Calculation of Matrices of Field Elements. Part I

Yatsuka Nakamura Shinshu University Nagano

Hiroshi Yamazaki Shinshu University Nagano

Summary. This article gives property of calculation of matrices.

MML Identifier: MATRIX_4.

The articles [8], [3], [10], [11], [4], [1], [5], [2], [13], [6], [7], [12], and [9] provide the notation and terminology for this paper.

In this paper i denotes a natural number.

Let K be a field and let M_1 , M_2 be matrices over K. The functor $M_1 - M_2$ yielding a matrix over K is defined by:

(Def. 1)
$$M_1 - M_2 = M_1 + -M_2$$
.

One can prove the following propositions:

- (1) For every field K and for every matrix M over K such that len M > 0holds --M = M.
- (2) For every field K and for every matrix M over K such that len M > 0

holds
$$M + -M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(\text{len } M) \times (\text{width})}$$

(3) For every field K and for every matrix M over K such that len M > 0

holds
$$M - M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(\operatorname{len} M) \times (\operatorname{width} M)}$$

(4) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose len $M_1 =$ $\operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{len} M_3$ width M_3 and len $M_1 > 0$ and $M_1 + M_3 = M_2 + M_3$. Then $M_1 = M_2$.

- (5) For every field K and for all matrices M_1 , M_2 over K such that len $M_2 >$ 0 holds $M_1 - M_2 = M_1 + M_2$.
- (6) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 =$ $\operatorname{len} M_2$ and width $M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 = M_1 + M_2$

holds
$$M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$$
.

(7) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ and $M_1 - M_2 =$ $(\text{len } M_1) \times (\text{width } M_1)$

$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(\operatorname{eff} M_{1}) \times (\operatorname{width} M_{1})} \operatorname{holds} M_{1} = M_{2}.$$

(8) For every field K and for all matrices M_1 , M_2 over K such that

$$len M_1 = len M_2 \text{ and width } M_1 = \text{width } M_2 \text{ and len } M_1 > 0 \text{ and } M_1 + M_2 =$$

$$\begin{pmatrix}
0 & \dots & 0 \\
\vdots & \ddots & \vdots \\
0 & \dots & 0
\end{pmatrix}_K^{(\text{len } M_1) \times (\text{width } M_1)}$$
holds $M_2 = -M_1$.

(9) For all natural numbers n, m and for every field K such that n > 0 holds

$$-\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m}.$$

(10) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 =$

len
$$M_2$$
 and width M_1 = width M_2 and len $M_1 > 0$ and $M_2 - M_1 = M_2$
holds $M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\text{len } M_1) \times (\text{width } M_1)}$.

- (11) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 =$ len M_2 and width M_1 = width M_2 and len $M_1 > 0$ holds $M_1 = M_1 - (M_2 - 1)$
- (12) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 =$ len M_2 and width M_1 = width M_2 and len $M_1 > 0$ holds $-(M_1 + M_2)$ = $-M_1 + -M_2$.
- (13) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 =$ len M_2 and width M_1 = width M_2 and len $M_1 > 0$ holds $M_1 - (M_1 - M_2)$ =
- (14) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose len $M_1 =$ $\operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{len} M_3$ width M_3 and len $M_1 > 0$ and $M_1 - M_3 = M_2 - M_3$. Then $M_1 = M_2$.

- (15) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose len M_1 = len M_2 and len M_2 = len M_3 and width M_1 = width M_2 and width M_2 = width M_3 and len $M_1 > 0$ and $M_3 M_1 = M_3 M_2$. Then $M_1 = M_2$.
- (16) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 M_2 M_3 = M_1 M_3 M_2$.
- (17) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 M_3 = M_1 M_2 (M_3 M_2)$.
- (18) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_3 M_1 (M_3 M_2) = M_2 M_1$.
- (19) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{len} M_3 = \operatorname{len} M_4$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and width $M_3 = \operatorname{width} M_4$ and $\operatorname{len} M_1 > 0$ and $M_1 M_2 = M_3 M_4$. Then $M_1 M_3 = M_2 M_4$.
- (20) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = M_1 + (M_2 M_2)$.
- (21) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = (M_1 + M_2) M_2$.
- (22) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = (M_1 M_2) + M_2$.
- (23) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 + M_3 = M_1 + M_2 + (M_3 M_2)$.
- (24) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $(M_1 + M_2) M_3 = (M_1 M_3) + M_2$.
- (25) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $(M_1 M_2) + M_3 = (M_3 M_2) + M_1$.
- (26) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 + M_3 = (M_1 + M_2) (M_2 M_3)$.
- (27) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$

and len $M_1 > 0$, then $M_1 - M_3 = (M_1 + M_2) - (M_3 + M_2)$.

- (28) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{len} M_3 = \operatorname{len} M_4$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and width $M_3 = \operatorname{width} M_4$ and $\operatorname{len} M_1 > 0$ and $M_1 + M_2 = M_3 + M_4$. Then $M_1 M_3 = M_4 M_2$.
- (29) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{len} M_3 = \operatorname{len} M_4$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and width $M_3 = \operatorname{width} M_4$ and $\operatorname{len} M_1 > 0$ and $M_1 M_3 = M_4 M_2$. Then $M_1 + M_2 = M_3 + M_4$.
- (30) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{len} M_3 = \operatorname{len} M_4$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and width $M_3 = \operatorname{width} M_4$ and $\operatorname{len} M_1 > 0$ and $M_1 + M_2 = M_3 M_4$. Then $M_1 + M_4 = M_3 M_2$.
- (31) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 (M_2 + M_3) = M_1 M_2 M_3$.
- (32) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 (M_2 M_3) = (M_1 M_2) + M_3$.
- (33) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 (M_2 M_3) = M_1 + (M_3 M_2)$.
- (34) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 M_3 = (M_1 M_2) + (M_2 M_3)$.
- (35) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$ and $-M_1 = -M_2$, then $M_1 = M_2$.
- (36) For every field K and for every matrix M over K such that len M > 0

and
$$-M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K \text{ (len } M) \times \text{(width } M)}$$
holds $M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}$.

(37) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 =$

len M_2 and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ and $M_1 + -M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\text{len } M_1) \times (\text{width } M_1)}$ holds $M_1 = M_2$.

- (38) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = M_1 + M_2 + M_2$.
- (39) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = M_1 + (M_2 + -M_2)$.
- (40) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = -M_2 + M_1 + M_2$.
- (41) For every field K and for all matrices M_1 , M_2 over K such that len M_1 = len M_2 and width M_1 = width M_2 and len $M_1 > 0$ holds $-(-M_1 + M_2) = M_1 + -M_2$.
- (42) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 + M_2 = -(-M_1 + -M_2)$.
- (43) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $-(M_1 M_2) = M_2 M_1$.
- (44) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $-M_1 M_2 = -M_2 M_1$.
- (45) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = -M_2 (-M_1 M_2)$.
- (46) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $-M_1 M_2 M_3 = -M_1 M_3 M_2$.
- (47) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $-M_1 M_2 M_3 = -M_2 M_3 M_1$.
- (48) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $-M_1 M_2 M_3 = -M_3 M_2 M_1$.
- (49) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_3 M_1 (M_3 M_2) = -(M_1 M_2)$.

(50) For every field K and for every matrix M over K such that len M > 0

holds
$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M) \times (\operatorname{width} M)} - M = -M.$$

- (51) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 + M_2 = M_1 M_2$.
- (52) For every field K and for all matrices M_1 , M_2 over K such that len $M_1 = \text{len } M_2$ and width $M_1 = \text{width } M_2$ and len $M_1 > 0$ holds $M_1 = M_1 (M_2 + M_2)$.
- (53) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose len M_1 = len M_2 and len M_2 = len M_3 and width M_1 = width M_2 and width M_2 = width M_3 and len $M_1 > 0$ and $M_1 M_3 = M_2 + -M_3$. Then $M_1 = M_2$.
- (54) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$ and $M_3 M_1 = M_3 + -M_2$. Then $M_1 = M_2$.
- (55) Let K be a field and A, B be matrices over K. If len A = len B and width A = width B, then the indices of A = the indices of B.
- (56) Let K be a field and x, y, z be finite sequences of elements of the carrier of K. If len x = len y and len y = len z, then $(x + y) \bullet z = x \bullet z + y \bullet z$.
- (57) Let K be a field and x, y, z be finite sequences of elements of the carrier of K. If len x = len y and len y = len z, then $z \bullet (x + y) = z \bullet x + z \bullet y$.
- (58) Let D be a non empty set and M be a matrix over D. Suppose len M > 0. Let n be a natural number. Then M is a matrix over D of dimension $n \times \text{width } M$ if and only if n = len M.
- (59) Let K be a field, j be a natural number, and A, B be matrices over K. Suppose len A = len B and width A = width B and there exists a natural number j such that $\langle i, j \rangle \in \text{the indices of } A$. Then Line(A + B, i) = Line(A, i) + Line(B, i).
- (60) Let K be a field, j be a natural number, and A, B be matrices over K. Suppose len A = len B and width A = width B and there exists a natural number i such that $\langle i, j \rangle \in \text{the indices of } A$. Then $(A + B)_{\square,j} = A_{\square,j} + B_{\square,j}$.
- (61) Let V_1 be a field and P_1 , P_2 be finite sequences of elements of the carrier of V_1 . If len $P_1 = \text{len } P_2$, then $\sum (P_1 + P_2) = \sum P_1 + \sum P_2$.
- (62) Let K be a field and A, B, C be matrices over K. If len B = len C and width B = width C and width A = len B and len A > 0 and len B > 0, then $A \cdot (B + C) = A \cdot B + A \cdot C$.
- (63) Let K be a field and A, B, C be matrices over K. If len B = len C and

- width B = width C and len A = width B and len B > 0 and len A > 0, then $(B + C) \cdot A = B \cdot A + C \cdot A$.
- (64) Let K be a field, n, m, k be natural numbers, M_1 be a matrix over K of dimension $n \times m$, and M_2 be a matrix over K of dimension $m \times k$. Suppose width $M_1 = \text{len } M_2$ and $0 < \text{len } M_1$ and $0 < \text{len } M_2$. Then $M_1 \cdot M_2$ is a matrix over K of dimension $n \times k$.

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
- Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- [9] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [12] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.
- [13] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.

Received August 8, 2003