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Summary. In this paper, we develop intuitionistic propositional calculus
IPC in the extended language with single modal operator. The formulation that
we adopt in this paper is very useful not only to formalize the calculus but also to
do a number of logics with essentially propositional character. In addition, it is
much simpler than the past formalization for modal logic. In the first section, we
give the mentioned formulation which the author heavily owes to the formalism
of Adam Grabowski’s [4]. After the theoretical development of the logic, we prove
a number of valid formulas of IPC in the sections 2—4. The last two sections are
devoted to present classical propositional calculus and modal calculus S4 in our
framework, as a preparation for future study. In the forthcoming Part II of this
paper, we shall prove, among others, a number of intuitionistically valid formulas
with negation.

MML Identifier: INTPRO_1.

The articles [6], [7], [5], [8], [3], [1], and [2] provide the notation and terminology
for this paper.

1. INTUITIONISTIC PROPOSITIONAL CALcULUS IPC IN THE EXTENDED
LANGUAGE WITH MODAL OPERATOR

Let E be a set. We say that £ has FALSUM if and only if:
(Def. 1) (0) € E.
Let E be a set. We say that E has intuitionistic implication if and only if:
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(Def. 2) For all finite sequences p, g such that p € E and ¢ € E holds (1) "p~q €
E.

Let E be a set. We say that E has intuitionistic conjunction if and only if:

(Def. 3) For all finite sequences p, g such that p € F and ¢ € E holds (2) "p~q €
E.

Let E be a set. We say that E has intuitionistic disjunction if and only if:

(Def. 4) For all finite sequences p, g such that p € F and ¢ € E holds (3) "p~q €
E.

Let E be a set. We say that F has intuitionistic propositional variables if
and only if:

(Def. 5)  For every natural number n holds (5+2-n) € E.

Let E be a set. We say that E has intuitionistic modal operator if and only
if:

(Def. 6) For every finite sequence p such that p € E holds (6) "p € E.

Let E be a set. We say that E is MC-closed if and only if the conditions
(Def. 7) are satisfied.

(Def. 7)(i) E C N* and
(il) £ has FALSUM, intuitionistic implication, intuitionistic conjunction,
intuitionistic disjunction, intuitionistic propositional variables, and intu-
itionistic modal operator.

One can check that every set which is MC-closed is also non empty and
has FALSUM, intuitionistic implication, intuitionistic conjunction, intuitioni-
stic disjunction, intuitionistic propositional variables, and intuitionistic modal
operator and every subset of N* which has FALSUM, intuitionistic implication,
intuitionistic conjunction, intuitionistic disjunction, intuitionistic propositional
variables, and intuitionistic modal operator is also MC-closed.

The set MC-wff is defined by:

(Def. 8) MC-wif is MC-closed and for every set E such that E is MC-closed holds
MC-wif C E.
One can verify that MC-wff is MC-closed.
Let us note that there exists a set which is MC-closed and non empty.

One can verify that every element of MC-wif is relation-like and function-
like.

Let us note that every element of MC-wff is finite sequence-like.
A MC-formula is an element of MC-wff.
The MC-formula FALSUM is defined as follows:
(Def. 9) FALSUM = (0).
Let p, g be elements of MC-wff. The functor p = ¢ yields a MC-formula and is
defined as follows:
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(Def. 10) p=q=(1)"p~q.
The functor p A q yields a MC-formula and is defined as follows:
(Def. 11) pAg=(2)"p " q.
The functor p V g yielding a MC-formula is defined by:
(Def. 12) pVvg=(3)"p~gq.
Let p be an element of MC-wff. The functor Nes(p) yielding a MC-formula
is defined by:
(Def. 13) Nes(p) = (6) " p.
We use the following convention: T, X, Y denote subsets of MC-wff and p,
q, r, s denote elements of MC-wff.

Let T be a subset of MC-wff. We say that T is IPC theory if and only if the
condition (Def. 14) is satisfied.

(Def. 14) Let p, q, r be elements of MC-wff. Then p = (¢ = p) € T and (p =
(g=7)=((p=q9=@p=r)eTandp\¢q=>peT andpAq=q€T
and p = (¢ =pAqg €T andp=pVgeTand g = pVqgeT and
p=r)=(¢g=71)=(pVqg=r)) €T and FALSUM = p € T and if
peT and p=qeT, thenqeT.

Let us consider X. The functor CnIPC(X) yielding a subset of MC-wff is
defined as follows:

(Def. 15) r € CnIPC(X) iff for every T such that T is IPC theory and X C T
holds r € T

The subset IPC-Taut of MC-wil is defined as follows:
(Def. 16) IPC-Taut = CnIPC(Dnc-wit)-

Let p be an element of MC-wff. The functor neg(p) yields a MC-formula and
is defined as follows:

(Def. 17) neg(p) = p = FALSUM.
The MC-formula IVERUM is defined by:
(Def. 18) IVERUM = FALSUM = FALSUM.

The following propositions are true:

(1) p= (¢ =p) € CnlPC(X).

(2) (p=(@=r)=(p=q9=(@=r)) € CnlPCX).
(3) pAg=pe CnlPC(X).

(4) pAg= qe CnlPC(X).

(5) p=(¢=pANgq) € CnlPC(X).

(6) p=pVqe CnlPC(X).

(7) q¢=pVqe CnlPC(X).

8) (p=r)=((g=r)=(pPVg=r)) € CnlPC(X).
(9) FALSUM = p € CnIPC(X).
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(10) If p € CnIPC(X) and p = ¢ € CnIPC(X), then ¢ € CnIPC(X).
(11) 1If T'is IPC theory and X C T, then CnIPC(X) C T.

(12) X C CnIPC(X).

(13) If X CY, then CnIPC(X) C CnIPC(Y).

(14) CnIPC(CnIPC(X)) = CnIPC(X).

Let X be a subset of MC-wif. Observe that CnIPC(X) is IPC theory.
The following propositions are true:

(15) T is IPC theory iff CnIPC(T') = T.
(16) If T is IPC theory, then IPC-Taut C 7.
One can verify that IPC-Taut is IPC theory.

2. FOrRMULAS PROVABLE IN IPC: IMPLICATION

We now state a number of propositions:

(17) p=p € IPC-Taut.

(18) 1If g € IPC-Taut, then p = ¢ € IPC-Taut .

(19) IVERUM € IPC-Taut.

(20) (p=q) = (p=p) € IPC-Taut.

(21) (¢=p) = (p=p) € IPC-Taut.

(22) (g=r)=(p=q) = (p=r)) € IPC-Taut.

(23) If p= (¢ = r) € IPC-Taut, then ¢ = (p = r) € IPC-Taut .

(24) (p=¢q) = ((g=r)= (p=r)) € IPC-Taut.

(25) If p= q € IPC-Taut, then (¢ = r) = (p = r) € IPC-Taut.

(26) If p = g € IPC-Taut and g = r € IPC-Taut, then p = r € IPC-Taut .
27) p=(g=7r)=((s=¢ = (p=(s=1))) € IPC-Taut.

(28) ((p=q) =r)= (¢=r) € IPC-Taut.

29) (p=(¢g=7)) = (¢= (p=r)) € IPC-Taut.

(30) (p=(p=19q) = (p=q) € IPC-Taut.

(31) ¢= ((¢ = p) = p) € IPC-Taut .

(32) If s = (¢ = p) € IPC-Taut and ¢ € IPC-Taut, then s = p € IPC-Taut .

3. ForRMULAS PROVABLE IN IPC: CONJUNCTION

The following propositions are true:
(33) p=pApelIPC-Taut.
(34) pAq € IPC-Taut iff p € IPC-Taut and ¢ € IPC-Taut .
(35) pAq e IPC-Taut iff ¢ A p € IPC-Taut.
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(pAg=r1)= (p= (¢=1r)) € IPC-Taut.
(p=(¢g=7))= (pAqg=r) € IPC-Taut.
(r=p) = ((r=q) = (=pAq)) € IPC-Taut.
(p=q) Ap= q € IPC-Taut.
(p=q) ApAs= qecIPC-Taut.
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q=8)= (pAq=s) € IPC-Taut.
q=8)= (gAp=s) €IPC-Taut.
pAs=q)= (pAs=qAs)e€IPC-Taut.
p=q)= (pAs= qAs)e€IPC-Taut.
p=q) AN(pAs)=qAseclIPC-Taut.
pAqg= qgApelIPC-Taut.
(p=q)AN(pAs)=sAqeIPC-Taut.
(p=q) = (pAs=sAq) € IPC-Taut.
(p=q) = (s\p=sAq) € IPC-Taut.
pA(sANq)=pA(¢gAs)elIPC-Taut.
(p=q¢)AN(p=5)= (p=qAs)cIPC-Taut.
pAgAs=pA(qAs)eIPC-Taut.
pA(gAs)=pAgAselIPC-Taut.
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4. FORMULAS PROVABLE IN [PC: DISJUNCTION

We now state a number of propositions:

pV p=pelPC-Taut.

If p € IPC-Taut or ¢ € IPC-Taut, then p Vv q € IPC-Taut.
pVqg=qVpéelIPC-Taut.

pV q € IPC-Taut iff ¢ V p € IPC-Taut .

(p=9q) = (p=qVs) €IPC-Taut.

(p=q) = (p=sVq) € IPC-Taut.

(p=q) = (pVs=qVs)€IPC-Taut.

If p = q € IPC-Taut, then pV s = ¢V s € IPC-Taut.
(p=q) = (sVp=sVq) € IPC-Taut.

If p = q € IPC-Taut, then sV p = sV g € IPC-Taut.
pV(gVs)=qV(pVs)elIPC-Taut.
pV(qVs)=pVqVselIPC-Taut.
pVqVs=pV(qVs)eIPC-Taut.
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5. CLASSICAL PROPOSITIONAL CaLcuLus CPC

We use the following convention: T, X, Y are subsets of MC-wif and p, ¢, r
are elements of MC-wiff.

Let T be a subset of MC-wff. We say that T" is CPC theory if and only if
the condition (Def. 19) is satisfied.

(Def. 19) Let p, ¢, r be elements of MC-wff. Then p = (¢ = p) € T and (p =
(g=r)=(p=qg)=pE=r)eTandpAg=peTandpAqg=qeT
and p= (¢q=pAq) €T andp=pVgeTand ¢ = pVqgeT and
p=r)=((¢g=r1r)= (PVgqg=r)) €T and FALSUM = p € T and
pV (p=FALSUM) € T and if p € T and p = q € T, then q € T.

One can prove the following proposition
(67) If T is CPC theory, then T is IPC theory.

Let us consider X. The functor CnCPC(X) yielding a subset of MC-wif is
defined by:

(Def. 20) r € CnCPC(X) iff for every T such that T is CPC theory and X C T
holds r € T.
The subset CPC-Taut of MC-wff is defined by:
(Def. 21) CPC-Taut = CnCPC(Dyic-wir)-
Next we state several propositions:
(68) CnIPC(X) C CnCPC(X).
(69) p=(¢=p) € CnCPC(X)and (p= (¢ =17)) = (p=9 ==
r)) € CnCPC(X) and pAg = p € CnCPC(X) and pAg = ¢ € CnCPC(X)
and p= (¢ = pAq) € CnCPC(X) and p = pV g € CnCPC(X) and ¢ =
pVq € CnCPC(X) and (p=17) = ((¢=1r) = (pVqg=r)) € CnCPC(X)
and FALSUM = p € CnCPC(X) and pV (p = FALSUM) € CnCPC(X).
(70) If p € CnCPC(X) and p = ¢ € CnCPC(X), then ¢ € CnCPC(X).
(71) If T is CPC theory and X C T, then CnCPC(X) C T.
(72) X C CnCPC(X).
(73) If X CY, then CnCPC(X) C CnCPC(Y).
(74) CnCPC(CnCPC(X)) = CnCPC(X).

Let X be a subset of MC-wff. Note that CnCPC(X) is CPC theory.
Next we state two propositions:

(75) T is CPC theory iff CnCPC(T) =T.
(76) If T is CPC theory, then CPC-Taut C 7.

Let us note that CPC-Taut is CPC theory.
The following proposition is true

(77) IPC-Taut C CPC-Taut.
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6. MopaL CALcULUS S4

We use the following convention: T', X, Y are subsets of MC-wff and p, ¢, r
are elements of MC-wif.

Let T be a subset of MC-wff. We say that T is S4 theory if and only if the
condition (Def. 22) is satisfied.

(Def. 22) Let p, g, r be elements of MC-wff. Then p = (¢ = p) € T and (p =
(¢g=r)=((p=q¢=@p=r)eTandpN\q=>peT and pAq=q€T
and p= (¢g=pAqg €T andp=pVgeTand g = pVqgeT and
p=r)=((¢g=7r)=(pVg=r)) €T and FALSUM = p € T and
pV (p = FALSUM) € T and Nes(p = ¢) = (Nes(p) = Nes(q)) € T
and Nes(p) = p € T and Nes(p) = Nes(Nes(p)) € T and if p € T and
p=q €T, then g € T and if p € T, then Nes(p) € T.

Next we state two propositions:
(78) 1If T is S4 theory, then T is CPC theory.
(79) If T is S4 theory, then T is IPC theory.
Let us consider X. The functor CnS4(X) yielding a subset of MC-wff is
defined by:

(Def. 23) r € CnS4(X) iff for every T such that T is S4 theory and X C T holds

refl.
The subset S4-Taut of MC-wff is defined by:
(Def. 24)  S4-Taut = CnS4(Dyic-wer)-
Next we state a number of propositions:
(80) CnCPC(X) C CnS4(X).
(81) CnIPC(X) C CnS4(X).
82) p=(¢=p) € CnS4(X) and (p = (¢ =171) = (p=49 = =
r)) € CnS4(X) and pAqg = p € CnS4(X) and p A g = ¢ € CnS4(X)
and p = (¢ = pAq) € CnS4(X) and p = pV g € CnS4(X) and q =
pVqgeCnS4(X)and (p=r)= ((¢=r)= (pVg=r)) € CnS4(X) and
FALSUM = p € CnS4(X) and p V (p = FALSUM) € CnS4(X).

(83) If p € CnS4(X) and p = ¢g € CnS4(X), then g € CnS4(X).
(84) Nes(p = ¢) = (Nes(p) = Nes(q)) € CnS4(X).

(85) Nes(p) = p € CnS4(X).

(86) Nes(p) = Nes(Nes(p)) € CnS4(X).

(87) If p € CnS4(X), then Nes(p) € CnS4(X).

(88) If T'is S4 theory and X C T, then CnS4(X) C T.

(89) X C CnS4(X).

(90) If X CY, then CnS4(X) C CnS4(Y).

(91) CnS4(CnS4(X)) = CnS4(X).
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Let X be a subset of MC-wff. One can verify that CnS4(X) is S4 theory.
Next we state two propositions:

(92) T is S4 theory iff CnS4(T') = T.

(93) If T is S4 theory, then S4-Taut C T.

Let us note that S4-Taut is S4 theory.
The following propositions are true:

(94) CPC-Taut C S4-Taut .
(95) IPC-Taut C S4-Taut .
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