On the Calculus of Binary Arithmetics

Shunichi Kobayashi University of Matsumoto

Summary. In this paper, we have binary arithmetic and its related operations. We include some theorems concerning logical operators.

MML Identifier: BINARI_5.

The notation and terminology used in this paper have been introduced in the following articles: [3], [4], [2], and [1].

Let x, y be boolean sets. The functor x 'nand' y is defined as follows:

(Def. 1) x 'nand' $y = \neg(x \land y)$.

Let us note that the functor x 'nand' y is commutative.

Let x, y be boolean sets. Note that x 'nand' y is boolean.

Let x, y be elements of Boolean. Then x 'nand' y is an element of Boolean.

Let x, y be boolean sets. The functor x 'nor' y is defined by:

(Def. 2) $x \text{ 'nor' } y = \neg(x \lor y).$

Let us note that the functor x 'nor' y is commutative.

Let x, y be boolean sets. Note that x 'nor' y is boolean.

Let x, y be elements of Boolean. Then x 'nor' y is an element of Boolean.

Let x, y be boolean sets. The functor $x' \times x = y$ is defined as follows:

(Def. 3) $x ' \operatorname{xnor}' y = \neg (x \oplus y)$.

Let us observe that the functor x 'xnor' y is commutative.

Let x, y be elements of Boolean. Then x 'xnor' y is an element of Boolean.

In the sequel x, y, z, w are boolean sets.

The following propositions are true:

- (1) $true 'nand' x = \neg x$.
- (2) false 'nand' x = true.
- (3) x 'nand' $x = \neg x$ and $\neg (x '$ nand' x) = x.

- (4) $\neg (x ' \text{nand}' y) = x \land y.$
- (5) x' nand $\neg x = true$ and $\neg (x'$ nand $\neg x) = false$.
- (6) $x \text{ 'nand' } y \wedge z = \neg(x \wedge y \wedge z).$
- (7) x 'nand' $y \wedge z = x \wedge y '$ nand' z.
- (8) x 'nand' $(y \lor z) = \neg(x \land y) \land \neg(x \land z)$.
- (9) $x \text{ 'nand' } (y \oplus z) = x \land y \Leftrightarrow x \land z.$
- (10) true 'nor' x = false.
- (11) $false 'nor' x = \neg x.$
- (12) $x ' \operatorname{nor}' x = \neg x \text{ and } \neg (x ' \operatorname{nor}' x) = x.$
- (13) $\neg (x ' \text{nor' } y) = x \lor y.$
- (14) $x \text{ 'nor' } \neg x = \text{false and } \neg (x \text{ 'nor' } \neg x) = \text{true}.$
- (15) $x \text{ 'nor' } y \land z = \neg(x \lor y) \lor \neg(x \lor z).$
- (16) $x \text{ 'nor' } (y \lor z) = \neg (x \lor y \lor z).$
- (17) true 'xnor' x = x.
- (18) $false 'xnor' x = \neg x.$
- (19) $x' \operatorname{xnor}' x = true \text{ and } \neg (x' \operatorname{xnor}' x) = false.$
- (20) $\neg (x ' \operatorname{xnor}' y) = x \oplus y.$
- (21) $x' \operatorname{xnor}' \neg x = false \text{ and } \neg (x' \operatorname{xnor}' \neg x) = true.$
- (22) $x \in y \Rightarrow z \text{ iff } x \land y \in z.$
- (23) $x \Leftrightarrow y = (x \Rightarrow y) \land (y \Rightarrow x).$
- (24) $x \Leftrightarrow y = true \text{ iff } x \Rightarrow y = true \text{ and } y \Rightarrow x = true.$
- (25) If $x \Rightarrow y = true$ and $y \Rightarrow x = true$, then x = y.
- (26) If $x \Rightarrow y = true$ and $y \Rightarrow z = true$, then $x \Rightarrow z = true$.
- (27) If $x \Leftrightarrow y = true$ and $y \Leftrightarrow z = true$, then $x \Leftrightarrow z = true$.
- $(28) \quad x \Rightarrow y = \neg y \Rightarrow \neg x.$
- $(29) \quad x \Leftrightarrow y = \neg x \Leftrightarrow \neg y.$
- (30) If $x \Leftrightarrow y = true$ and $z \Leftrightarrow w = true$, then $x \wedge z \Leftrightarrow y \wedge w = true$.
- (31) If $x \Leftrightarrow y = true$ and $z \Leftrightarrow w = true$, then $x \Rightarrow z \Leftrightarrow y \Rightarrow w = true$.
- (32) If $x \Leftrightarrow y = true$ and $z \Leftrightarrow w = true$, then $x \lor z \Leftrightarrow y \lor w = true$.
- (33) If $x \Leftrightarrow y = true$ and $z \Leftrightarrow w = true$, then $x \Leftrightarrow z \Leftrightarrow y \Leftrightarrow w = true$.
- (34) If x = true and $x \Rightarrow y = true$, then y = true.
- (35) If y = true, then $x \Rightarrow y = true$.
- (36) If $\neg x = true$, then $x \Rightarrow y = true$.
- (37) $x \Rightarrow x = true$.
- (38) If $x \Rightarrow y = true$ and $x \Rightarrow \neg y = true$, then $\neg x = true$.
- (39) $\neg x \Rightarrow x \Rightarrow x = true$.
- (40) $x \Rightarrow y \Rightarrow \neg(y \land z) \Rightarrow \neg(x \land z) = true.$

- (41) $x \Rightarrow y \Rightarrow y \Rightarrow z \Rightarrow x \Rightarrow z = true$.
- (42) If $x \Rightarrow y = true$, then $y \Rightarrow z \Rightarrow x \Rightarrow z = true$.
- (43) $y \Rightarrow x \Rightarrow y = true$.
- (44) $x \Rightarrow y \Rightarrow z \Rightarrow y \Rightarrow z = true$.
- (45) $y \Rightarrow y \Rightarrow x \Rightarrow x = true$.
- $(46) \quad z \Rightarrow y \Rightarrow x \Rightarrow y \Rightarrow z \Rightarrow x = true.$
- $(47) \quad y \Rightarrow z \Rightarrow x \Rightarrow y \Rightarrow x \Rightarrow z = true.$
- (48) $y \Rightarrow y \Rightarrow z \Rightarrow y \Rightarrow z = true$.
- (49) $x \Rightarrow y \Rightarrow z \Rightarrow x \Rightarrow y \Rightarrow x \Rightarrow z = true$.
- (50) If x = true, then $x \Rightarrow y \Rightarrow y = true$.
- (51) If $z \Rightarrow y \Rightarrow x = true$, then $y \Rightarrow z \Rightarrow x = true$.
- (52) If $z \Rightarrow y \Rightarrow x = true$ and y = true, then $z \Rightarrow x = true$.
- (53) If $z \Rightarrow y \Rightarrow x = true$ and y = true and z = true, then x = true.
- (54) If $y \Rightarrow y \Rightarrow z = true$, then $y \Rightarrow z = true$.
- (55) If $x \Rightarrow y \Rightarrow z = true$, then $x \Rightarrow y \Rightarrow x \Rightarrow z = true$.

ACKNOWLEDGMENTS

This research was partially supported by the research funds of the University of Matsumoto.

REFERENCES

- [1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [3] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [4] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737, 1990.

Received August 23, 2003