬ m holds ‖s1(n)‖ < M.

(80) If s1 is convergent, then s1 is bounded.

(81) If s2 is bounded and compared to s3, then s3 is bounded.

Let us consider X, N1, s1. Then s1 ·N1 is a sequence of X.
We now state several propositions:

(82) Let X be a complex unitary space, s be a sequence of X, N be an
increasing sequence of naturals, and n be a natural number. Then (s ·
N)(n) = s(N(n)).
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(83) s1 is a subsequence of s1.

(84) If s2 is a subsequence of s3 and s3 is a subsequence of s4, then s2 is a
subsequence of s4.

(85) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(86) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

(87) If s1 is bounded and s2 is a subsequence of s1, then s2 is bounded.

(88) If s1 is convergent and s2 is a subsequence of s1, then s2 is convergent.

(89) If s2 is a subsequence of s1 and s1 is convergent, then lim s2 = lim s1.

(90) If s1 is Cauchy and s2 is a subsequence of s1, then s2 is Cauchy.

Let us consider X, let us consider s1, and let us consider k. The functor
s1 ↑ k yields a sequence of X and is defined as follows:

(Def. 11) For every n holds (s1 ↑ k)(n) = s1(n + k).
One can prove the following propositions:

(91) s1 ↑ 0 = s1.

(92) s1 ↑ k ↑m = s1 ↑m ↑ k.

(93) s1 ↑ k ↑m = s1 ↑ (k + m).
(94) (s2 + s3) ↑ k = s2 ↑ k + s3 ↑ k.

(95) (−s1) ↑ k = −s1 ↑ k.

(96) (s2 − s3) ↑ k = s2 ↑ k − s3 ↑ k.

(97) (z · s1) ↑ k = z · (s1 ↑ k).
(98) (s1 ·N1) ↑ k = s1 · (N1 ↑ k).
(99) s1 ↑ k is a subsequence of s1.

(100) If s1 is convergent, then s1 ↑ k is convergent and lim(s1 ↑ k) = lim s1.

(101) If s1 is convergent and there exists k such that s1 = s2 ↑ k, then s2 is
convergent.

(102) If s1 is Cauchy and there exists k such that s1 = s2↑k, then s2 is Cauchy.

(103) If s1 is Cauchy, then s1 ↑ k is Cauchy.

(104) If s2 is compared to s3, then s2 ↑ k is compared to s3 ↑ k.

(105) If s1 is bounded, then s1 ↑ k is bounded.

(106) If s1 is constant, then s1 ↑ k is constant.

Let us consider X. We say that X is complete if and only if:

(Def. 12) For every s1 such that s1 is Cauchy holds s1 is convergent.

The following proposition is true

(107) If X is complete and s1 is Cauchy, then s1 is bounded.

Let us consider X. We say that X is Hilbert if and only if:

(Def. 13) X is a complex unitary space and complete.
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The papers [7], [4], [9], [8], [5], [6], [1], [10], [2], [11], and [3] provide the termi-
nology and notation for this paper.

In this paper a, b, c, d, e, z, A, B, C, D, E are sets.
Let x be a set. Let us assume that there exist sets x1, x2, x3 such that

x = 〈〈x1, x2, x3〉〉. The functor x1,3 is defined as follows:

(Def. 1) For all sets y1, y2, y3 such that x = 〈〈y1, y2, y3〉〉 holds x1,3 = y1.

The functor x2,3 is defined by:

(Def. 2) For all sets y1, y2, y3 such that x = 〈〈y1, y2, y3〉〉 holds x2,3 = y2.

The functor x3,3 is defined by:

(Def. 3) For all sets y1, y2, y3 such that x = 〈〈y1, y2, y3〉〉 holds x3,3 = y3.

The following propositions are true:

(1) If there exist a, b, c such that z = 〈〈a, b, c〉〉, then z = 〈〈z1,3, z2,3, z3,3〉〉.
(2) If z ∈ [:A, B, C :], then z1,3 ∈ A and z2,3 ∈ B and z3,3 ∈ C.

(3) If z ∈ [:A, B, C :], then z = 〈〈z1,3, z2,3, z3,3〉〉.
Let x be a set. Let us assume that there exist sets x1, x2, x3, x4 such that

x = 〈〈x1, x2, x3, x4〉〉. The functor x1,4 is defined by:

(Def. 4) For all sets y1, y2, y3, y4 such that x = 〈〈y1, y2, y3, y4〉〉 holds x1,4 = y1.

The functor x2,4 is defined by:

(Def. 5) For all sets y1, y2, y3, y4 such that x = 〈〈y1, y2, y3, y4〉〉 holds x2,4 = y2.

The functor x3,4 is defined as follows:

(Def. 6) For all sets y1, y2, y3, y4 such that x = 〈〈y1, y2, y3, y4〉〉 holds x3,4 = y3.

The functor x4,4 is defined as follows:

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan.
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(Def. 7) For all sets y1, y2, y3, y4 such that x = 〈〈y1, y2, y3, y4〉〉 holds x4,4 = y4.

Next we state three propositions:

(4) If there exist a, b, c, d such that z = 〈〈a, b, c, d〉〉, then z =
〈〈z1,4, z2,4, z3,4, z4,4〉〉.

(5) If z ∈ [:A, B, C, D :], then z1,4 ∈ A and z2,4 ∈ B and z3,4 ∈ C and
z4,4 ∈ D.

(6) If z ∈ [:A, B, C, D :], then z = 〈〈z1,4, z2,4, z3,4, z4,4〉〉.
Let x be a set. Let us assume that there exist sets x1, x2, x3, x4, x5 such

that x = 〈〈x1, x2, x3, x4, x5〉〉. The functor x1,5 is defined by:

(Def. 8) For all sets y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds x1,5 =
y1.

The functor x2,5 is defined by:

(Def. 9) For all sets y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds x2,5 =
y2.

The functor x3,5 is defined as follows:

(Def. 10) For all sets y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds x3,5 =
y3.

The functor x4,5 is defined as follows:

(Def. 11) For all sets y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds x4,5 =
y4.

The functor x5,5 is defined by:

(Def. 12) For all sets y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds x5,5 =
y5.

The following propositions are true:

(7) If there exist a, b, c, d, e such that z = 〈〈a, b, c, d, e〉〉, then z =
〈〈z1,5, z2,5, z3,5, z4,5, z5,5〉〉.

(8) If z ∈ [:A, B, C, D, E :], then z1,5 ∈ A and z2,5 ∈ B and z3,5 ∈ C and
z4,5 ∈ D and z5,5 ∈ E.

(9) If z ∈ [:A, B, C, D, E :], then z = 〈〈z1,5, z2,5, z3,5, z4,5, z5,5〉〉.
In this article we present several logical schemes. The scheme ExFunc3Cond

deals with a set A, three unary functors F , G, and H yielding sets, and three
unary predicates P, Q, R, and states that:

There exists a function f such that dom f = A and for every set
c such that c ∈ A holds if P[c], then f(c) = F(c) and if Q[c], then
f(c) = G(c) and if R[c], then f(c) = H(c)

provided the parameters meet the following conditions:
• For every set c such that c ∈ A holds if P[c], then not Q[c] and if
P[c], then not R[c] and if Q[c], then not R[c], and

• For every set c such that c ∈ A holds P[c] or Q[c] or R[c].
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The scheme ExFunc4Cond deals with a set A, four unary functors F , G, H,

and I yielding sets, and four unary predicates P, Q, R, S, and states that:
There exists a function f such that
(i) dom f = A, and
(ii) for every set c such that c ∈ A holds if P[c], then f(c) =
F(c) and if Q[c], then f(c) = G(c) and if R[c], then f(c) = H(c)
and if S[c], then f(c) = I(c)

provided the following conditions are satisfied:
• Let c be a set such that c ∈ A. Then

(i) if P[c], then not Q[c],
(ii) if P[c], then not R[c],
(iii) if P[c], then not S[c],
(iv) if Q[c], then not R[c],
(v) if Q[c], then not S[c], and
(vi) if R[c], then not S[c],

and
• For every set c such that c ∈ A holds P[c] or Q[c] or R[c] or S[c].

The scheme DoubleChoiceRec deals with non empty sets A, B, an element
C of A, an element D of B, and a 5-ary predicate P, and states that:

There exists a function f from N intoA and there exists a function
g from N into B such that f(0) = C and g(0) = D and for every
element n of N holds P[n, f(n), g(n), f(n + 1), g(n + 1)]

provided the parameters satisfy the following condition:
• Let n be an element of N, x be an element of A, and y be an

element of B. Then there exists an element x1 of A and there
exists an element y1 of B such that P[n, x, y, x1, y1].

The scheme LambdaRec2Ex deals with sets A, B and a ternary functor F
yielding a set, and states that:

There exists a function f such that dom f = N and f(0) = A
and f(1) = B and for every natural number n holds f(n + 2) =
F(n, f(n), f(n + 1))

for all values of the parameters.
The scheme LambdaRec2ExD deals with a non empty set A, elements B, C

of A, and a ternary functor F yielding an element of A, and states that:
There exists a function f from N into A such that f(0) = B
and f(1) = C and for every natural number n holds f(n + 2) =
F(n, f(n), f(n + 1))

for all values of the parameters.
The scheme LambdaRec2Un deals with sets A, B, functions C, D, and a

ternary functor C yielding a set, and states that:
C = D

provided the parameters meet the following requirements:
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• dom C = N,

• C(0) = A and C(1) = B,

• For every natural number n holds C(n+2) = C(n, C(n), C(n+1)),
• domD = N,

• D(0) = A and D(1) = B, and
• For every natural number n holds D(n+2) = C(n,D(n),D(n+1)).

The scheme LambdaRec2UnD deals with a non empty set A, elements B, C
of A, functions D, E from N into A, and a ternary functor D yielding an element
of A, and states that:

D = E
provided the following requirements are met:
• D(0) = B and D(1) = C,
• For every natural number n holdsD(n+2) = D(n,D(n),D(n+1)),
• E(0) = B and E(1) = C, and
• For every natural number n holds E(n+2) = D(n, E(n), E(n+1)).

The scheme LambdaRec3Ex deals with sets A, B, C and a 4-ary functor F
yielding a set, and states that:

There exists a function f such that dom f = N and f(0) = A and
f(1) = B and f(2) = C and for every natural number n holds
f(n + 3) = F(n, f(n), f(n + 1), f(n + 2))

for all values of the parameters.
The scheme LambdaRec3ExD deals with a non empty set A, elements B, C,

D of A, and a 4-ary functor F yielding an element of A, and states that:
There exists a function f from N into A such that f(0) = B and
f(1) = C and f(2) = D and for every natural number n holds
f(n + 3) = F(n, f(n), f(n + 1), f(n + 2))

for all values of the parameters.
The scheme LambdaRec3Un deals with sets A, B, C, functions D, E , and a

4-ary functor D yielding a set, and states that:
D = E

provided the parameters meet the following requirements:
• domD = N,

• D(0) = A and D(1) = B and D(2) = C,
• For every natural number n holds D(n + 3) = D(n,D(n),D(n +

1),D(n + 2)),
• dom E = N,

• E(0) = A and E(1) = B and E(2) = C, and
• For every natural number n holds E(n + 3) = D(n, E(n), E(n +

1), E(n + 2)).
The scheme LambdaRec3UnD deals with a non empty set A, elements B, C,

D of A, functions E , F from N into A, and a 4-ary functor E yielding an element
of A, and states that:
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E = F
provided the parameters meet the following requirements:
• E(0) = B and E(1) = C and E(2) = D,

• For every natural number n holds E(n + 3) = E(n, E(n), E(n +
1), E(n + 2)),

• F(0) = B and F(1) = C and F(2) = D, and
• For every natural number n holds F(n + 3) = E(n,F(n),F(n +

1),F(n + 2)).
The scheme LambdaRec4Ex deals with sets A, B, C, D and a 5-ary functor

F yielding a set, and states that:
There exists a function f such that dom f = N and f(0) = A
and f(1) = B and f(2) = C and f(3) = D and for every natural
number n holds f(n+4) = F(n, f(n), f(n+1), f(n+2), f(n+3))

for all values of the parameters.
The scheme LambdaRec4ExD deals with a non empty set A, elements B, C,

D, E of A, and a 5-ary functor F yielding an element of A, and states that:
There exists a function f from N into A such that f(0) = B and
f(1) = C and f(2) = D and f(3) = E and for every natural
number n holds f(n+4) = F(n, f(n), f(n+1), f(n+2), f(n+3))

for all values of the parameters.
The scheme LambdaRec4Un deals with sets A, B, C, D, functions E , F , and

a 5-ary functor E yielding a set, and states that:
E = F

provided the parameters satisfy the following conditions:
• dom E = N,

• E(0) = A and E(1) = B and E(2) = C and E(3) = D,

• For every natural number n holds E(n + 4) = E(n, E(n), E(n +
1), E(n + 2), E(n + 3)),

• domF = N,

• F(0) = A and F(1) = B and F(2) = C and F(3) = D, and
• For every natural number n holds F(n + 4) = E(n,F(n),F(n +

1),F(n + 2),F(n + 3)).
The scheme LambdaRec4UnD deals with a non empty set A, elements B, C,

D, E of A, functions F , G from N into A, and a 5-ary functor F yielding an
element of A, and states that:

F = G
provided the parameters meet the following requirements:
• F(0) = B and F(1) = C and F(2) = D and F(3) = E ,
• For every natural number n holds F(n + 4) = F(n,F(n),F(n +

1),F(n + 2),F(n + 3)),
• G(0) = B and G(1) = C and G(2) = D and G(3) = E , and
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• For every natural number n holds G(n + 4) = F(n,G(n),G(n +
1),G(n + 2),G(n + 3)).
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Summary. In this article, the basic properties of the exponential function
on Banach algebra are described.

MML Identifier: LOPBAN 4.

The notation and terminology used here are introduced in the following papers:
[17], [19], [20], [3], [4], [2], [16], [5], [1], [18], [9], [11], [12], [8], [6], [7], [13], [10],
[21], [14], and [15].

For simplicity, we use the following convention: X denotes a Banach algebra,
p denotes a real number, w, z, z1, z2 denote elements of X, k, l, m, n denote
natural numbers, s1, s2, s3, s, s′ denote sequences of X, and r1 denotes a
sequence of real numbers.

Let X be a non empty normed algebra structure and let x, y be elements of
X. We say that x, y are commutative if and only if:

(Def. 1) x · y = y · x.

Let us note that the predicate x, y are commutative is symmetric.
Next we state a number of propositions:

(1) If s2 is convergent and s3 is convergent and lim(s2 − s3) = 0X , then
lim s2 = lim s3.

(2) For every z such that for every natural number n holds s(n) = z holds
lim s = z.

(3) If s is convergent and s′ is convergent, then s · s′ is convergent.

(4) If s is convergent, then z · s is convergent.

(5) If s is convergent, then s · z is convergent.
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(6) If s is convergent, then lim(z · s) = z · lim s.

(7) If s is convergent, then lim(s · z) = lim s · z.

(8) If s is convergent and s′ is convergent, then lim(s · s′) = lim s · lim s′.
(9) (

∑κ
α=0(z ·s1)(α))κ∈N = z ·(∑κ

α=0(s1)(α))κ∈N and (
∑κ

α=0(s1 ·z)(α))κ∈N =
(
∑κ

α=0(s1)(α))κ∈N · z.

(10) ‖(∑κ
α=0(s1)(α))κ∈N(k)‖ ¬ (

∑κ
α=0‖s1‖(α))κ∈N(k).

(11) If for every n such that n ¬ m holds s2(n) = s3(n), then
(
∑κ

α=0(s2)(α))κ∈N(m) = (
∑κ

α=0(s3)(α))κ∈N(m).
(12) If for every n holds ‖s1(n)‖ ¬ r1(n) and r1 is convergent and lim r1 = 0,

then s1 is convergent and lim s1 = 0X .

Let us consider X and let z be an element of X. The functor z ExpSeq
yielding a sequence of X is defined as follows:

(Def. 2) For every n holds z ExpSeq(n) = 1
n! · zn

N.

The scheme ExNormSpace CASE deals with a non empty Banach algebra A
and a binary functor F yielding a point of A, and states that:

For every k there exists a sequence s1 of A such that for every n

holds if n ¬ k, then s1(n) = F(k, n) and if n > k, then s1(n) = 0A
for all values of the parameters.

Next we state the proposition

(13) For every k such that 0 < k holds (k−′ 1)! · k = k! and for all m, k such
that k ¬ m holds (m−′ k)! · ((m + 1)− k) = ((m + 1)−′ k)!.

Let n be a natural number. The functor Coef n yields a sequence of real
numbers and is defined by:

(Def. 3) For every natural number k holds if k ¬ n, then (Coef n)(k) = n!
k!·(n−′k)!

and if k > n, then (Coef n)(k) = 0.
Let n be a natural number. The functor Coef e n yielding a sequence of real

numbers is defined by:

(Def. 4) For every natural number k holds if k ¬ n, then (Coef e n)(k) = 1
k!·(n−′k)!

and if k > n, then (Coef e n)(k) = 0.

Let us consider X, s1. The functor Shift s1 yielding a sequence of X is defined
as follows:

(Def. 5) (Shift s1)(0) = 0X and for every natural number k holds (Shift s1)(k +
1) = s1(k).

Let us consider n, let us consider X, and let z, w be elements of X. The
functor Expan(n, z, w) yields a sequence of X and is defined by:

(Def. 6) For every natural number k holds if k ¬ n, then (Expan(n, z, w))(k) =
(Coef n)(k) · zk

N · wn−′k
N and if n < k, then (Expan(n, z, w))(k) = 0X .

Let us consider n, let us consider X, and let z, w be elements of X. The
functor Expan e(n, z, w) yields a sequence of X and is defined as follows:
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(Def. 7) For every natural number k holds if k ¬ n, then (Expan e(n, z, w))(k) =
(Coef e n)(k) · zk

N · wn−′k
N and if n < k, then (Expan e(n, z, w))(k) = 0X .

Let us consider n, let us consider X, and let z, w be elements of X. The
functor Alfa(n, z, w) yields a sequence of X and is defined as follows:

(Def. 8) For every natural number k holds if k ¬ n, then (Alfa(n, z, w))(k) =
z ExpSeq(k) · (

∑κ
α=0 w ExpSeq(α))κ∈N(n −′ k) and if n < k, then

(Alfa(n, z, w))(k) = 0X .

Let us consider X, let z, w be elements of X, and let n be a natural number.
The functor Conj(n, z, w) yields a sequence of X and is defined by:

(Def. 9) For every natural number k holds if k ¬ n, then (Conj(n, z, w))(k) =
z ExpSeq(k) ·((∑κ

α=0 w ExpSeq(α))κ∈N(n)−(
∑κ

α=0 w ExpSeq(α))κ∈N(n−′
k)) and if n < k, then (Conj(n, z, w))(k) = 0X .

One can prove the following propositions:

(14) z ExpSeq(n + 1) = 1
n+1 · z · z ExpSeq(n) and z ExpSeq(0) = 1X and

‖z ExpSeq(n)‖ ¬ ‖z‖ExpSeq(n).

(15) If 0 < k, then (Shift s1)(k) = s1(k −′ 1).

(16) (
∑κ

α=0(s1)(α))κ∈N(k) = (
∑κ

α=0(Shift s1)(α))κ∈N(k) + s1(k).

(17) For all z, w such that z, w are commutative holds (z + w)n
N =

(
∑κ

α=0(Expan(n, z, w))(α))κ∈N(n).

(18) Expan e(n, z, w) = 1
n! · Expan(n, z, w).

(19) For all z, w such that z, w are commutative holds 1
n! · (z + w)n

N =
(
∑κ

α=0(Expan e(n, z, w))(α))κ∈N(n).

(20) 0X ExpSeq is norm-summable and
∑

(0X ExpSeq) = 1X .

Let us consider X and let z be an element of X. Observe that z ExpSeq is
norm-summable.

Next we state a number of propositions:

(21) z ExpSeq(0) = 1X and (Expan(0, z, w))(0) = 1X .

(22) If l ¬ k, then (Alfa(k + 1, z, w))(l) = (Alfa(k, z, w))(l) + (Expan e(k +
1, z, w))(l).

(23) (
∑κ

α=0(Alfa(k +1, z, w))(α))κ∈N(k) = (
∑κ

α=0(Alfa(k, z, w))(α))κ∈N(k)+
(
∑κ

α=0(Expan e(k + 1, z, w))(α))κ∈N(k).

(24) z ExpSeq(k) = (Expan e(k, z, w))(k).

(25) For all z, w such that z, w are commutative holds (
∑κ

α=0 z +
w ExpSeq(α))κ∈N(n) = (

∑κ
α=0(Alfa(n, z, w))(α))κ∈N(n).

(26) For all z, w such that z, w are commutative holds
(
∑κ

α=0 z ExpSeq(α))κ∈N(k) · (
∑κ

α=0 w ExpSeq(α))κ∈N(k) − (
∑κ

α=0 z +
w ExpSeq(α))κ∈N(k) = (

∑κ
α=0(Conj(k, z, w))(α))κ∈N(k).

(27) 0 ¬ ‖z‖ExpSeq(n).
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(28) ‖(∑κ
α=0 z ExpSeq(α))κ∈N(k)‖ ¬ (

∑κ
α=0‖z‖ExpSeq(α))κ∈N(k) and

(
∑κ

α=0‖z‖ExpSeq(α))κ∈N(k) ¬∑
(‖z‖ExpSeq) and

‖(∑κ
α=0 z ExpSeq(α))κ∈N(k)‖ ¬∑

(‖z‖ExpSeq).
(29) 1 ¬∑

(‖z‖ExpSeq).
(30) |(∑κ

α=0‖z‖ExpSeq(α))κ∈N(n)| = (
∑κ

α=0‖z‖ExpSeq(α))κ∈N(n) and if
n ¬ m, then |(∑κ

α=0‖z‖ExpSeq(α))κ∈N(m)−(
∑κ

α=0‖z‖ExpSeq(α))κ∈N(n)|
= (

∑κ
α=0‖z‖ExpSeq(α))κ∈N(m)− (

∑κ
α=0‖z‖ExpSeq(α))κ∈N(n).

(31) |(∑κ
α=0‖Conj(k, z, w)‖(α))κ∈N(n)| = (

∑κ
α=0‖Conj(k, z, w)‖(α))κ∈N(n).

(32) For every real number p such that p > 0 there exists n such that for
every k such that n ¬ k holds |(∑κ

α=0‖Conj(k, z, w)‖(α))κ∈N(k)| < p.

(33) For every s1 such that for every k holds s1(k) =
(
∑κ

α=0(Conj(k, z, w))(α))κ∈N(k) holds s1 is convergent and lim s1 = 0X .

Let X be a Banach algebra. The functor exp X yielding a function from the
carrier of X into the carrier of X is defined by:

(Def. 10) For every element z of the carrier of X holds (exp X)(z) =
∑

(z ExpSeq).
Let us consider X, z. The functor exp z yields an element of X and is defined

by:

(Def. 11) exp z = (exp X)(z).
One can prove the following propositions:

(34) For every z holds exp z =
∑

(z ExpSeq).
(35) Let given z1, z2. Suppose z1, z2 are commutative. Then exp(z1 + z2) =

exp z1 ·exp z2 and exp(z2+z1) = exp z2 ·exp z1 and exp(z1+z2) = exp(z2+
z1) and exp z1, exp z2 are commutative.

(36) For all z1, z2 such that z1, z2 are commutative holds z1·exp z2 = exp z2·z1.

(37) exp(0X) = 1X .

(38) exp z · exp(−z) = 1X and exp(−z) · exp z = 1X .

(39) exp z is invertible and (exp z)−1 = exp(−z) and exp(−z) is invertible
and (exp(−z))−1 = exp z.

(40) For every z and for all real numbers s, t holds s ·z, t ·z are commutative.

(41) Let given z and s, t be real numbers. Then exp(s · z) · exp(t · z) =
exp((s+t) ·z) and exp(t ·z) ·exp(s ·z) = exp((t+s) ·z) and exp((s+t) ·z) =
exp((t + s) · z) and exp(s · z), exp(t · z) are commutative.
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Summary. We formalize the notion of the prime-power factorization of a
natural number and prove the Fundamental Theorem of Arithmetic. We prove
also how prime-power factorization can be used to compute: products, quotients,
powers, greatest common divisors and least common multiples.

MML Identifier: NAT 3.

The notation and terminology used in this paper are introduced in the following
papers: [25], [27], [12], [7], [3], [4], [1], [24], [13], [2], [19], [18], [28], [8], [9], [6],
[16], [15], [11], [26], [22], [23], [10], [14], [20], [5], [21], and [17].

1. Preliminaries

We follow the rules: a, b, n denote natural numbers, r denotes a real number,
and f denotes a finite sequence of elements of R.

Let X be an empty set. Observe that card X is empty.
One can check that every binary relation which is natural-yielding is also

real-yielding.
Let us mention that there exists a finite sequence which is natural-yielding.
Let a be a non empty natural number and let b be a natural number. Observe

that ab is non empty.
One can verify that every prime number is non empty.
In the sequel p denotes a prime number.
One can verify that Prime is infinite.
The following propositions are true:

1A. Korniłowicz has been supported by a post-doctoral fellowship at Shinshu University,
Nagano, Japan. P. Rudnicki has been supported by NSERC Grant OGP9207.
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(1) For all natural numbers a, b, c, d such that a | c and b | d holds a ·b | c ·d.

(2) If 1 < a, then b ¬ ab.

(3) If a 6= 0, then n | na.

(4) For all natural numbers i, j, m, n such that i < j and mj | n holds
mi+1 | n.

(5) If p | ab, then p | a.

(6) For every prime number a such that a | pb holds a = p.

(7) For every finite sequence f of elements of N such that a ∈ rng f holds
a |∏ f.

(8) For every finite sequence f of elements of Prime such that p |∏ f holds
p ∈ rng f.

Let f be a real-yielding finite sequence and let a be a natural number. The
functor fa yielding a finite sequence is defined as follows:

(Def. 1) len(fa) = len f and for every set i such that i ∈ dom(fa) holds fa(i) =
f(i)a.

Let f be a real-yielding finite sequence and let a be a natural number. One
can verify that fa is real-yielding.

Let f be a natural-yielding finite sequence and let a be a natural number.
Note that fa is natural-yielding.

Let f be a finite sequence of elements of R and let a be a natural number.
Then fa is a finite sequence of elements of R.

Let f be a finite sequence of elements of N and let a be a natural number.
Then fa is a finite sequence of elements of N.

Next we state several propositions:

(9) f0 = len f 7→ 1.

(10) f1 = f.

(11) (εR)a = εR.

(12) 〈r〉a = 〈ra〉.
(13) (f a 〈r〉)a = (fa) a 〈r〉a.
(14)

∏
(f b+1) =

∏
(f b) ·∏ f.

(15)
∏

(fa) = (
∏

f)a.

2. More about Bags

Let X be a set. Note that there exists a many sorted set indexed by X which
is natural-yielding and finite-support.

Let X be a set, let b be a real-yielding many sorted set indexed by X, and
let a be a natural number. The functor a · b yielding a many sorted set indexed
by X is defined as follows:
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(Def. 2) For every set i holds (a · b)(i) = a · b(i).
Let X be a set, let b be a real-yielding many sorted set indexed by X, and

let a be a natural number. One can verify that a · b is real-yielding.
Let X be a set, let b be a natural-yielding many sorted set indexed by X,

and let a be a natural number. Note that a · b is natural-yielding.
Let X be a set and let b be a real-yielding many sorted set indexed by X.

Note that support(0 · b) is empty.
Next we state the proposition

(16) For every set X and for every real-yielding many sorted set b indexed by
X such that a 6= 0 holds support b = support(a · b).

Let X be a set, let b be a real-yielding finite-support many sorted set indexed
by X, and let a be a natural number. One can check that a · b is finite-support.

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by
X. The functor min(b1, b2) yields a many sorted set indexed by X and is defined
by:

(Def. 3) For every set i holds if b1(i) ¬ b2(i), then (min(b1, b2))(i) = b1(i) and if
b1(i) > b2(i), then (min(b1, b2))(i) = b2(i).

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by
X. Note that min(b1, b2) is real-yielding.

Let X be a set and let b1, b2 be natural-yielding many sorted sets indexed
by X. Observe that min(b1, b2) is natural-yielding.

We now state the proposition

(17) For every set X and for all real-yielding finite-support many sorted sets
b1, b2 indexed by X holds support min(b1, b2) ⊆ support b1 ∪ support b2.

Let X be a set and let b1, b2 be real-yielding finite-support many sorted sets
indexed by X. Observe that min(b1, b2) is finite-support.

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by
X. The functor max(b1, b2) yielding a many sorted set indexed by X is defined
as follows:

(Def. 4) For every set i holds if b1(i) ¬ b2(i), then (max(b1, b2))(i) = b2(i) and if
b1(i) > b2(i), then (max(b1, b2))(i) = b1(i).

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by
X. Observe that max(b1, b2) is real-yielding.

Let X be a set and let b1, b2 be natural-yielding many sorted sets indexed
by X. One can check that max(b1, b2) is natural-yielding.

One can prove the following proposition

(18) For every set X and for all real-yielding finite-support many sorted sets
b1, b2 indexed by X holds support max(b1, b2) ⊆ support b1 ∪ support b2.

Let X be a set and let b1, b2 be real-yielding finite-support many sorted sets
indexed by X. Observe that max(b1, b2) is finite-support.
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Let A be a set and let b be a bag of A. The functor
∏

b yields a natural
number and is defined by:

(Def. 5) There exists a finite sequence f of elements of N such that
∏

b =
∏

f

and f = b · CFS(support b).
Let A be a set and let b be a bag of A. Then

∏
b is a natural number.

One can prove the following proposition

(19) For every set X and for all bags a, b of X such that support a misses
support b holds

∏
(a + b) =

∏
a ·∏ b.

Let X be a set, let b be a real-yielding many sorted set indexed by X, and
let n be a non empty natural number. The functor bn yielding a many sorted
set indexed by X is defined by:

(Def. 6) support(bn) = support b and for every set i holds bn(i) = b(i)n.

Let X be a set, let b be a natural-yielding many sorted set indexed by X, and
let n be a non empty natural number. One can verify that bn is natural-yielding.

Let X be a set, let b be a real-yielding finite-support many sorted set indexed
by X, and let n be a non empty natural number. Observe that bn is finite-
support.

The following proposition is true

(20) For every set A holds
∏

EmptyBag A = 1.

3. Multiplicity of a Divisor

Let n, d be natural numbers. Let us assume that d 6= 1 and n 6= 0. The
functor d -count(n) yields a natural number and is defined by:

(Def. 7) dd -count(n) | n and dd -count(n)+1 - n.

One can prove the following propositions:

(21) If n 6= 1, then n -count(1) = 0.
(22) If 1 < n, then n -count(n) = 1.

(23) If b 6= 0 and b < a and a 6= 1, then a -count(b) = 0.
(24) If a 6= 1 and a 6= p, then a -count(p) = 0.
(25) If 1 < b, then b -count(ba) = a.

(26) If b 6= 1 and a 6= 0 and b | bb -count(a), then b | a.

(27) If b 6= 1, then a 6= 0 and b -count(a) = 0 iff b - a.

(28) For all non empty natural numbers a, b holds p -count(a · b) =
p -count(a) + p -count(b).

(29) For all non empty natural numbers a, b holds pp -count(a·b) = pp -count(a) ·
pp -count(b).

(30) For all non empty natural numbers a, b such that b | a holds p -count(b) ¬
p -count(a).
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(31) For all non empty natural numbers a, b such that b | a holds p -count(a÷
b) = p -count(a)−′ p -count(b).

(32) For every non empty natural number a holds p -count(ab) = b ·
p -count(a).

4. Exponents in Prime-Power Factorization

Let n be a natural number. The functor PrimeExponents(n) yields a many
sorted set indexed by Prime and is defined as follows:

(Def. 8) For every prime number p holds (PrimeExponents(n))(p) = p -count(n).
We introduce PFExp(n) as a synonym of PrimeExponents(n).

One can prove the following three propositions:

(33) For every set x such that x ∈ dom PFExp(n) holds x is a prime number.

(34) For every set x such that x ∈ support PFExp(n) holds x is a prime
number.

(35) If a > n and n 6= 0, then (PFExp(n))(a) = 0.
Let n be a natural number. Note that PFExp(n) is natural-yielding.
One can prove the following two propositions:

(36) If a ∈ support PFExp(b), then a | b.
(37) If b is non empty and a is a prime number and a | b, then a ∈

support PFExp(b).
Let n be a non empty natural number. Observe that PFExp(n) is finite-

support.
We now state two propositions:

(38) For every non empty natural number a such that p | a holds
(PFExp(a))(p) 6= 0.

(39) PFExp(1) = EmptyBag Prime .

One can verify that support PFExp(1) is empty.
One can prove the following four propositions:

(40) (PFExp(pa))(p) = a.

(41) (PFExp(p))(p) = 1.

(42) If a 6= 0, then support PFExp(pa) = {p}.
(43) support PFExp(p) = {p}.

Let p be a prime number and let a be a non empty natural number. Observe
that support PFExp(pa) is non empty and trivial.

Let p be a prime number. Observe that support PFExp(p) is non empty and
trivial.

Next we state several propositions:
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(44) For all non empty natural numbers a, b such that a and b are relative
prime holds support PFExp(a) misses support PFExp(b).

(45) For all non empty natural numbers a, b holds support PFExp(a) ⊆
support PFExp(a · b).

(46) For all non empty natural numbers a, b holds support PFExp(a · b) =
support PFExp(a) ∪ support PFExp(b).

(47) For all non empty natural numbers a, b such that a and b are rela-
tive prime holds card support PFExp(a · b) = card support PFExp(a) +
card support PFExp(b).

(48) For all non empty natural numbers a, b holds support PFExp(a) =
support PFExp(ab).

In the sequel n, m are non empty natural numbers.
Next we state several propositions:

(49) PFExp(n ·m) = PFExp(n) + PFExp(m).
(50) If m | n, then PFExp(n÷m) = PFExp(n)−′ PFExp(m).
(51) PFExp(na) = a · PFExp(n).
(52) If support PFExp(n) = ∅, then n = 1.

(53) For all non empty natural numbers m, n holds PFExp(gcd(n,m)) =
min(PFExp(n), PFExp(m)).

(54) For all non empty natural numbers m, n holds PFExp(lcm(n,m)) =
max(PFExp(n), PFExp(m)).

5. Prime-Power Factorization

Let n be a non empty natural number. The functor PrimeFactorization(n)
yielding a many sorted set indexed by Prime is defined as follows:

(Def. 9) support PrimeFactorization(n) = support PFExp(n) and for every natu-
ral number p such that p ∈ support PFExp(n) holds
(PrimeFactorization(n))(p) = pp -count(n).

We introduce PPF(n) as a synonym of PrimeFactorization(n).
Let n be a non empty natural number. Observe that PPF(n) is natural-

yielding and finite-support.
The following propositions are true:

(55) If p -count(n) = 0, then (PPF(n))(p) = 0.

(56) If p -count(n) 6= 0, then (PPF(n))(p) = pp -count(n).

(57) If support PPF(n) = ∅, then n = 1.

(58) For all non empty natural numbers a, b such that a and b are relative
prime holds PPF(a · b) = PPF(a) + PPF(b).

(59) (PPF(pn))(p) = pn.
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(60) PPF(nm) = (PPF(n))m.

(61)
∏

PPF(n) = n.
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Summary. An extension of [9]. As the example of complex norm spaces,
we introduce the arithmetic addition and multiplication in the set of absolute
summable complex sequences and also introduce the norm.

MML Identifier: CSSPACE2.

The papers [18], [21], [5], [17], [10], [22], [3], [4], [20], [19], [13], [11], [12], [15],
[2], [1], [14], [16], [6], [8], and [7] provide the notation and terminology for this
paper.

1. Hilbert Space of Complex Sequences

One can prove the following propositions:

(1) The carrier of Complexl2-Space = the set of l2-complex sequences and
for every set x holds x is an element of Complexl2-Space iff x is a com-
plex sequence and | idseq(x)| | idseq(x)| is summable and for every set x

holds x is an element of Complexl2-Space iff x is a complex sequence and
idseq(x) idseq(x) is absolutely summable and 0Complexl2-Space = CZeroseq
and for every vector u of Complexl2-Space holds u = idseq(u) and for
all vectors u, v of Complexl2-Space holds u + v = idseq(u) + idseq(v)
and for every Complex r and for every vector u of Complexl2-Space
holds r · u = r idseq(u) and for every vector u of Complexl2-Space holds
−u = −idseq(u) and idseq(−u) = −idseq(u) and for all vectors u, v of
Complexl2-Space holds u − v = idseq(u) − idseq(v) and for all vectors v,
w of Complexl2-Space holds | idseq(v)| | idseq(w)| is summable and for all
vectors v, w of Complexl2-Space holds (v|w) =

∑
(idseq(v) idseq(w)).

(2) Let x, y, z be points of Complexl2-Space and a be a Complex. Then
(x|x) = 0 iff x = 0Complexl2-Space and <((x|x)) ­ 0 and =((x|x)) = 0 and
(x|y) = (y|x) and ((x + y)|z) = (x|z) + (y|z) and ((a · x)|y) = a · (x|y).
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One can verify that Complexl2-Space is complex unitary space-like.
Next we state the proposition

(3) For every sequence v1 of Complexl2-Space such that v1 is Cauchy holds
v1 is convergent.

Let us mention that Complexl2-Space is Hilbert.

2. Some Corollaries of Complex Sequences

Next we state a number of propositions:

(4) For all Complexes z1, z2 such that <(z1) · =(z2) = <(z2) · =(z1) and
<(z1) · <(z2) + =(z1) · =(z2) ­ 0 holds |z1 + z2| = |z1|+ |z2|.

(5) For all Complexes x, y holds 2 · |x · y| ¬ |x|2 + |y|2.

(6) For all Complexes x, y holds |x + y| · |x + y| ¬ 2 · |x| · |x|+ 2 · |y| · |y| and
|x| · |x| ¬ 2 · |x− y| · |x− y|+ 2 · |y| · |y|.

(7) For every complex sequence s1 holds s1 = s1 .

(8) For every complex sequence s1 holds
(
∑κ

α=0 s1 (α))κ∈N = (
∑κ

α=0(s1)(α))κ∈N .

(9) Let s1 be a complex sequence and n be a natural number. Suppose that
for every natural number i holds <(s1)(i) ­ 0 and =(s1)(i) = 0. Then
|(∑κ

α=0(s1)(α))κ∈N|(n) = (
∑κ

α=0 |s1|(α))κ∈N(n).
(10) For every complex sequence s1 such that s1 is summable holds

∑
s1 =∑

s1 .

(11) For every complex sequence s1 such that s1 is absolutely summable holds
|∑ s1| ¬

∑ |s1|.
(12) Let s1 be a complex sequence. Suppose s1 is summable and for every

natural number n holds <(s1)(n) ­ 0 and =(s1)(n) = 0. Then |∑ s1| =∑ |s1|.
(13) For every complex sequence s1 and for every natural number n holds
<(s1 s1 )(n) ­ 0 and =(s1 s1 )(n) = 0.

(14) Let s1 be a complex sequence. Suppose s1 is absolutely summable and∑ |s1| = 0. Let n be a natural number. Then s1(n) = 0C.

(15) For every complex sequence s1 holds |s1| = |s1 |.
(16) Let c be a Complex and s1 be a complex sequence. Suppose s1 is conver-

gent. Let r1 be a sequence of real numbers. Suppose that for every natural
number m holds r1(m) = |s1(m) − c| · |s1(m) − c|. Then r1 is convergent
and lim r1 = | lim s1 − c| · | lim s1 − c|.

(17) Let c be a Complex, s2 be a sequence of real numbers, and s1 be a
complex sequence. Suppose s1 is convergent and s2 is convergent. Let r1

be a sequence of real numbers. Suppose that for every natural number i
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holds r1(i) = |s1(i) − c| · |s1(i) − c| + s2(i). Then r1 is convergent and
lim r1 = | lim s1 − c| · | lim s1 − c|+ lim s2.

(18) Let c be a Complex and s1 be a complex sequence. Suppose s1 is conver-
gent. Let r1 be a sequence of real numbers. Suppose that for every natural
number m holds r1(m) = |s1(m) − c| · |s1(m) − c|. Then r1 is convergent
and lim r1 = | lim s1 − c| · | lim s1 − c|.

(19) Let c be a Complex, s2 be a sequence of real numbers, and s1 be a
complex sequence. Suppose s1 is convergent and s2 is convergent. Let r1

be a sequence of real numbers. Suppose that for every natural number i

holds r1(i) = |s1(i) − c| · |s1(i) − c| + s2(i). Then r1 is convergent and
lim r1 = | lim s1 − c| · | lim s1 − c|+ lim s2.
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The terminology and notation used in this paper are introduced in the following
articles: [18], [20], [6], [2], [17], [9], [21], [4], [5], [19], [13], [11], [10], [14], [3], [1],
[12], [15], [7], and [8].

1. Complex-L1-Space: The Space of Absolute Summable Complex
Sequences

The subset the set of l1-complex sequences of the linear space of complex
sequences is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ the set of l1-complex sequences if and only if
x ∈ the set of complex sequences and idseq(x) is absolutely summable.

The following proposition is true

(1) Let c be a Complex, s1 be a complex sequence, and r1 be a sequence
of real numbers. Suppose s1 is convergent and for every natural number i

holds r1(i) = |s1(i)− c|. Then r1 is convergent and lim r1 = | lim s1 − c|.
Let us note that the set of l1-complex sequences is non empty.
Let us observe that the set of l1-complex sequences is linearly closed.
Next we state the proposition
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(2) 〈the set of l1-complex sequences, Zero (the set of l1-complex
sequences, the linear space of complex sequences), Add (the set of l1-
complex sequences, the linear space of complex sequences), Mult (the set
of l1-complex sequences, the linear space of complex sequences)〉 is a sub-
space of the linear space of complex sequences.

Let us note that 〈the set of l1-complex sequences, Zero (the set of l1-complex
sequences, the linear space of complex sequences), Add (the set of l1-complex
sequences, the linear space of complex sequences), Mult (the set of l1-complex
sequences, the linear space of complex sequences)〉 is Abelian, add-associative,
right zeroed, right complementable, and complex linear space-like.

We now state the proposition

(3) 〈the set of l1-complex sequences, Zero (the set of l1-complex
sequences, the linear space of complex sequences), Add (the set of l1-
complex sequences, the linear space of complex sequences), Mult (the set of
l1-complex sequences, the linear space of complex sequences)〉 is a complex
linear space.

The function cl norm from the set of l1-complex sequences into R is defined
as follows:

(Def. 2) For every set x such that x ∈ the set of l1-complex sequences holds
cl norm(x) =

∑ | idseq(x)|.
Let X be a non empty set, let Z be an element of X, let A be a binary

operation on X, let M be a function from [:C, X :] into X, and let N be a
function from X into R. Note that 〈X, Z, A,M, N〉 is non empty.

We now state four propositions:

(4) Let l be a complex normed space structure. Suppose 〈the carrier of l, the
zero of l, the addition of l, the external multiplication of l〉 is a complex
linear space. Then l is a complex linear space.

(5) Let c1 be a complex sequence. Suppose that for every natural number n

holds c1(n) = 0C. Then c1 is absolutely summable and
∑ |c1| = 0.

(6) Let c1 be a complex sequence. Suppose c1 is absolutely summable and∑ |c1| = 0. Let n be a natural number. Then c1(n) = 0C.

(7) 〈the set of l1-complex sequences, Zero (the set of l1-complex
sequences, the linear space of complex sequences), Add (the set of l1-
complex sequences, the linear space of complex sequences), Mult (the set
of l1-complex sequences, the linear space of complex sequences), cl norm〉
is a complex linear space.

The non empty complex normed space structure Complex-l1-Space is defined
by the condition (Def. 3).

(Def. 3) Complex-l1-Space = 〈the set of l1-complex sequences, Zero (the set of l1-
complex sequences, the linear space of complex sequences), Add (the set of



banach space of absolute summable complex . . . 193

l1-complex sequences, the linear space of complex sequences), Mult (the set
of l1-complex sequences, the linear space of complex sequences), cl norm〉.

2. Complex-L1-Space is Banach

One can prove the following propositions:

(8) The carrier of Complex-l1-Space = the set of l1-complex sequences and
for every set x holds x is a vector of Complex-l1-Space iff x is a com-
plex sequence and idseq(x) is absolutely summable and 0Complex-l1-Space =
CZeroseq and for every vector u of Complex-l1-Space holds u = idseq(u)
and for all vectors u, v of Complex-l1-Space holds u+v = idseq(u)+idseq(v)
and for every Complex p and for every vector u of Complex-l1-Space
holds p · u = p idseq(u) and for every vector u of Complex-l1-Space holds
−u = −idseq(u) and idseq(−u) = −idseq(u) and for all vectors u, v of
Complex-l1-Space holds u− v = idseq(u)− idseq(v) and for every vector v

of Complex-l1-Space holds idseq(v) is absolutely summable and for every
vector v of Complex-l1-Space holds ‖v‖ =

∑ | idseq(v)|.
(9) Let x, y be points of Complex-l1-Space and p be a Complex. Then ‖x‖ =

0 iff x = 0Complex-l1-Space and 0 ¬ ‖x‖ and ‖x + y‖ ¬ ‖x‖ + ‖y‖ and
‖p · x‖ = |p| · ‖x‖.

Let us observe that Complex-l1-Space is complex normed space-like, complex
linear space-like, Abelian, add-associative, right zeroed, and right complemen-
table.

Let X be a non empty complex normed space structure and let x, y be points
of X. The functor ρ(x, y) yielding a real number is defined as follows:

(Def. 4) ρ(x, y) = ‖x− y‖.
Let C1 be a non empty complex normed space structure and let s2 be a

sequence of C1. We say that s2 is CCauchy if and only if the condition (Def. 5)
is satisfied.

(Def. 5) Let r2 be a real number. Suppose r2 > 0. Then there exists a natural
number k1 such that for all natural numbers n1, m1 if n1 ­ k1 and m1 ­
k1, then ρ(s2(n1), s2(m1)) < r2.

We introduce s1 is Cauchy sequence by norm as a synonym of s2 is CCauchy.
In the sequel N1 is a non empty complex normed space and s1 is a sequence

of N1.
One can prove the following propositions:

(10) s1 is Cauchy sequence by norm if and only if for every real number r

such that r > 0 there exists a natural number k such that for all natural
numbers n, m such that n ­ k and m ­ k holds ‖s1(n)− s1(m)‖ < r.
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(11) For every sequence v1 of Complex-l1-Space such that v1 is Cauchy sequ-
ence by norm holds v1 is convergent.
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Summary. In this article, some classic theorems of calculus are described.
The Taylor expansions and the logarithmic differentiation, etc. are included here.
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The terminology and notation used in this paper have been introduced in the
following articles: [22], [24], [25], [4], [6], [9], [5], [11], [20], [18], [3], [8], [2], [21],
[7], [1], [23], [14], [12], [10], [17], [19], [13], [15], [16], and [26].

1. The Logarithmic Differentiation Method

For simplicity, we use the following convention: n denotes a natural number, i

denotes an integer, p, x, x0, y denote real numbers, q denotes a rational number,
and f denotes a partial function from R to R.

Let q be an integer. The functor q
Z yields a function from R into R and is

defined as follows:

(Def. 1) For every real number x holds (q
Z)(x) = xq

Z.

Next we state a number of propositions:

(1) For all natural numbers m, n holds xn+m
Z = (xn

Z) · xm
Z .

(2) n
Z is differentiable in x and (n

Z)
′(x) = n · xn−1

Z .

(3) If f is differentiable in x0, then (n
Z) · f is differentiable in x0 and ((n

Z) ·
f)′(x0) = n · f(x0)n−1

Z · f ′(x0).
(4) exp(−x) = 1

exp x .

(5) (exp x)
1
i
R = exp(x

i ).

(6) For all integers m, n holds (exp x)
m
n
R = exp(m

n · x).
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(7) (exp x)q
Q = exp(q · x).

(8) (exp x)p
R = exp(p · x).

(9) (exp 1)x
R = exp x and (exp 1)x = exp x and ex = exp x and ex

R = exp x.

(10) exp(1)x
R = exp(x) and exp(1)x = exp(x) and ex = exp(x) and ex

R =
exp(x).

(11) e ­ 2.

(12) loge exp x = x.

(13) loge exp(x) = x.

(14) If y > 0, then exp loge y = y.

(15) If y > 0, then exp(loge y) = y.

(16) exp is one-to-one and exp is differentiable on R and exp is differentiable
on ΩR and for every real number x holds exp′(x) = exp(x) and for every
real number x holds 0 < exp′(x) and dom exp = R and dom exp = ΩR and
rng exp = ]0,+∞[.

Let us note that exp is one-to-one.
We now state the proposition

(17) exp−1 is differentiable on dom(exp−1) and for every real number x such
that x ∈ dom(exp−1) holds (exp−1)′(x) = 1

x .

Let us mention that ]0, +∞[ is non empty.
Let a be a real number. The functor log (a) yields a partial function from R

to R and is defined by:

(Def. 2) dom log (a) = ]0, +∞[ and for every element d of ]0,+∞[ holds
(log (a))(d) = loga d.

One can prove the following three propositions:

(18) log (e) = exp−1 and log (e) is one-to-one and dom log (e) = ]0, +∞[
and rng log (e) = R and log (e) is differentiable on ]0, +∞[ and for every
real number x such that x > 0 holds log (e) is differentiable in x and for
every element x of ]0,+∞[ holds (log (e))′(x) = 1

x and for every element
x of ]0, +∞[ holds 0 < (log (e))′(x).

(19) If f is differentiable in x0, then exp ·f is differentiable in x0 and
(exp ·f)′(x0) = exp(f(x0)) · f ′(x0).

(20) If f is differentiable in x0 and f(x0) > 0, then log (e) · f is differentiable
in x0 and (log (e) · f)′(x0) = f ′(x0)

f(x0) .

Let p be a real number. The functor p
R yielding a partial function from R to

R is defined as follows:

(Def. 3) dom(p
R) = ]0,+∞[ and for every element d of ]0,+∞[ holds (p

R)(d) = dp
R.

We now state two propositions:

(21) If x > 0, then p
R is differentiable in x and (p

R)′(x) = p · xp−1
R .
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(22) If f is differentiable in x0 and f(x0) > 0, then (p
R) · f is differentiable in

x0 and ((p
R) · f)′(x0) = p · f(x0)

p−1
R · f ′(x0).

2. The Taylor Expansions

Let f be a partial function from R to R and let Z be a subset of R. The
functor f ′(Z) yields a sequence of partial functions from R into R and is defined
by:

(Def. 4) f ′(Z)(0) = f¹Z and for every natural number i holds f ′(Z)(i + 1) =
f ′(Z)(i)′¹Z .

Let f be a partial function from R to R, let n be a natural number, and let
Z be a subset of R. We say that f is differentiable n times on Z if and only if:

(Def. 5) For every natural number i such that i ¬ n − 1 holds f ′(Z)(i) is diffe-
rentiable on Z.

The following proposition is true

(23) Let f be a partial function from R to R, Z be a subset of R, and n be
a natural number. Suppose f is differentiable n times on Z. Let m be a
natural number. If m ¬ n, then f is differentiable m times on Z.

Let f be a partial function from R to R, let Z be a subset of R, and let a, b

be real numbers. The functor Taylor(f, Z, a, b) yields a sequence of real numbers
and is defined as follows:

(Def. 6) For every natural number n holds (Taylor(f, Z, a, b))(n) = f ′(Z)(n)(a)·(b−a)n

n! .

The following propositions are true:

(24) Let f be a partial function from R to R, Z be a subset of R, and n be a
natural number. Suppose f is differentiable n times on Z. Let a, b be real
numbers. If a < b and ]a, b[ ⊆ Z, then f ′(Z)(n)¹]a, b[ = f ′(]a, b[)(n).

(25) Let n be a natural number, f be a partial function from R to R, and
Z be a subset of R. Suppose f is differentiable n times on Z. Let a, b be
real numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on
[a, b] and f is differentiable n + 1 times on ]a, b[. Let l be a real number
and g be a partial function from R to R. Suppose dom g = R and for every
real number x holds g(x) = f(b)− (

∑κ
α=0(Taylor(f, Z, x, b))(α))κ∈N(n)−

l·(b−x)n+1

(n+1)! and f(b)− (
∑κ

α=0(Taylor(f, Z, a, b))(α))κ∈N(n)− l·(b−a)n+1

(n+1)! = 0.

Then
(i) g is differentiable on ]a, b[,
(ii) g(a) = 0,
(iii) g(b) = 0,

(iv) g is continuous on [a, b], and
(v) for every real number x such that x ∈ ]a, b[ holds g′(x) =
−f ′(]a,b[)(n+1)(x)·(b−x)n

n! + l·(b−x)n

n! .



198 yasunari shidama

(26) Let n be a natural number, f be a partial function from R to R, Z be
a subset of R, and b, l be real numbers. Then there exists a function g

from R into R such that for every real number x holds g(x) = f(b) −
(
∑κ

α=0(Taylor(f, Z, x, b))(α))κ∈N(n)− l·(b−x)n+1

(n+1)! .

(27) Let n be a natural number, f be a partial function from R to R, and Z

be a subset of R. Suppose f is differentiable n times on Z. Let a, b be real
numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on [a, b]
and f is differentiable n+1 times on ]a, b[. Then there exists a real number
c such that c ∈ ]a, b[ and f(b) = (

∑κ
α=0(Taylor(f, Z, a, b))(α))κ∈N(n) +

f ′(]a,b[)(n+1)(c)·(b−a)n+1

(n+1)! .

(28) Let n be a natural number, f be a partial function from R to R, and
Z be a subset of R. Suppose f is differentiable n times on Z. Let a, b be
real numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on
[a, b] and f is differentiable n + 1 times on ]a, b[. Let l be a real number
and g be a partial function from R to R. Suppose dom g = R and for every
real number x holds g(x) = f(a)− (

∑κ
α=0(Taylor(f, Z, x, a))(α))κ∈N(n)−

l·(a−x)n+1

(n+1)! and f(a)− (
∑κ

α=0(Taylor(f, Z, b, a))(α))κ∈N(n)− l·(a−b)n+1

(n+1)! = 0.

Then
(i) g is differentiable on ]a, b[,
(ii) g(b) = 0,

(iii) g(a) = 0,
(iv) g is continuous on [a, b], and
(v) for every real number x such that x ∈ ]a, b[ holds g′(x) =
−f ′(]a,b[)(n+1)(x)·(a−x)n

n! + l·(a−x)n

n! .

(29) Let n be a natural number, f be a partial function from R to R, and Z

be a subset of R. Suppose f is differentiable n times on Z. Let a, b be real
numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on [a, b]
and f is differentiable n+1 times on ]a, b[. Then there exists a real number
c such that c ∈ ]a, b[ and f(a) = (

∑κ
α=0(Taylor(f, Z, b, a))(α))κ∈N(n) +

f ′(]a,b[)(n+1)(c)·(a−b)n+1

(n+1)! .

(30) Let f be a partial function from R to R, Z be a subset of R, and Z1 be
an open subset of R. Suppose Z1 ⊆ Z. Let n be a natural number. If f is
differentiable n times on Z, then f ′(Z)(n)¹Z1 = f ′(Z1)(n).

(31) Let f be a partial function from R to R, Z be a subset of R, and Z1 be
an open subset of R. Suppose Z1 ⊆ Z. Let n be a natural number. Suppose
f is differentiable n + 1 times on Z. Then f is differentiable n + 1 times
on Z1.

(32) Let f be a partial function from R to R, Z be a subset of R, and x be
a real number. If x ∈ Z, then for every natural number n holds f(x) =
(
∑κ

α=0(Taylor(f, Z, x, x))(α))κ∈N(n).
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(33) Let n be a natural number, f be a partial function from R to R,
and x0, r be real numbers. Suppose 0 < r and f is differentiable
n + 1 times on ]x0 − r, x0 + r[. Let x be a real number. Suppose x ∈
]x0 − r, x0 + r[. Then there exists a real number s such that 0 < s and
s < 1 and f(x) = (

∑κ
α=0(Taylor(f, ]x0 − r, x0 + r[, x0, x))(α))κ∈N(n) +

f ′(]x0−r,x0+r[)(n+1)(x0+s·(x−x0))·(x−x0)n+1

(n+1)! .
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Summary. An extension of [19]. In this article, the basic properties of
complex linear spaces which are defined by the set of all complex linear opera-
tors from one complex linear space to another are described. Finally, a complex
Banach space is introduced. This is defined by the set of all bounded complex
linear operators, like in [19].

MML Identifier: CLOPBAN1.

The articles [24], [6], [26], [27], [4], [5], [17], [22], [21], [2], [1], [20], [11], [7],
[25], [23], [18], [15], [13], [14], [12], [16], [3], [9], [10], [8], and [19] provide the
terminology and notation for this paper.

1. Complex Vector Space of Operators

Let X be a set, let Y be a non empty set, let F be a function from [:C, Y :]
into Y , let c be a complex number, and let f be a function from X into Y . Then
F ◦(c, f) is an element of Y X .

We now state the proposition

(1) Let X be a non empty set and Y be a complex linear space. Then there
exists a function M1 from [:C, (the carrier of Y )X :] into (the carrier of
Y )X such that for every Complex c and for every element f of (the carrier
of Y )X and for every element s of X holds M1(〈〈c, f〉〉)(s) = c · f(s).

Let X be a non empty set and let Y be a complex linear space. The functor
FuncExtMult(X, Y ) yields a function from [:C, (the carrier of Y )X :] into (the
carrier of Y )X and is defined by the condition (Def. 1).

(Def. 1) Let c be a Complex, f be an element of (the carrier of Y )X , and x be
an element of X. Then (FuncExtMult(X,Y ))(〈〈c, f〉〉)(x) = c · f(x).
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202 noboru endou

We follow the rules: X is a non empty set, Y is a complex linear space, and
f , g, h are elements of (the carrier of Y )X .

We now state the proposition

(2) For every element x of X holds (FuncZero(X, Y ))(x) = 0Y .

In the sequel a, b are Complexes.
Next we state several propositions:

(3) h = (FuncExtMult(X, Y ))(〈〈a, f〉〉) iff for every element x of X holds
h(x) = a · f(x).

(4) (FuncAdd(X,Y ))(f, g) = (FuncAdd(X, Y ))(g, f).
(5) (FuncAdd(X,Y ))(f, (FuncAdd(X, Y ))(g, h)) =

(FuncAdd(X,Y ))((FuncAdd(X, Y ))(f, g), h).
(6) (FuncAdd(X,Y ))(FuncZero(X, Y ), f) = f.

(7) (FuncAdd(X,Y ))(f, (FuncExtMult(X, Y ))(〈〈−1C, f〉〉)) =
FuncZero(X,Y ).

(8) (FuncExtMult(X, Y ))(〈〈1C, f〉〉) = f.

(9) (FuncExtMult(X, Y ))(〈〈a, (FuncExtMult(X, Y ))(〈〈b, f〉〉)〉〉) =
(FuncExtMult(X,Y ))(〈〈a · b, f〉〉).

(10) (FuncAdd(X,Y ))((FuncExtMult(X, Y ))(〈〈a, f〉〉),
(FuncExtMult(X, Y ))(〈〈b, f〉〉)) = (FuncExtMult(X, Y ))(〈〈a + b, f〉〉).

(11) 〈(the carrier of Y )X , FuncZero(X, Y ), FuncAdd(X, Y ),
FuncExtMult(X,Y )〉 is a complex linear space.

Let X be a non empty set and let Y be a complex linear space. The functor
ComplexVectSpace(X, Y ) yielding a complex linear space is defined as follows:

(Def. 2) ComplexVectSpace(X, Y ) = 〈(the carrier of Y )X , FuncZero(X, Y ),
FuncAdd(X,Y ), FuncExtMult(X,Y )〉.

Let X be a non empty set and let Y be a complex linear space. Observe that
ComplexVectSpace(X, Y ) is strict.

Let X be a non empty set and let Y be a complex linear space. Observe that
every vector of ComplexVectSpace(X, Y ) is function-like and relation-like.

Let X be a non empty set, let Y be a complex linear space, let f be a vector
of ComplexVectSpace(X, Y ), and let x be an element of X. Then f(x) is a vector
of Y .

We now state three propositions:

(12) Let X be a non empty set, Y be a complex linear space, and f , g, h

be vectors of ComplexVectSpace(X, Y ). Then h = f + g if and only if for
every element x of X holds h(x) = f(x) + g(x).

(13) Let X be a non empty set, Y be a complex linear space, f , h be vectors
of ComplexVectSpace(X,Y ), and c be a Complex. Then h = c · f if and
only if for every element x of X holds h(x) = c · f(x).
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(14) For every non empty set X and for every complex linear space Y holds
0ComplexVectSpace(X,Y ) = X 7−→ 0Y .

2. Complex Vector Space of Linear Operators

Let X be a non empty CLS structure, let Y be a non empty loop structure,
and let I1 be a function from X into Y . We say that I1 is additive if and only
if:

(Def. 3) For all vectors x, y of X holds I1(x + y) = I1(x) + I1(y).
Let X, Y be non empty CLS structures and let I1 be a function from X into

Y . We say that I1 is homogeneous if and only if:

(Def. 4) For every vector x of X and for every Complex r holds I1(r ·x) = r ·I1(x).
Let X be a non empty CLS structure and let Y be a complex linear space.

One can verify that there exists a function from X into Y which is additive and
homogeneous.

Let X, Y be complex linear spaces. A linear operator from X into Y is an
additive homogeneous function from X into Y .

Let X, Y be complex linear spaces. The functor LinearOperators(X,Y ) yiel-
ding a subset of ComplexVectSpace(the carrier of X, Y ) is defined by:

(Def. 5) For every set x holds x ∈ LinearOperators(X,Y ) iff x is a linear operator
from X into Y .

Let X, Y be complex linear spaces. Note that LinearOperators(X, Y ) is non
empty.

Next we state two propositions:

(15) For all complex linear spaces X, Y holds LinearOperators(X, Y ) is line-
arly closed.

(16) Let X, Y be complex linear spaces. Then 〈LinearOperators(X, Y ),
Zero (LinearOperators(X,Y ), ComplexVectSpace(the carrier of X, Y )),
Add (LinearOperators(X,Y ), ComplexVectSpace(the carrier of X, Y )),
Mult (LinearOperators(X,Y ), ComplexVectSpace(the carrier of X, Y ))〉
is a subspace of ComplexVectSpace(the carrier of X, Y ).

Let X, Y be complex linear spaces. One can check that
〈LinearOperators(X, Y ), Zero (LinearOperators(X, Y ), ComplexVectSpace(the

carrier of X, Y )), Add (LinearOperators(X,Y ), ComplexVectSpace(the carrier
of X, Y )), Mult (LinearOperators(X, Y ), ComplexVectSpace(the carrier of X,
Y ))〉 is Abelian, add-associative, right zeroed, right complementable, and com-
plex linear space-like.

Next we state the proposition

(17) Let X, Y be complex linear spaces. Then 〈LinearOperators(X, Y ),
Zero (LinearOperators(X,Y ), ComplexVectSpace(the carrier of X, Y )),
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Add (LinearOperators(X, Y ), ComplexVectSpace(the carrier of X, Y )),
Mult (LinearOperators(X,Y ), ComplexVectSpace(the carrier of X, Y ))〉
is a complex linear space.

Let X, Y be complex linear spaces. The functor CVSpLinOps(X, Y ) yielding
a complex linear space is defined as follows:

(Def. 6) CVSpLinOps(X, Y ) = 〈LinearOperators(X,Y ), Zero (LinearOperators
(X, Y ), ComplexVectSpace(the carrier of X, Y )), Add (LinearOperators(X,

Y ), ComplexVectSpace(the carrier of X, Y )), Mult (LinearOperators(X,Y ),
ComplexVectSpace(the carrier of X, Y ))〉.

Let X, Y be complex linear spaces. Note that CVSpLinOps(X, Y ) is strict.
Let X, Y be complex linear spaces. One can check that every element of

CVSpLinOps(X, Y ) is function-like and relation-like.
Let X, Y be complex linear spaces, let f be an element of

CVSpLinOps(X, Y ), and let v be a vector of X. Then f(v) is a vector of Y .
Next we state four propositions:

(18) Let X, Y be complex linear spaces and f , g, h be vectors of
CVSpLinOps(X,Y ). Then h = f + g if and only if for every vector x

of X holds h(x) = f(x) + g(x).
(19) Let X, Y be complex linear spaces, f , h be vectors of

CVSpLinOps(X,Y ), and c be a Complex. Then h = c · f if and only
if for every vector x of X holds h(x) = c · f(x).

(20) For all complex linear spaces X, Y holds 0CVSpLinOps(X,Y ) = (the carrier
of X) 7−→ 0Y .

(21) For all complex linear spaces X, Y holds (the carrier of X) 7−→ 0Y is a
linear operator from X into Y .

3. Complex Normed Linear Space of Bounded Linear Operators

One can prove the following proposition

(22) Let X be a complex normed space, s1 be a sequence of X, and g be a
point of X. If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and
lim‖s1‖ = ‖g‖.

Let X, Y be complex normed spaces and let I1 be a linear operator from X

into Y . We say that I1 is bounded if and only if:

(Def. 7) There exists a real number K such that 0 ¬ K and for every vector x of
X holds ‖I1(x)‖ ¬ K · ‖x‖.

We now state the proposition

(23) Let X, Y be complex normed spaces and f be a linear operator from X

into Y . If for every vector x of X holds f(x) = 0Y , then f is bounded.
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Let X, Y be complex normed spaces. Observe that there exists a linear
operator from X into Y which is bounded.

Let X, Y be complex normed spaces. The functor BdLinOps(X, Y ) yielding
a subset of CVSpLinOps(X, Y ) is defined as follows:

(Def. 8) For every set x holds x ∈ BdLinOps(X, Y ) iff x is a bounded linear
operator from X into Y .

Let X, Y be complex normed spaces. One can check that BdLinOps(X, Y )
is non empty.

One can prove the following two propositions:

(24) For all complex normed spaces X, Y holds BdLinOps(X, Y ) is linearly
closed.

(25) For all complex normed spaces X, Y holds 〈BdLinOps(X, Y ),
Zero (BdLinOps(X,Y ), CVSpLinOps(X,Y )), Add (BdLinOps(X, Y ),
CVSpLinOps(X, Y )), Mult (BdLinOps(X, Y ), CVSpLinOps(X,Y ))〉 is a
subspace of CVSpLinOps(X,Y ).

Let X, Y be complex normed spaces. Observe that 〈BdLinOps(X, Y ),
Zero (BdLinOps(X, Y ), CVSpLinOps(X, Y )), Add (BdLinOps(X, Y ),
CVSpLinOps(X, Y )), Mult (BdLinOps(X,Y ), CVSpLinOps(X,Y ))〉 is Abe-

lian, add-associative, right zeroed, right complementable, and complex linear
space-like.

Next we state the proposition

(26) For all complex normed spaces X, Y holds 〈BdLinOps(X, Y ),
Zero (BdLinOps(X,Y ), CVSpLinOps(X,Y )), Add (BdLinOps(X, Y ),
CVSpLinOps(X, Y )), Mult (BdLinOps(X, Y ), CVSpLinOps(X,Y ))〉 is a
complex linear space.

Let X, Y be complex normed spaces. The functor CVSpBdLinOps(X, Y )
yielding a complex linear space is defined by:

(Def. 9) CVSpBdLinOps(X,Y ) = 〈BdLinOps(X, Y ), Zero (BdLinOps(X, Y ),
CVSpLinOps(X, Y )), Add (BdLinOps(X, Y ), CVSpLinOps(X, Y )),
Mult (BdLinOps(X, Y ), CVSpLinOps(X,Y ))〉.

Let X, Y be complex normed spaces. One can check that CVSpBdLinOps(X, Y )
is strict.

Let X, Y be complex normed spaces. Note that every element of
CVSpBdLinOps(X, Y ) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of
CVSpBdLinOps(X, Y ), and let v be a vector of X. Then f(v) is a vector of
Y .

One can prove the following propositions:

(27) Let X, Y be complex normed spaces and f , g, h be vectors of
CVSpBdLinOps(X,Y ). Then h = f + g if and only if for every vector
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x of X holds h(x) = f(x) + g(x).

(28) Let X, Y be complex normed spaces, f , h be vectors of
CVSpBdLinOps(X, Y ), and c be a Complex. Then h = c · f if and only if
for every vector x of X holds h(x) = c · f(x).

(29) For all complex normed spaces X, Y holds 0CVSpBdLinOps(X,Y ) = (the
carrier of X) 7−→ 0Y .

Let X, Y be complex normed spaces and let f be a set. Let us assume that
f ∈ BdLinOps(X,Y ). The functor modetrans(f, X, Y ) yields a bounded linear
operator from X into Y and is defined as follows:

(Def. 10) modetrans(f, X, Y ) = f.

Let X, Y be complex normed spaces and let u be a linear operator from X

into Y . The functor PreNorms(u) yielding a non empty subset of R is defined
as follows:

(Def. 11) PreNorms(u) = {‖u(t)‖; t ranges over vectors of X: ‖t‖ ¬ 1}.
We now state three propositions:

(30) Let X, Y be complex normed spaces and g be a bounded linear operator
from X into Y . Then PreNorms(g) is non empty and upper bounded.

(31) Let X, Y be complex normed spaces and g be a linear operator from X

into Y . Then g is bounded if and only if PreNorms(g) is upper bounded.

(32) Let X, Y be complex normed spaces. Then there exists a function
N1 from BdLinOps(X,Y ) into R such that for every set f if f ∈
BdLinOps(X,Y ), then N1(f) = sup PreNorms(modetrans(f,X, Y )).

Let X, Y be complex normed spaces. The functor BdLinOpsNorm(X, Y )
yields a function from BdLinOps(X, Y ) into R and is defined by:

(Def. 12) For every set x such that x ∈ BdLinOps(X, Y ) holds
(BdLinOpsNorm(X, Y ))(x) = sup PreNorms(modetrans(x, X, Y )).

We now state two propositions:

(33) For all complex normed spaces X, Y and for every bounded linear ope-
rator f from X into Y holds modetrans(f,X, Y ) = f.

(34) For all complex normed spaces X, Y and for every bounded li-
near operator f from X into Y holds (BdLinOpsNorm(X, Y ))(f) =
sup PreNorms(f).

Let X, Y be complex normed spaces. The functor CNSpBdLinOps(X, Y )
yields a non empty complex normed space structure and is defined by:

(Def. 13) CNSpBdLinOps(X,Y ) = 〈BdLinOps(X, Y ), Zero (BdLinOps(X,Y ),
CVSpLinOps(X,Y )), Add (BdLinOps(X, Y ), CVSpLinOps(X, Y )),
Mult (BdLinOps(X, Y ), CVSpLinOps(X, Y )), BdLinOpsNorm(X, Y )〉.

The following four propositions are true:
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(35) For all complex normed spaces X, Y holds (the carrier of X) 7−→ 0Y =
0CNSpBdLinOps(X,Y ).

(36) Let X, Y be complex normed spaces, f be a point of CNSpBdLinOps(X,

Y ), and g be a bounded linear operator from X into Y . If g = f, then for
every vector t of X holds ‖g(t)‖ ¬ ‖f‖ · ‖t‖.

(37) For all complex normed spaces X, Y and for every point f of
CNSpBdLinOps(X,Y ) holds 0 ¬ ‖f‖.

(38) For all complex normed spaces X, Y and for every point f of
CNSpBdLinOps(X,Y ) such that f = 0CNSpBdLinOps(X,Y ) holds 0 = ‖f‖.

Let X, Y be complex normed spaces. One can check that every element of
CNSpBdLinOps(X, Y ) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of
CNSpBdLinOps(X, Y ), and let v be a vector of X. Then f(v) is a vector of
Y .

We now state several propositions:

(39) Let X, Y be complex normed spaces and f , g, h be points of
CNSpBdLinOps(X,Y ). Then h = f + g if and only if for every vector
x of X holds h(x) = f(x) + g(x).

(40) Let X, Y be complex normed spaces, f , h be points of
CNSpBdLinOps(X,Y ), and c be a Complex. Then h = c · f if and only if
for every vector x of X holds h(x) = c · f(x).

(41) Let X, Y be complex normed spaces, f , g be points of
CNSpBdLinOps(X,Y ), and c be a Complex. Then ‖f‖ = 0 iff f =
0CNSpBdLinOps(X,Y ) and ‖c · f‖ = |c| · ‖f‖ and ‖f + g‖ ¬ ‖f‖+ ‖g‖.

(42) For all complex normed spaces X, Y holds CNSpBdLinOps(X, Y ) is
complex normed space-like.

(43) For all complex normed spaces X, Y holds CNSpBdLinOps(X,Y ) is a
complex normed space.

Let X, Y be complex normed spaces. Observe that CNSpBdLinOps(X, Y ) is
complex normed space-like, complex linear space-like, Abelian, add-associative,
right zeroed, and right complementable.

One can prove the following proposition

(44) Let X, Y be complex normed spaces and f , g, h be points of
CNSpBdLinOps(X,Y ). Then h = f − g if and only if for every vector
x of X holds h(x) = f(x)− g(x).

4. Complex Banach Space of Bounded Linear Operators

Let X be a complex normed space. We say that X is complete if and only
if:
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(Def. 14) For every sequence s1 of X such that s1 is Cauchy sequence by norm
holds s1 is convergent.

Let us observe that there exists a complex normed space which is complete.
A complex Banach space is a complete complex normed space.
One can prove the following three propositions:

(45) Let X be a complex normed space and s1 be a sequence of X. If s1 is
convergent, then ‖s1‖ is convergent and lim‖s1‖ = ‖lim s1‖.

(46) Let X, Y be complex normed spaces. Suppose Y is complete. Let s1 be
a sequence of CNSpBdLinOps(X,Y ). If s1 is Cauchy sequence by norm,
then s1 is convergent.

(47) For every complex normed space X and for every complex Banach space
Y holds CNSpBdLinOps(X,Y ) is a complex Banach space.

Let X be a complex normed space and let Y be a complex Banach space.
One can verify that CNSpBdLinOps(X,Y ) is complete.
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Summary. An extension of [18]. In this article, we introduce two complex
Banach spaces. One of them is the space of bounded complex sequences. The
other one is the space of complex bounded functions, which is defined by the set
of all complex bounded functions.
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The articles [21], [6], [23], [24], [17], [20], [2], [19], [12], [4], [5], [7], [22], [3], [1],
[16], [15], [14], [10], [13], [11], [8], and [9] provide the terminology and notation
for this paper.

1. Complex Banach Space of Bounded Complex Sequences

The subset the set of bounded complex sequences of the linear space of
complex sequences is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ the set of bounded complex sequences if and
only if x ∈ the set of complex sequences and idseq(x) is bounded.

Let us note that the set of bounded complex sequences is non empty and
the set of bounded complex sequences is linearly closed.

One can prove the following proposition

(1) 〈the set of bounded complex sequences, Zero (the set of bounded complex
sequences, the linear space of complex sequences), Add (the set of bounded
complex sequences, the linear space of complex sequences), Mult (the set
of bounded complex sequences, the linear space of complex sequences)〉 is
a subspace of the linear space of complex sequences.
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Let us mention that 〈the set of bounded complex sequences, Zero (the set of
bounded complex sequences, the linear space of complex sequences), Add (the
set of bounded complex sequences, the linear space of complex sequences),

Mult (the set of bounded complex sequences, the linear space of complex
sequences)〉 is Abelian, add-associative, right zeroed, right complementable, and
complex linear space-like.

The function Clinfty-norm from the set of bounded complex sequences into
R is defined by:

(Def. 2) For every set x such that x ∈ the set of bounded complex sequences
holds Clinfty-norm(x) = sup rng | idseq(x)|.

Next we state the proposition

(2) For every complex sequence s1 holds s1 is bounded and sup rng |s1| = 0
iff for every natural number n holds s1(n) = 0C.

One can check that 〈the set of bounded complex sequences, Zero (the set of
bounded complex sequences, the linear space of complex sequences), Add (the
set of bounded complex sequences, the linear space of complex sequences),

Mult (the set of bounded complex sequences, the linear space of complex
sequences), Clinfty-norm〉 is Abelian, add-associative, right zeroed, right com-
plementable, and complex linear space-like.

The non empty complex normed space structure Clinfty-Space is defined by
the condition (Def. 3).

(Def. 3) Clinfty-Space = 〈the set of bounded complex sequences, Zero (the
set of bounded complex sequences, the linear space of complex
sequences), Add (the set of bounded complex sequences, the linear space
of complex sequences), Mult (the set of bounded complex sequences, the
linear space of complex sequences), Clinfty-norm〉.

Next we state two propositions:

(3) The carrier of Clinfty-Space = the set of bounded complex sequences
and for every set x holds x is a vector of Clinfty-Space iff x is a complex
sequence and idseq(x) is bounded and 0Clinfty-Space = CZeroseq and for
every vector u of Clinfty-Space holds u = idseq(u) and for all vectors u, v

of Clinfty-Space holds u + v = idseq(u) + idseq(v) and for every Complex c

and for every vector u of Clinfty-Space holds c·u = c idseq(u) and for every
vector u of Clinfty-Space holds −u = −idseq(u) and idseq(−u) = −idseq(u)
and for all vectors u, v of Clinfty-Space holds u − v = idseq(u) − idseq(v)
and for every vector v of Clinfty-Space holds idseq(v) is bounded and for
every vector v of Clinfty-Space holds ‖v‖ = sup rng | idseq(v)|.

(4) Let x, y be points of Clinfty-Space and c be a Complex. Then ‖x‖ = 0 iff
x = 0Clinfty-Space and 0 ¬ ‖x‖ and ‖x+y‖ ¬ ‖x‖+‖y‖ and ‖c·x‖ = |c|·‖x‖.

Let us note that Clinfty-Space is complex normed space-like, complex linear
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space-like, Abelian, add-associative, right zeroed, and right complementable.
We now state two propositions:

(5) For every sequence v1 of Clinfty-Space such that v1 is Cauchy sequence
by norm holds v1 is convergent.

(6) Clinfty-Space is a complex Banach space.

2. Another Example of Complex Banach Space

Let X be a non empty set, let Y be a complex normed space, and let I1 be
a function from X into the carrier of Y . We say that I1 is bounded if and only
if:

(Def. 4) There exists a real number K such that 0 ¬ K and for every element x

of X holds ‖I1(x)‖ ¬ K.

The following proposition is true

(7) Let X be a non empty set, Y be a complex normed space, and f be a
function from X into the carrier of Y . If for every element x of X holds
f(x) = 0Y , then f is bounded.

Let X be a non empty set and let Y be a complex normed space. One can
check that there exists a function from X into the carrier of Y which is bounded.

Let X be a non empty set and let Y be a complex normed space. The functor
CBdFuncs(X,Y ) yields a subset of ComplexVectSpace(X, Y ) and is defined by:

(Def. 5) For every set x holds x ∈ CBdFuncs(X, Y ) iff x is a bounded function
from X into the carrier of Y .

Let X be a non empty set and let Y be a complex normed space. Note that
CBdFuncs(X,Y ) is non empty.

One can prove the following propositions:

(8) For every non empty set X and for every complex normed space Y holds
CBdFuncs(X, Y ) is linearly closed.

(9) Let X be a non empty set and Y be a complex normed space. Then
〈CBdFuncs(X, Y ), Zero (CBdFuncs(X, Y ), ComplexVectSpace(X, Y )),
Add (CBdFuncs(X,Y ), ComplexVectSpace(X, Y )), Mult (CBdFuncs(X, Y ),
ComplexVectSpace(X, Y ))〉 is a subspace of ComplexVectSpace(X, Y ).

Let X be a non empty set and let Y be a complex normed space. Note that
〈CBdFuncs(X,Y ), Zero (CBdFuncs(X,Y ), ComplexVectSpace(X, Y )),

Add (CBdFuncs(X, Y ), ComplexVectSpace(X, Y )), Mult (CBdFuncs(X, Y ),
ComplexVectSpace(X, Y ))〉 is Abelian, add-associative, right zeroed, right

complementable, and complex linear space-like.
We now state the proposition
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(10) Let X be a non empty set and Y be a complex normed space. Then
〈CBdFuncs(X, Y ), Zero (CBdFuncs(X, Y ), ComplexVectSpace(X, Y )),
Add (CBdFuncs(X,Y ), ComplexVectSpace(X, Y )), Mult (CBdFuncs(X,Y ),
ComplexVectSpace(X, Y ))〉 is a complex linear space.

Let X be a non empty set and let Y be a complex normed space. The set
of bounded complex sequences from X into Y yielding a complex linear space
is defined by:

(Def. 6) The set of bounded complex sequences from X into Y =
〈CBdFuncs(X, Y ), Zero (CBdFuncs(X, Y ), ComplexVectSpace(X, Y )),
Add (CBdFuncs(X,Y ), ComplexVectSpace(X, Y )), Mult (CBdFuncs(X,Y ),
ComplexVectSpace(X, Y ))〉.

Let X be a non empty set and let Y be a complex normed space. One can
verify that the set of bounded complex sequences from X into Y is strict.

The following three propositions are true:

(11) Let X be a non empty set, Y be a complex normed space, f , g, h be
vectors of the set of bounded complex sequences from X into Y , and f ′,
g′, h′ be bounded functions from X into the carrier of Y . Suppose f ′ = f

and g′ = g and h′ = h. Then h = f + g if and only if for every element x

of X holds h′(x) = f ′(x) + g′(x).
(12) Let X be a non empty set, Y be a complex normed space, f , h be

vectors of the set of bounded complex sequences from X into Y , and f ′,
h′ be bounded functions from X into the carrier of Y . Suppose f ′ = f and
h′ = h. Let c be a Complex. Then h = c · f if and only if for every element
x of X holds h′(x) = c · f ′(x).

(13) Let X be a non empty set and Y be a complex normed space. Then
0the set of bounded complex sequences from X into Y = X 7−→ 0Y .

Let X be a non empty set, let Y be a complex normed space, and let f be a
set. Let us assume that f ∈ CBdFuncs(X,Y ). The functor modetrans(f, X, Y )
yields a bounded function from X into the carrier of Y and is defined by:

(Def. 7) modetrans(f, X, Y ) = f.

Let X be a non empty set, let Y be a complex normed space, and let u be a
function from X into the carrier of Y . The functor PreNorms(u) yielding a non
empty subset of R is defined by:

(Def. 8) PreNorms(u) = {‖u(t)‖ : t ranges over elements of X}.
We now state three propositions:

(14) Let X be a non empty set, Y be a complex normed space, and g be a
bounded function from X into the carrier of Y . Then PreNorms(g) is non
empty and upper bounded.

(15) Let X be a non empty set, Y be a complex normed space, and g be a
function from X into the carrier of Y . Then g is bounded if and only if
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PreNorms(g) is upper bounded.

(16) Let X be a non empty set and Y be a complex normed space.
Then there exists a function N1 from CBdFuncs(X, Y ) into R such
that for every set f if f ∈ CBdFuncs(X, Y ), then N1(f) =
sup PreNorms(modetrans(f,X, Y )).

Let X be a non empty set and let Y be a complex normed space. The
functor CBdFuncsNorm(X, Y ) yielding a function from CBdFuncs(X, Y ) into
R is defined by:

(Def. 9) For every set x such that x ∈ CBdFuncs(X, Y ) holds
CBdFuncsNorm(X, Y )(x) = sup PreNorms(modetrans(x,X, Y )).

One can prove the following propositions:

(17) Let X be a non empty set, Y be a complex normed space, and f be a bo-
unded function from X into the carrier of Y . Then modetrans(f,X, Y ) =
f.

(18) Let X be a non empty set, Y be a complex normed space, and
f be a bounded function from X into the carrier of Y . Then
CBdFuncsNorm(X, Y )(f) = sup PreNorms(f).

Let X be a non empty set and let Y be a complex normed space. The
complex normed space of bounded functions from X into Y yields a non empty
complex normed space structure and is defined by:

(Def. 10) The complex normed space of bounded functions from X into Y =
〈CBdFuncs(X, Y ), Zero (CBdFuncs(X, Y ), ComplexVectSpace(X, Y )),
Add (CBdFuncs(X,Y ), ComplexVectSpace(X, Y )), Mult (CBdFuncs(X, Y ),
ComplexVectSpace(X, Y )), CBdFuncsNorm(X, Y )〉.

The following propositions are true:

(19) Let X be a non empty set and Y be a complex normed space. Then
X 7−→ 0Y = 0the complex normed space of bounded functions from X into Y .

(20) Let X be a non empty set, Y be a complex normed space, f be a point
of the complex normed space of bounded functions from X into Y , and
g be a bounded function from X into the carrier of Y . If g = f, then for
every element t of X holds ‖g(t)‖ ¬ ‖f‖.

(21) Let X be a non empty set, Y be a complex normed space, and f be a
point of the complex normed space of bounded functions from X into Y .
Then 0 ¬ ‖f‖.

(22) Let X be a non empty set, Y be a complex normed space, and f be a
point of the complex normed space of bounded functions from X into Y .
Suppose f = 0the complex normed space of bounded functions from X into Y . Then
0 = ‖f‖.

(23) Let X be a non empty set, Y be a complex normed space, f , g, h be
points of the complex normed space of bounded functions from X into Y ,
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and f ′, g′, h′ be bounded functions from X into the carrier of Y . Suppose
f ′ = f and g′ = g and h′ = h. Then h = f + g if and only if for every
element x of X holds h′(x) = f ′(x) + g′(x).

(24) Let X be a non empty set, Y be a complex normed space, f , h be points
of the complex normed space of bounded functions from X into Y , and
f ′, h′ be bounded functions from X into the carrier of Y . Suppose f ′ = f

and h′ = h. Let c be a Complex. Then h = c · f if and only if for every
element x of X holds h′(x) = c · f ′(x).

(25) Let X be a non empty set, Y be a complex normed space, f , g be points
of the complex normed space of bounded functions from X into Y , and c

be a Complex. Then
(i) ‖f‖ = 0 iff f = 0the complex normed space of bounded functions from X into Y ,

(ii) ‖c · f‖ = |c| · ‖f‖, and
(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.

(26) Let X be a non empty set and Y be a complex normed space. Then the
complex normed space of bounded functions from X into Y is complex
normed space-like.

(27) Let X be a non empty set and Y be a complex normed space. Then the
complex normed space of bounded functions from X into Y is a complex
normed space.

Let X be a non empty set and let Y be a complex normed space. One can
check that the complex normed space of bounded functions from X into Y is
complex normed space-like, complex linear space-like, Abelian, add-associative,
right zeroed, and right complementable.

One can prove the following three propositions:

(28) Let X be a non empty set, Y be a complex normed space, f , g, h be
points of the complex normed space of bounded functions from X into Y ,
and f ′, g′, h′ be bounded functions from X into the carrier of Y . Suppose
f ′ = f and g′ = g and h′ = h. Then h = f − g if and only if for every
element x of X holds h′(x) = f ′(x)− g′(x).

(29) Let X be a non empty set and Y be a complex normed space. Suppose
Y is complete. Let s1 be a sequence of the complex normed space of
bounded functions from X into Y . If s1 is Cauchy sequence by norm, then
s1 is convergent.

(30) Let X be a non empty set and Y be a complex Banach space. Then the
complex normed space of bounded functions from X into Y is a complex
Banach space.

Let X be a non empty set and let Y be a complex Banach space. Note that
the complex normed space of bounded functions from X into Y is complete.
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3. Some Properties of Complex Sequences

We now state four propositions:

(31) For all complex sequences s2, s3 such that s2 is bounded and s3 is bo-
unded holds s2 + s3 is bounded.

(32) For every Complex c and for every complex sequence s1 such that s1 is
bounded holds c s1 is bounded.

(33) For every complex sequence s1 holds s1 is bounded iff |s1| is bounded.

(34) For all complex sequences s2, s3, s4 holds s2 = s3−s4 iff for every natural
number n holds s2(n) = s3(n)− s4(n).
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Summary. For two finite sequences, we present a notion of their concate-
nation, reducing overlapping part of the tail of the former and the head of the
latter. At the same time, we also give a notion of common part of two finite
sequences, which relates to the concatenation given here. A finite sequence is se-
parated by another finite sequence (separator). We examined the condition that
a separator separates uniquely any finite sequence. This will become a model of
a separator of sequential files.

MML Identifier: FINSEQ 8.

The terminology and notation used here are introduced in the following articles:
[14], [15], [9], [1], [12], [16], [3], [10], [2], [4], [5], [8], [13], [7], [11], and [6].

The following propositions are true:

(1) For every set D and for every finite sequence f of elements of D holds
f¹0 = ∅.

(2) For every set D and for every finite sequence f of elements of D holds
fº0 = f.

Let D be a set and let f , g be finite sequences of elements of D. Then f a g

is a finite sequence of elements of D.
Next we state three propositions:

(3) For every non empty set D and for all finite sequences f , g of elements
of D such that len f ­ 1 holds mid(f a g, 1, len f) = f.

(4) Let D be a set, f be a finite sequence of elements of D, and i be a natural
number. If i ­ len f, then fºi = εD.
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(5) For every non empty set D and for all natural numbers k1, k2 holds
mid(εD, k1, k2) = εD.

Let D be a set, let f be a finite sequence of elements of D, and let k1, k2 be
natural numbers. The functor smid(f, k1, k2) yields a finite sequence of elements
of D and is defined as follows:

(Def. 1) smid(f, k1, k2) = fºk1−′1¹((k2 + 1)−′ k1).

One can prove the following propositions:

(6) Let D be a non empty set, f be a finite sequence of elements of D, and
k1, k2 be natural numbers. If k1 ¬ k2, then smid(f, k1, k2) = mid(f, k1, k2).

(7) Let D be a non empty set, f be a finite sequence of elements of D, and
k2 be a natural number. Then smid(f, 1, k2) = f¹k2.

(8) Let D be a non empty set, f be a finite sequence of elements of D, and
k2 be a natural number. If len f ¬ k2, then smid(f, 1, k2) = f.

(9) Let D be a set, f be a finite sequence of elements of D, and k1, k2 be
natural numbers. If k1 > k2, then smid(f, k1, k2) = ∅ and smid(f, k1, k2) =
εD.

(10) For every set D and for every finite sequence f of elements of D and for
every natural number k2 holds smid(f, 0, k2) = smid(f, 1, k2 + 1).

(11) For every non empty set D and for all finite sequences f , g of elements
of D holds smid(f a g, len f + 1, len f + len g) = g.

Let D be a non empty set and let f , g be finite sequences of elements of D.
The functor ovlpart(f, g) yielding a finite sequence of elements of D is defined
by the conditions (Def. 2).

(Def. 2)(i) len ovlpart(f, g) ¬ len g,

(ii) ovlpart(f, g) = smid(g, 1, len ovlpart(f, g)),
(iii) ovlpart(f, g) = smid(f, (len f −′ len ovlpart(f, g)) + 1, len f), and
(iv) for every natural number j such that j ¬ len g and smid(g, 1, j) =

smid(f, (len f −′ j) + 1, len f) holds j ¬ len ovlpart(f, g).

Next we state the proposition

(12) For every non empty set D and for all finite sequences f , g of elements
of D holds len ovlpart(f, g) ¬ len f.

Let D be a non empty set and let f , g be finite sequences of elements of D.
The functor ovlcon(f, g) yielding a finite sequence of elements of D is defined
as follows:

(Def. 3) ovlcon(f, g) = f a (gºlen ovlpart(f,g)).

One can prove the following proposition

(13) For every non empty set D and for all finite sequences f , g of elements
of D holds ovlcon(f, g) = (f¹(len f −′ len ovlpart(f, g))) a g.
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Let D be a non empty set and let f , g be finite sequences of elements of D.
The functor ovlldiff(f, g) yields a finite sequence of elements of D and is defined
as follows:

(Def. 4) ovlldiff(f, g) = f¹(len f −′ len ovlpart(f, g)).

Let D be a non empty set and let f , g be finite sequences of elements of D.
The functor ovlrdiff(f, g) yields a finite sequence of elements of D and is defined
by:

(Def. 5) ovlrdiff(f, g) = gºlen ovlpart(f,g).

One can prove the following propositions:

(14) Let D be a non empty set and f , g be finite sequences of elements of
D. Then ovlcon(f, g) = (ovlldiff(f, g)) a ovlpart(f, g) a ovlrdiff(f, g) and
ovlcon(f, g) = (ovlldiff(f, g)) a ((ovlpart(f, g)) a ovlrdiff(f, g)).

(15) Let D be a non empty set and f be a finite sequence of elements of D.
Then ovlcon(f, f) = f and ovlpart(f, f) = f and ovlldiff(f, f) = ∅ and
ovlrdiff(f, f) = ∅.

(16) For every non empty set D and for all finite sequences f , g of elements
of D holds ovlpart(f a g, g) = g and ovlpart(f, f a g) = f.

(17) Let D be a non empty set and f , g be finite sequences of elements
of D. Then len ovlcon(f, g) = (len f + len g) − len ovlpart(f, g) and
len ovlcon(f, g) = (len f + len g)−′ len ovlpart(f, g) and len ovlcon(f, g) =
len f + (len g −′ len ovlpart(f, g)).

(18) For every non empty set D and for all finite sequences f , g of elements
of D holds len ovlpart(f, g) ¬ len f and len ovlpart(f, g) ¬ len g.

Let D be a non empty set and let C1 be a finite sequence of elements of
D. We say that C1 separates uniquely if and only if the condition (Def. 6) is
satisfied.

(Def. 6) Let f be a finite sequence of elements of D and i, j be natural numbers.
Suppose 1 ¬ i and i < j and (j + len C1) −′ 1 ¬ len f and smid(f, i, (i +
len C1)−′ 1) = smid(f, j, (j+ len C1)−′ 1) and smid(f, i, (i+ len C1)−′ 1) =
C1. Then j −′ i ­ len C1.

The following proposition is true

(19) Let D be a non empty set and C1 be a finite sequence of elements of D.
Then C1 separates uniquely if and only if len ovlpart((C1)º1, C1) = 0.

Let D be a non empty set, let f , g be finite sequences of elements of D, and
let n be a natural number. We say that g is a substring of f if and only if:

(Def. 7) If len g > 0, then there exists a natural number i such that n ¬ i and
i ¬ len f and mid(f, i, (i−′ 1) + len g) = g.

We now state four propositions:
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(20) Let D be a non empty set, f , g be finite sequences of elements of D, and
n be a natural number. If len g = 0, then g is a substring of f .

(21) Let D be a non empty set, f , g be finite sequences of elements of D, and
n, m be natural numbers. If m ­ n and g is a substring of f , then g is a
substring of f .

(22) For every non empty set D and for every finite sequence f of elements
of D such that 1 ¬ len f holds f is a substring of f .

(23) Let D be a non empty set and f , g be finite sequences of elements of D.
If g is a substring of f , then g is a substring of f .

Let D be a non empty set and let f , g be finite sequences of elements of D.
We say that g is a preposition of f if and only if:

(Def. 8) If len g > 0, then 1 ¬ len f and mid(f, 1, len g) = g.

One can prove the following four propositions:

(24) Let D be a non empty set and f , g be finite sequences of elements of D.
If len g = 0, then g is a preposition of f .

(25) For every non empty set D holds every finite sequence f of elements of
D is a preposition of f .

(26) Let D be a non empty set and f , g be finite sequences of elements of D.
If g is a preposition of f , then len g ¬ len f.

(27) Let D be a non empty set and f , g be finite sequences of elements of D.
If len g > 0 and g is a preposition of f , then g(1) = f(1).

Let D be a non empty set and let f , g be finite sequences of elements of D.
We say that g is a postposition of f if and only if:

(Def. 9) Rev(g) is a preposition of Rev(f).
Next we state several propositions:

(28) Let D be a non empty set and f , g be finite sequences of elements of D.
If len g = 0, then g is a postposition of f .

(29) Let D be a non empty set and f , g be finite sequences of elements of D.
If g is a postposition of f , then len g ¬ len f.

(30) Let D be a non empty set, f , g be finite sequences of elements of D, and
n be a natural number. Suppose g is a postposition of f . If len g > 0, then
len g ¬ len f and mid(f, (len f + 1)−′ len g, len f) = g.

(31) Let D be a non empty set, f , g be finite sequences of elements of D,
and n be a natural number such that if len g > 0, then len g ¬ len f and
mid(f, (len f + 1)−′ len g, len f) = g. Then g is a postposition of f .

(32) Let D be a non empty set, f , g be finite sequences of elements of D, and
n be a natural number. If len g = 0, then g is a preposition of f .

(33) Let D be a non empty set, f , g be finite sequences of elements of D, and
n be a natural number. If 1 ¬ len f and g is a preposition of f , then g is
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a substring of f .

(34) Let D be a non empty set, f , g be finite sequences of elements of D,
and n be a natural number. Suppose g is not a substring of f . Let i be a
natural number. If n ¬ i and 0 < i, then mid(f, i, (i−′ 1) + len g) 6= g.

Let D be a non empty set, let f , g be finite sequences of elements of D, and
let n be a natural number. The functor instr(n, f) yielding a natural number is
defined by the conditions (Def. 10).

(Def. 10)(i) If instr(n, f) 6= 0, then n ¬ instr(n, f) and g is a preposition of
fºinstr(n,f)−′1 and for every natural number j such that j ­ n and j > 0
and g is a preposition of fºj−′1 holds j ­ instr(n, f), and

(ii) if instr(n, f) = 0, then g is not a substring of f .

Let D be a non empty set and let f , C1 be finite sequences of elements of D.
The functor addcr(f, C1) yields a finite sequence of elements of D and is defined
by:

(Def. 11) addcr(f, C1) = ovlcon(f, C1).
Let D be a non empty set and let r, C1 be finite sequences of elements of

D. We say that r is terminated by C1 if and only if:

(Def. 12) If len C1 > 0, then len r ­ len C1 and instr(1, r) = (len r + 1)−′ len C1.

The following proposition is true

(35) For every non empty set D holds every finite sequence f of elements of
D is terminated by f .
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Summary. As an extension of [13], we introduce the Cauchy sequence of
complex unitary space and describe its properties.

MML Identifier: CLVECT 3.

The terminology and notation used in this paper are introduced in the following
papers: [22], [3], [20], [9], [5], [12], [10], [11], [15], [2], [18], [4], [1], [21], [16], [17],
[14], [13], [19], [6], [7], and [8].

For simplicity, we follow the rules: X denotes a complex unitary space, s1,
s2, s3 denote sequences of X, R1 denotes a sequence of real numbers, C1, C2, C3

denote complex sequences, z, z1, z2 denote Complexes, r denotes a real number,
and k, n, m denote natural numbers.

The scheme Rec Func Ex CUS deals with a complex unitary space A, a point
B of A, and a binary functor F yielding a point of A, and states that:

There exists a function f from N into the carrier of A such that
f(0) = B and for every element n of N and for every point x of A
such that x = f(n) holds f(n + 1) = F(n, x)

for all values of the parameters.
Let us consider X, s1. The functor (

∑κ
α=0(s1)(α))κ∈N yields a sequence of

X and is defined as follows:

(Def. 1) (
∑κ

α=0(s1)(α))κ∈N(0) = s1(0) and for every n holds (
∑κ

α=0(s1)(α))κ∈N(n+
1) = (

∑κ
α=0(s1)(α))κ∈N(n) + s1(n + 1).

One can prove the following propositions:

(1) (
∑κ

α=0(s2)(α))κ∈N + (
∑κ

α=0(s3)(α))κ∈N = (
∑κ

α=0(s2 + s3)(α))κ∈N.

(2) (
∑κ

α=0(s2)(α))κ∈N − (
∑κ

α=0(s3)(α))κ∈N = (
∑κ

α=0(s2 − s3)(α))κ∈N.

(3) (
∑κ

α=0(z · s1)(α))κ∈N = z · (∑κ
α=0(s1)(α))κ∈N.
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(4) (
∑κ

α=0(−s1)(α))κ∈N = −(
∑κ

α=0(s1)(α))κ∈N.

(5) z1 · (
∑κ

α=0(s2)(α))κ∈N + z2 · (
∑κ

α=0(s3)(α))κ∈N = (
∑κ

α=0(z1 · s2 + z2 ·
s3)(α))κ∈N.

Let us consider X, s1. We say that s1 is summable if and only if:

(Def. 2) (
∑κ

α=0(s1)(α))κ∈N is convergent.

The functor
∑

s1 yields a point of X and is defined as follows:

(Def. 3)
∑

s1 = lim((
∑κ

α=0(s1)(α))κ∈N).
Next we state several propositions:

(6) If s2 is summable and s3 is summable, then s2 + s3 is summable and∑
(s2 + s3) =

∑
s2 +

∑
s3.

(7) If s2 is summable and s3 is summable, then s2 − s3 is summable and∑
(s2 − s3) =

∑
s2 −

∑
s3.

(8) If s1 is summable, then z · s1 is summable and
∑

(z · s1) = z ·∑ s1.

(9) If s1 is summable, then s1 is convergent and lim s1 = 0X .

(10) Suppose X is Hilbert. Then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ­ k and
m ­ k holds ‖(∑κ

α=0(s1)(α))κ∈N(n)− (
∑κ

α=0(s1)(α))κ∈N(m)‖ < r.

(11) If s1 is summable, then (
∑κ

α=0(s1)(α))κ∈N is bounded.

(12) If for every n holds s2(n) = s1(0), then (
∑κ

α=0(s1 ↑ 1)(α))κ∈N =
(
∑κ

α=0(s1)(α))κ∈N ↑ 1− s2.

(13) If s1 is summable, then for every k holds s1 ↑ k is summable.

(14) If there exists k such that s1 ↑ k is summable, then s1 is summable.

Let us consider X, s1, n. The functor
∑n

κ=0 s1(κ) yielding a point of X is
defined by:

(Def. 4)
∑n

κ=0 s1(κ) = (
∑κ

α=0(s1)(α))κ∈N(n).
One can prove the following propositions:

(15)
∑0

κ=0 s1(κ) = s1(0).
(16)

∑1
κ=0 s1(κ) =

∑0
κ=0 s1(κ) + s1(1).

(17)
∑1

κ=0 s1(κ) = s1(0) + s1(1).
(18)

∑n+1
κ=0 s1(κ) =

∑n
κ=0 s1(κ) + s1(n + 1).

(19) s1(n + 1) =
∑n+1

κ=0 s1(κ)−∑n
κ=0 s1(κ).

(20) s1(1) =
∑1

κ=0 s1(κ)−∑0
κ=0 s1(κ).

Let us consider X, s1, n, m. The functor
∑m

κ=n+1 s1(κ) yielding a point of
X is defined by:

(Def. 5)
∑m

κ=n+1 s1(κ) =
∑n

κ=0 s1(κ)−∑m
κ=0 s1(κ).

One can prove the following four propositions:

(21)
∑0

κ=1+1 s1(κ) = s1(1).
(22)

∑n
κ=n+1+1 s1(κ) = s1(n + 1).
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(23) Suppose X is Hilbert. Then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ­ k and
m ­ k holds ‖∑n

κ=0 s1(κ)−∑m
κ=0 s1(κ)‖ < r.

(24) Suppose X is Hilbert. Then s1 is summable if and only if for every r

such that r > 0 there exists k such that for all n, m such that n ­ k and
m ­ k holds ‖∑m

κ=n+1 s1(κ)‖ < r.

Let us consider C1, n. The functor
∑n

κ=0 C1(κ) yielding a Complex is defined
as follows:

(Def. 6)
∑n

κ=0 C1(κ) = (
∑κ

α=0(C1)(α))κ∈N(n).
Let us consider C1, n, m. The functor

∑m
κ=n+1 C1(κ) yielding a Complex is

defined by:

(Def. 7)
∑m

κ=n+1 C1(κ) =
∑n

κ=0 C1(κ)−∑m
κ=0 C1(κ).

Let us consider X, s1. We say that s1 is absolutely summable if and only if:

(Def. 8) ‖s1‖ is summable.

The following propositions are true:

(25) If s2 is absolutely summable and s3 is absolutely summable, then s2 +s3

is absolutely summable.

(26) If s1 is absolutely summable, then z · s1 is absolutely summable.

(27) If for every n holds ‖s1‖(n) ¬ R1(n) and R1 is summable, then s1 is
absolutely summable.

(28) If for every n holds s1(n) 6= 0X and R1(n) = ‖s1(n+1)‖
‖s1(n)‖ and R1 is conver-

gent and lim R1 < 1, then s1 is absolutely summable.

(29) If r > 0 and there exists m such that for every n such that n ­ m holds
‖s1(n)‖ ­ r, then s1 is not convergent or lim s1 6= 0X .

(30) If for every n holds s1(n) 6= 0X and there exists m such that for every n

such that n ­ m holds ‖s1(n+1)‖
‖s1(n)‖ ­ 1, then s1 is not summable.

(31) If for every n holds s1(n) 6= 0X and for every n holds R1(n) = ‖s1(n+1)‖
‖s1(n)‖

and R1 is convergent and lim R1 > 1, then s1 is not summable.

(32) If for every n holds R1(n) = n
√
‖s1(n)‖ and R1 is convergent and

lim R1 < 1, then s1 is absolutely summable.

(33) If for every n holds R1(n) = n
√
‖s1‖(n) and there exists m such that for

every n such that n ­ m holds R1(n) ­ 1, then s1 is not summable.

(34) If for every n holds R1(n) = n
√
‖s1‖(n) and R1 is convergent and

lim R1 > 1, then s1 is not summable.

(35) (
∑κ

α=0‖s1‖(α))κ∈N is non-decreasing.

(36) For every n holds (
∑κ

α=0‖s1‖(α))κ∈N(n) ­ 0.

(37) For every n holds ‖(∑κ
α=0(s1)(α))κ∈N(n)‖ ¬ (

∑κ
α=0‖s1‖(α))κ∈N(n).

(38) For every n holds ‖∑n
κ=0 s1(κ)‖ ¬∑n

κ=0‖s1‖(κ).
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(39) For all n, m holds ‖(∑κ
α=0(s1)(α))κ∈N(m) − (

∑κ
α=0(s1)(α))κ∈N(n)‖ ¬

|(∑κ
α=0‖s1‖(α))κ∈N(m)− (

∑κ
α=0‖s1‖(α))κ∈N(n)|.

(40) For all n, m holds ‖∑m
κ=0 s1(κ) − ∑n

κ=0 s1(κ)‖ ¬ |∑m
κ=0‖s1‖(κ) −∑n

κ=0‖s1‖(κ)|.
(41) For all n, m holds ‖∑n

κ=m+1 s1(κ)‖ ¬ |∑n
κ=m+1‖s1‖(κ)|.

(42) If X is Hilbert, then if s1 is absolutely summable, then s1 is summable.

Let us consider X, s1, C1. The functor C1 · s1 yields a sequence of X and is
defined by:

(Def. 9) For every n holds (C1 · s1)(n) = C1(n) · s1(n).
Next we state several propositions:

(43) C1 · (s2 + s3) = C1 · s2 + C1 · s3.

(44) (C2 + C3) · s1 = C2 · s1 + C3 · s1.

(45) (C2 C3) · s1 = C2 · (C3 · s1).
(46) (z C1) · s1 = z · (C1 · s1).
(47) C1 · −s1 = (−C1) · s1.

(48) If C1 is convergent and s1 is convergent, then C1 · s1 is convergent.

(49) If C1 is bounded and s1 is bounded, then C1 · s1 is bounded.

(50) If C1 is convergent and s1 is convergent, then C1 · s1 is convergent and
lim(C1 · s1) = lim C1 · lim s1.

Let us consider C1. We say that C1 is Cauchy if and only if:

(Def. 10) For every r such that r > 0 there exists k such that for all n, m such
that n ­ k and m ­ k holds |C1(n)− C1(m)| < r.

We introduce C1 is a Cauchy sequence as a synonym of C1 is Cauchy.
Next we state four propositions:

(51) If X is Hilbert, then if s1 is Cauchy and C1 is Cauchy, then C1 · s1 is
Cauchy.

(52) For every n holds (
∑κ

α=0((C1−C1 ↑1) · (∑κ
α=0(s1)(α))κ∈N)(α))κ∈N(n) =

(
∑κ

α=0(C1 · s1)(α))κ∈N(n + 1)− (C1 · (
∑κ

α=0(s1)(α))κ∈N)(n + 1).
(53) For every n holds (

∑κ
α=0(C1 · s1)(α))κ∈N(n + 1) = (C1 ·

(
∑κ

α=0(s1)(α))κ∈N)(n+1)−(
∑κ

α=0((C1↑1−C1)·(
∑κ

α=0(s1)(α))κ∈N)(α))κ∈N(n).
(54) For every n holds

∑n+1
κ=0(C1 · s1)(κ) = (C1 · (

∑κ
α=0(s1)(α))κ∈N)(n + 1)−∑n

κ=0((C1 ↑ 1− C1) · (
∑κ

α=0(s1)(α))κ∈N)(κ).
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