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Summary. This work is the continuation of formalization of [10]. Items
from 2.1 to 2.8 of Chapter 4 are proved.
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The papers [16], [7], [19], [15], [4], [17], [18], [14], [1], [20], [22], [21], [5], [6], [2],

[12], [13], [23], [3], [8], [11], and [9] provide the notation and terminology for this

paper.

1. Preliminaries

Let X be a set. One can verify that there exists a subset of X which is

trivial.

Let X be a trivial set. Note that every subset of X is trivial.

Let L be a 1-sorted structure. One can check that there exists a subset of L

which is trivial.

Let L be a relational structure. Note that there exists a subset of L which

is trivial.

Let L be a non empty 1-sorted structure. One can check that there exists a

subset of L which is non empty and trivial.

Let L be a non empty relational structure. Note that there exists a subset

of L which is non empty and trivial.

Next we state three propositions:

(1) For every set X holds ⊆X is reflexive in X.

(2) For every set X holds ⊆X is transitive in X.

(3) For every set X holds ⊆X is antisymmetric in X.
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2. Main Part

Let L be a relational structure. Observe that there exists a binary relation

on L which is auxiliary(i).

Let L be a transitive relational structure. Observe that there exists a binary

relation on L which is auxiliary(i) and auxiliary(ii).

Let L be an antisymmetric relational structure with l.u.b.’s. Observe that

there exists a binary relation on L which is auxiliary(iii).

Let L be a non empty lower-bounded antisymmetric relational structure.

Note that there exists a binary relation on L which is auxiliary(iv).

Let L be a non empty relational structure and let R be a binary relation on

L. We say that R is extra-order if and only if:

(Def. 1) R is auxiliary(i), auxiliary(ii), and auxiliary(iv).

Let L be a non empty relational structure. One can verify that every binary

relation on L which is extra-order is also auxiliary(i), auxiliary(ii), and auxi-

liary(iv) and every binary relation on L which is auxiliary(i), auxiliary(ii), and

auxiliary(iv) is also extra-order.

Let L be a non empty relational structure. One can verify that every binary

relation on L which is extra-order and auxiliary(iii) is also auxiliary and every

binary relation on L which is auxiliary is also extra-order.

Let L be a lower-bounded antisymmetric transitive non empty relational

structure. One can check that there exists a binary relation on L which is extra-

order.

Let L be a lower-bounded poset with l.u.b.’s and let R be an auxiliary(ii)

binary relation on L. The functor R−LowerMap yields a map from L into

〈LOWERL,⊆〉 and is defined as follows:

(Def. 2) For every element x of the carrier of L holds R−LowerMap(x) = ↓↓Rx.

Let L be a lower-bounded poset with l.u.b.’s and let R be an auxiliary(ii)

binary relation on L. One can verify that R−LowerMap is monotone.

Let L be a 1-sorted structure and let R be a binary relation on the carrier

of L. A subset of L is called a strict chain of R if:

(Def. 3) For all sets x, y such that x ∈ it and y ∈ it holds 〈〈x, y〉〉 ∈ R or x = y or

〈〈y, x〉〉 ∈ R.

The following proposition is true

(4) Let L be a 1-sorted structure, C be a trivial subset of L, and R be a

binary relation on the carrier of L. Then C is a strict chain of R.

Let L be a non empty 1-sorted structure and let R be a binary relation on

the carrier of L. One can check that there exists a strict chain of R which is non

empty and trivial.

One can prove the following four propositions:
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(5) Let L be an antisymmetric relational structure, R be an auxiliary(i)

binary relation on L, C be a strict chain of R, and x, y be elements of the

carrier of L. If x ∈ C and y ∈ C and x < y, then 〈〈x, y〉〉 ∈ R.

(6) Let L be an antisymmetric relational structure, R be an auxiliary(i)

binary relation on L, and x, y be elements of the carrier of L. If 〈〈x,

y〉〉 ∈ R and 〈〈y, x〉〉 ∈ R, then x = y.

(7) Let L be a non empty lower-bounded antisymmetric relational structure,

x be an element of the carrier of L, and R be an auxiliary(iv) binary

relation on L. Then {⊥L, x} is a strict chain of R.

(8) Let L be a non empty lower-bounded antisymmetric relational structure,

R be an auxiliary(iv) binary relation on L, and C be a strict chain of R.

Then C ∪ {⊥L} is a strict chain of R.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,

and let C be a strict chain of R. We say that C is maximal if and only if:

(Def. 4) For every strict chain D of R such that C ⊆ D holds C = D.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,

and let C be a set. The functor StrictChains(R, C) is defined by:

(Def. 5) For every set x holds x ∈ StrictChains(R, C) iff x is a strict chain of R

and C ⊆ x.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,

and let C be a strict chain of R. Note that StrictChains(R, C) is non empty.

Let R be a binary relation and let X be a set. We introduce X is inductive

w.r.t. R as a synonym of X has the upper Zorn property w.r.t. R.

Next we state several propositions:

(9) Let L be a 1-sorted structure, R be a binary relation on the carrier of

L, and C be a strict chain of R. Then StrictChains(R,C) is inductive

w.r.t. ⊆StrictChains(R,C) and there exists a set D such that D is maximal in
⊆
StrictChains(R,C) and C ⊆ D.

(10) Let L be a non empty transitive relational structure, C be a non empty

subset of the carrier of L, and X be a subset of C. Suppose sup X exists

in L and
⊔

L X ∈ C. Then sup X exists in sub(C) and
⊔

L X =
⊔
sub(C) X.

(11) Let L be a non empty poset, R be an auxiliary(i) auxiliary(ii) binary

relation on L, C be a non empty strict chain of R, and X be a subset of

C. If sup X exists in L and C is maximal, then sup X exists in sub(C).

(12) Let L be a non empty poset, R be an auxiliary(i) auxiliary(ii) binary

relation on L, C be a non empty strict chain of R, and X be a subset

of C. Suppose inf ↑
⊔

L X ∩ C exists in L and sup X exists in L and C

is maximal. Then
⊔
sub(C) X = ⌈−⌉L(↑

⊔
L X ∩ C) and if

⊔
L X /∈ C, then

⊔
L X < ⌈−⌉L(↑

⊔
L X ∩ C).

(13) Let L be a complete non empty poset, R be an auxiliary(i) auxiliary(ii)
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binary relation on L, and C be a non empty strict chain of R. If C is

maximal, then sub(C) is complete.

(14) Let L be a non empty lower-bounded antisymmetric relational structure,

R be an auxiliary(iv) binary relation on L, and C be a strict chain of R.

If C is maximal, then ⊥L ∈ C.

(15) Let L be a non empty upper-bounded poset, R be an auxiliary(ii) binary

relation on L, C be a strict chain of R, and m be an element of the carrier

of L. Suppose C is maximal and m is a maximum of C and 〈〈m, ⊤L〉〉 ∈ R.

Then 〈〈⊤L, ⊤L〉〉 ∈ R and m = ⊤L.

Let L be a relational structure, let C be a set, and let R be a binary relation

on the carrier of L. We say that R satisfies SIC on C if and only if the condition

(Def. 6) is satisfied.

(Def. 6) Let x, z be elements of the carrier of L. Suppose x ∈ C and z ∈ C and

〈〈x, z〉〉 ∈ R and x 6= z. Then there exists an element y of L such that y ∈ C

and 〈〈x, y〉〉 ∈ R and 〈〈y, z〉〉 ∈ R and x 6= y.

Let L be a relational structure, let R be a binary relation on the carrier of

L, and let C be a strict chain of R. We say that C satisfies SIC if and only if:

(Def. 7) R satisfies SIC on C.

We introduce C satisfies the interpolation property and C satisfies the interpo-

lation property as synonyms of C satisfies SIC.

The following proposition is true

(16) Let L be a relational structure, C be a set, and R be an auxiliary(i)

binary relation on L. Suppose R satisfies SIC on C. Let x, z be elements

of the carrier of L. Suppose x ∈ C and z ∈ C and 〈〈x, z〉〉 ∈ R and x 6= z.

Then there exists an element y of L such that y ∈ C and 〈〈x, y〉〉 ∈ R and

〈〈y, z〉〉 ∈ R and x < y.

Let L be a relational structure and let R be a binary relation on the carrier

of L. Note that every strict chain of R which is trivial satisfies also SIC.

Let L be a non empty relational structure and let R be a binary relation on

the carrier of L. One can check that there exists a strict chain of R which is non

empty and trivial.

Next we state the proposition

(17) Let L be a lower-bounded poset with l.u.b.’s, R be an auxiliary(i) au-

xiliary(ii) binary relation on L, and C be a strict chain of R. Suppose C

is maximal and R satisfies strong interpolation property. Then R satisfies

SIC on C.

Let R be a binary relation and let C, y be sets. The functor SetBelow(R, C, y)

is defined as follows:

(Def. 8) SetBelow(R,C, y) = R−1({y}) ∩ C.

The following proposition is true
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(18) For every binary relation R and for all sets C, x, y holds x ∈

SetBelow(R,C, y) iff 〈〈x, y〉〉 ∈ R and x ∈ C.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,

and let C, y be sets. Then SetBelow(R, C, y) is a subset of L.

Next we state three propositions:

(19) Let L be a relational structure, R be an auxiliary(i) binary relation

on L, C be a set, and y be an element of the carrier of L. Then

SetBelow(R,C, y) ¬ y.

(20) Let L be a reflexive transitive relational structure, R be an auxiliary(ii)

binary relation on L, C be a subset of the carrier of L, and x, y be elements

of the carrier of L. If x ¬ y, then SetBelow(R, C, x) ⊆ SetBelow(R, C, y).

(21) Let L be a relational structure, R be an auxiliary(i) binary relation on L,

C be a set, and x be an element of the carrier of L. If x ∈ C and 〈〈x, x〉〉 ∈ R

and sup SetBelow(R, C, x) exists in L, then x = sup SetBelow(R, C, x).

Let L be a relational structure and let C be a subset of L. We say that C is

sup-closed if and only if:

(Def. 9) For every subset X of C such that sup X exists in L holds
⊔

L X =
⊔
sub(C) X.

Next we state three propositions:

(22) Let L be a complete non empty poset,R be an extra-order binary relation

on L, C be a strict chain of R satisfying SIC, and p, q be elements of the

carrier of L. Suppose p ∈ C and q ∈ C and p < q. Then there exists an ele-

ment y of L such that p < y and 〈〈y, q〉〉 ∈ R and y = sup SetBelow(R, C, y).

(23) Let L be a lower-bounded non empty poset, R be an extra-order binary

relation on L, and C be a non empty strict chain of R. Suppose that

(i) C is sup-closed,

(ii) for every element c of the carrier of L such that c ∈ C holds sup

SetBelow(R,C, c) exists in L, and

(iii) R satisfies SIC on C.

Let c be an element of the carrier of L. If c ∈ C, then c =

sup SetBelow(R, C, c).

(24) Let L be a non empty reflexive antisymmetric relational structure, R

be an auxiliary(i) binary relation on L, and C be a strict chain of R.

Suppose that for every element c of the carrier of L such that c ∈ C holds

sup SetBelow(R,C, c) exists in L and c = sup SetBelow(R, C, c). Then R

satisfies SIC on C.

Let L be a non empty relational structure, let R be a binary relation on the

carrier of L, and let C be a set. The functor SupBelow(R, C) is defined by:

(Def. 10) For every set y holds y ∈ SupBelow(R,C) iff y = sup SetBelow(R, C, y).



194 artur korniłowicz

Let L be a non empty relational structure, let R be a binary relation on the

carrier of L, and let C be a set. Then SupBelow(R, C) is a subset of L.

One can prove the following propositions:

(25) Let L be a non empty reflexive transitive relational structure, R be an

auxiliary(i) auxiliary(ii) binary relation on L, and C be a strict chain of R.

Suppose that for every element c of L holds sup SetBelow(R, C, c) exists

in L. Then SupBelow(R,C) is a strict chain of R.

(26) Let L be a non empty poset, R be an auxiliary(i) auxiliary(ii) binary rela-

tion on L, and C be a subset of the carrier of L. Suppose that for every ele-

ment c of L holds sup SetBelow(R, C, c) exists in L. Then SupBelow(R, C)

is sup-closed.

(27) Let L be a complete non empty poset,R be an extra-order binary relation

on L, C be a strict chain of R satisfying SIC, and d be an element of the

carrier of L. Suppose d ∈ SupBelow(R, C). Then d =
⊔

L{b; b ranges over

elements of the carrier of L: b ∈ SupBelow(R, C) ∧ 〈〈b, d〉〉 ∈ R}.

(28) Let L be a complete non empty poset,R be an extra-order binary relation

on L, and C be a strict chain of R satisfying SIC. Then R satisfies SIC on

SupBelow(R, C).

(29) Let L be a complete non empty poset,R be an extra-order binary relation

on L, C be a strict chain of R satisfying SIC, and a, b be elements of the

carrier of L. Suppose a ∈ C and b ∈ C and a < b. Then there exists an

element d of L such that d ∈ SupBelow(R,C) and a < d and 〈〈d, b〉〉 ∈ R.
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