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Summary. We continue the Mizar formalization of Gröbner bases follo-
wing [8]. In this article we prove a number of characterizations of Gröbner bases

among them that Gröbner bases are convergent rewriting systems. We also show

the existence and uniqueness of reduced Gröbner bases.

MML Identifier: GROEB 1.

The papers [24], [31], [33], [32], [10], [5], [17], [29], [28], [11], [13], [4], [2], [30],

[9], [7], [15], [16], [12], [20], [19], [25], [27], [18], [1], [6], [14], [22], [26], [23], [3],

and [21] provide the terminology and notation for this paper.

1. Preliminaries

Let n be an ordinal number, let L be a right zeroed add-associative right com-

plementable unital distributive non trivial double loop structure, and let p be a

polynomial of n, L. Then {p} is a non empty finite subset of Polynom-Ring(n,L).

We now state several propositions:

(1) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

and f , p, g be polynomials of n, L. Suppose f reduces to g, p, T . Then

there exists a monomial m of n, L such that g = f −m ∗ p.

(2) Let n be an ordinal number, T be an admissible connected term order of

n, L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, and f , p, g be polynomials of n, L. Suppose
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f reduces to g, p, T . Then there exists a monomial m of n, L such that

g = f−m∗p and HT(m∗p, T ) /∈ Support g and HT(m∗p, T ) ¬T HT(f, T ).

(3) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive well unital distributive field-like non trivial double loop structure, f ,

g be polynomials of n, L, and P , Q be subsets of Polynom-Ring(n, L). If

P ⊆ Q, then if f reduces to g, P , T , then f reduces to g, Q, T .

(4) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative as-

sociative well unital distributive field-like non trivial double loop struc-

ture, and P , Q be subsets of Polynom-Ring(n,L). If P ⊆ Q, then

PolyRedRel(P, T ) ⊆ PolyRedRel(Q,T ).

(5) Let n be an ordinal number, L be a right zeroed add-associative right

complementable non empty double loop structure, and p be a polynomial

of n, L. Then Support(−p) = Support p.

(6) Let n be an ordinal number, T be a connected term order of n, L be a

right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, and p be a polynomial of n, L.

Then HT(−p, T ) = HT(p, T ).

(7) Let n be an ordinal number, T be an admissible connected term or-

der of n, L be a right zeroed add-associative right complementable unital

distributive non trivial non empty double loop structure, and p, q be po-

lynomials of n, L. Then HT(p− q, T ) ¬T maxT (HT(p, T ),HT(q, T )).

(8) Let n be an ordinal number, T be an admissible connected term order

of n, L be an add-associative right complementable right zeroed commu-

tative associative well unital distributive field-like non trivial double loop

structure, and p, q be polynomials of n, L. If Support q ⊆ Support p, then

q ¬T p.

(9) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive field-like non degenerated non empty

double loop structure, and f , p be non-zero polynomials of n, L. If f is

reducible wrt p, T , then HT(p, T ) ¬T HT(f, T ).

2. Characterization of Gröbner Bases

Next we state two propositions:

(10) Let n be a natural number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non trivial double
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loop structure, and p be a polynomial of n, L. Then PolyRedRel({p}, T )

is locally-confluent.

(11) Let n be a natural number, T be a connected admissible term order of n,

L be an Abelian add-associative right complementable right zeroed com-

mutative associative well unital distributive field-like non degenerated non

empty double loop structure, and P be a subset of Polynom-Ring(n,L).

Given a polynomial p of n, L such that p ∈ P and P–ideal = {p}–ideal.

Then PolyRedRel(P, T ) is locally-confluent.

Let n be an ordinal number, let T be a connected term order of n, let L be a

right zeroed add-associative right complementable unital distributive non trivial

non empty double loop structure, and let P be a subset of Polynom-Ring(n,L).

The functor HT(P, T ) yields a subset of Bagsn and is defined as follows:

(Def. 1) HT(P, T ) = {HT(p, T ); p ranges over polynomials of n, L: p ∈ P ∧ p 6=

0nL}.

Let n be an ordinal number and let S be a subset of Bagsn. The functor

multiples(S) yields a subset of Bagsn and is defined by:

(Def. 2) multiples(S) = {b; b ranges over elements of Bagsn :
∨

b′ :bag of n (b′ ∈

S ∧ b′ | b)}.

We now state several propositions:

(12) Let n be a natural number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, and P be a subset of Polynom-Ring(n,L). If

PolyRedRel(P, T ) is locally-confluent, then PolyRedRel(P, T ) is confluent.

(13) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

and P be a subset of Polynom-Ring(n,L). If PolyRedRel(P, T ) is conflu-

ent, then PolyRedRel(P, T ) has unique normal form property.

(14) Let n be a natural number, T be a connected admissible term or-

der of n, L be an add-associative right complementable right zeroed

commutative associative well unital distributive Abelian field-like non

degenerated non empty double loop structure, and P be a subset of

Polynom-Ring(n,L). Suppose PolyRedRel(P, T ) has unique normal form

property. Then PolyRedRel(P, T ) has Church-Rosser property.

(15) Let n be a natural number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed com-

mutative associative well unital distributive Abelian field-like non de-

generated non empty double loop structure, and P be a non empty

subset of Polynom-Ring(n,L). Suppose PolyRedRel(P, T ) has Church-
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Rosser property. Let f be a polynomial of n, L. If f ∈ P–ideal, then

PolyRedRel(P, T ) reduces f to 0nL.

(16) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive well unital distributive field-like non trivial double loop structure, and

P be a subset of Polynom-Ring(n,L). Suppose that for every polynomial

f of n, L such that f ∈ P–ideal holds PolyRedRel(P, T ) reduces f to 0nL.

Let f be a non-zero polynomial of n, L. If f ∈ P–ideal, then f is reducible

wrt P , T .

(17) Let n be a natural number, T be an admissible connected term order of

n, L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, and P be a subset of Polynom-Ring(n,L).

Suppose that for every non-zero polynomial f of n, L such that f ∈

P–ideal holds f is reducible wrt P , T . Let f be a non-zero polynomial of

n, L. If f ∈ P–ideal, then f is top reducible wrt P , T .

(18) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

and P be a subset of Polynom-Ring(n,L). Suppose that for every non-zero

polynomial f of n, L such that f ∈ P–ideal holds f is top reducible wrt

P , T . Let b be a bag of n. If b ∈ HT(P–ideal, T ), then there exists a bag

b′ of n such that b′ ∈ HT(P, T ) and b′ | b.

(19) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

and P be a subset of Polynom-Ring(n,L). Suppose that for every bag b

of n such that b ∈ HT(P–ideal, T ) there exists a bag b′ of n such that

b′ ∈ HT(P, T ) and b′ | b. Then HT(P–ideal, T ) ⊆ multiples(HT(P, T )).

(20) Let n be a natural number, T be a connected admissible term order of n,

L be an Abelian add-associative right complementable right zeroed com-

mutative associative well unital distributive field-like non degenerated non

empty double loop structure, and P be a subset of Polynom-Ring(n,L). If

HT(P–ideal, T ) ⊆ multiples(HT(P, T )), then PolyRedRel(P, T ) is locally-

confluent.

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let G be

a subset of Polynom-Ring(n,L). We say that G is a Groebner basis wrt T if and

only if:

(Def. 3) PolyRedRel(G, T ) is locally-confluent.
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Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let G, I

be subsets of Polynom-Ring(n,L). We say that G is a Groebner basis of I, T if

and only if:

(Def. 4) G–ideal = I and PolyRedRel(G,T ) is locally-confluent.

One can prove the following propositions:

(21) Let n be a natural number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right ze-

roed commutative associative well unital distributive field-like non de-

generated non empty double loop structure, and G, P be non empty

subsets of Polynom-Ring(n,L). If G is a Groebner basis of P , T , then

PolyRedRel(G, T ) is a completion of PolyRedRel(P, T ).

(22) Let n be a natural number, T be a connected admissible term order of n,

L be an Abelian add-associative right complementable right zeroed com-

mutative associative well unital distributive field-like non degenerated non

empty double loop structure, p, q be elements of Polynom-Ring(n,L), and

G be a non empty subset of Polynom-Ring(n,L). Suppose G is a Groebner

basis wrt T . Then p ≡ q(modG–ideal) if and only if nfPolyRedRel(G,T )(p) =

nfPolyRedRel(G,T )(q).

(23) Let n be a natural number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, f be a polynomial of n, L, and P be a non

empty subset of Polynom-Ring(n,L). Suppose P is a Groebner basis wrt

T . Then f ∈ P–ideal if and only if PolyRedRel(P, T ) reduces f to 0nL.

(24) Let n be a natural number, T be a connected admissible term order of

n, L be an add-associative right complementable right zeroed commuta-

tive associative well unital distributive Abelian field-like non degenerated

non empty double loop structure, I be a subset of Polynom-Ring(n,L),

and G be a non empty subset of Polynom-Ring(n,L). Suppose G is a

Groebner basis of I, T . Let f be a polynomial of n, L. If f ∈ I, then

PolyRedRel(G, T ) reduces f to 0nL.

(25) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive well unital distributive field-like non trivial double loop structure, and

G, I be subsets of Polynom-Ring(n,L). Suppose that for every polynomial

f of n, L such that f ∈ I holds PolyRedRel(G,T ) reduces f to 0nL. Let

f be a non-zero polynomial of n, L. If f ∈ I, then f is reducible wrt G,

T .

(26) Let n be a natural number, T be an admissible connected term order of
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n, L be an add-associative right complementable right zeroed commuta-

tive associative well unital distributive Abelian field-like non degenerated

non empty double loop structure, I be an add closed left ideal subset of

Polynom-Ring(n, L), and G be a subset of Polynom-Ring(n,L). Suppose

G ⊆ I. Suppose that for every non-zero polynomial f of n, L such that

f ∈ I holds f is reducible wrt G, T . Let f be a non-zero polynomial of n,

L. If f ∈ I, then f is top reducible wrt G, T .

(27) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive well unital distributive field-like non trivial double loop structure, and

G, I be subsets of Polynom-Ring(n,L). Suppose that for every non-zero

polynomial f of n, L such that f ∈ I holds f is top reducible wrt G, T .

Let b be a bag of n. If b ∈ HT(I, T ), then there exists a bag b′ of n such

that b′ ∈ HT(G,T ) and b′ | b.

(28) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive well unital distributive field-like non trivial double loop structure, and

G, I be subsets of Polynom-Ring(n,L). Suppose that for every bag b of n

such that b ∈ HT(I, T ) there exists a bag b′ of n such that b′ ∈ HT(G,T )

and b′ | b. Then HT(I, T ) ⊆ multiples(HT(G,T )).

(29) Let n be a natural number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenera-

ted non empty double loop structure, I be an add closed left ideal non

empty subset of Polynom-Ring(n, L), and G be a non empty subset of

Polynom-Ring(n, L). If G ⊆ I, then if HT(I, T ) ⊆ multiples(HT(G, T )),

then G is a Groebner basis of I, T .

3. Existence of Gröbner Bases

Next we state four propositions:

(30) Let n be a natural number, T be a connected admissible term order of

n, and L be an add-associative right complementable right zeroed com-

mutative associative well unital distributive Abelian field-like non trivial

double loop structure. Then {0nL} is a Groebner basis of {0nL}, T .

(31) Let n be a natural number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non trivial double

loop structure, and p be a polynomial of n, L. Then {p} is a Groebner

basis of {p}–ideal, T .
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(32) Let T be an admissible connected term order of ∅, L be an add-

associative right complementable right zeroed commutative associative

well unital distributive Abelian field-like non degenerated non empty do-

uble loop structure, I be an add closed left ideal non empty subset of

Polynom-Ring(∅, L), and P be a non empty subset of Polynom-Ring(∅, L).

If P ⊆ I and P 6= {0∅L}, then P is a Groebner basis of I, T .

(33) Let n be a non empty ordinal number, T be an admissible connected

term order of n, and L be an add-associative right complementable right

zeroed commutative associative well unital distributive field-like non de-

generated non empty double loop structure. Then there exists a subset P

of Polynom-Ring(n,L) such that P is not a Groebner basis wrt T .

Let n be an ordinal number. The functor DivOrder(n) yields an order in

Bagsn and is defined by:

(Def. 5) For all bags b1, b2 of n holds 〈〈b1, b2〉〉 ∈ DivOrder(n) iff b1 | b2.

Let n be a natural number. One can check that 〈Bagsn,DivOrder(n)〉 is

Dickson.

The following propositions are true:

(34) For every natural number n and for every subset N of the carrier of

〈Bagsn,DivOrder(n)〉 holds there exists a finite subset of Bagsn which is

Dickson basis of N , 〈Bagsn,DivOrder(n)〉.

(35) Let n be a natural number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, and I be an add closed left ideal non

empty subset of Polynom-Ring(n, L). Then there exists a finite subset of

Polynom-Ring(n,L) which is a Groebner basis of I, T .

(36) Let n be a natural number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, and I be an add closed left ideal non

empty subset of Polynom-Ring(n,L). Suppose I 6= {0nL}. Then there

exists a finite subset G of Polynom-Ring(n,L) such that G is a Groebner

basis of I, T and 0nL /∈ G.

Let n be an ordinal number, let T be a connected term order of n, let L be

a non empty multiplicative loop with zero structure, and let p be a polynomial

of n, L. We say that p is monic wrt T if and only if:

(Def. 6) HC(p, T ) = 1L.

Let n be an ordinal number, let T be a connected term order of n, let L be a

right zeroed add-associative right complementable commutative associative well

unital distributive field-like non trivial non empty double loop structure, and
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let P be a subset of Polynom-Ring(n,L). We say that P is reduced wrt T if and

only if:

(Def. 7) For every polynomial p of n, L such that p ∈ P holds p is monic wrt T

and irreducible wrt P \ {p}, T .

We introduce P is autoreduced wrt T as a synonym of P is reduced wrt T .

Next we state four propositions:

(37) Let n be an ordinal number, T be an admissible connected term order of

n, L be an add-associative right complementable right zeroed commuta-

tive associative well unital distributive Abelian field-like non degenerated

non empty double loop structure, I be an add closed left ideal subset of

Polynom-Ring(n, L), m be a monomial of n, L, and f , g be polynomials

of n, L. Suppose f ∈ I and g ∈ I and HM(f, T ) = m and HM(g, T ) = m.

Suppose that

(i) it is not true that there exists a polynomial p of n, L such that p ∈ I

and p <T f and HM(p, T ) = m, and

(ii) it is not true that there exists a polynomial p of n, L such that p ∈ I

and p <T g and HM(p, T ) = m.

Then f = g.

(38) Let n be a natural number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, I be an add closed left ideal non empty

subset of Polynom-Ring(n,L), G be a subset of Polynom-Ring(n,L), p be

a polynomial of n, L, and q be a non-zero polynomial of n, L. Suppose

p ∈ G and q ∈ G and p 6= q and HT(q, T ) | HT(p, T ). If G is a Groebner

basis of I, T , then G \ {p} is a Groebner basis of I, T .

(39) Let n be a natural number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, and I be an add closed left ideal non

empty subset of Polynom-Ring(n,L). If I 6= {0nL}, then there exists a

finite subset G of Polynom-Ring(n,L) which is a Groebner basis of I, T

and reduced wrt T .

(40) Let n be a natural number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, I be an add closed left ideal non empty

subset of Polynom-Ring(n,L), and G1, G2 be non empty finite subsets of

Polynom-Ring(n, L). Suppose G1 is a Groebner basis of I, T and reduced

wrt T and G2 is a Groebner basis of I, T and reduced wrt T . Then

G1 = G2.



characterization and existence of . . . 301

References

[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized
Mathematics, 9(3):565–582, 2001.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[4] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.

[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.

[6] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.

[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[8] Thomas Becker and Volker Weispfenning. Gröbner Bases: A Computational Approach to
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