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Summary. In [1] the pseudo-metric distmaxmin on compact subsets A and B

of a topological space generated from arbitrary metric space is defined. Using

this notion we define the Hausdorff distance (see e.g. [5]) of A and B as a maxi-

mum of the two pseudo-distances: from A to B and from B to A. We justify its

distance properties. At the end we define some special notions which enable to

apply the Hausdorff distance operator “HausDist” to the subsets of the Euclidean

topological space En

T .

MML Identifier: HAUSDORF.

The papers [16], [18], [15], [10], [17], [19], [3], [14], [6], [9], [8], [11], [2], [7], [4],

[1], [13], and [12] provide the terminology and notation for this paper.

1. Preliminaries

Let r be a real number. Then {r} is a subset of R.

Let M be a non empty metric space. One can verify that Mtop is T2.

Next we state a number of propositions:

(1) For all real numbers x, y such that x ­ 0 and y ­ 0 and max(x, y) = 0

holds x = 0.

(2) For every non empty metric space M and for every point x of M holds

(dist(x))(x) = 0.

(3) For every non empty metric space M and for every subset P of Mtop
and for every point x of M such that x ∈ P holds 0 ∈ (dist(x))◦P.
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(4) LetM be a non empty metric space, P be a subset ofMtop, x be a point

of M , and y be a real number. If y ∈ (dist(x))◦P, then y ­ 0.

(5) For every non empty metric space M and for every subset P of Mtop
and for every set x such that x ∈ P holds (distmin(P ))(x) = 0.

(6) Let M be a non empty metric space, p be a point of M , q be a point

of Mtop, and r be a real number. If p = q and r > 0, then Ball(p, r) is a

neighbourhood of q.

(7) Let M be a non empty metric space, A be a subset of Mtop, and p be a

point of M . Then p ∈ A if and only if for every real number r such that

r > 0 holds Ball(p, r) meets A.

(8) Let M be a non empty metric space, p be a point of M , and A be a

subset of Mtop. Then p ∈ A if and only if for every real number r such

that r > 0 there exists a point q of M such that q ∈ A and ρ(p, q) < r.

(9) Let M be a non empty metric space, P be a non empty subset of Mtop,

and x be a point of M . Then (distmin(P ))(x) = 0 if and only if for every

real number r such that r > 0 there exists a point p of M such that p ∈ P

and ρ(x, p) < r.

(10) Let M be a non empty metric space, P be a non empty subset of Mtop,

and x be a point of M . Then x ∈ P if and only if (distmin(P ))(x) = 0.

(11) Let M be a non empty metric space, P be a non empty closed subset of

Mtop, and x be a point ofM . Then x ∈ P if and only if (distmin(P ))(x) = 0.

(12) For every non empty subset A of the carrier of R
1 there exists a non

empty subset X of R such that A = X and inf A = infX.

(13) For every non empty subset A of the carrier of R
1 there exists a non

empty subset X of R such that A = X and supA = supX.

(14) Let M be a non empty metric space, P be a non empty subset of Mtop,

x be a point of M , and X be a subset of R. If X = (dist(x))◦P, then X is

lower bounded.

(15) Let M be a non empty metric space, P be a non empty subset of Mtop,

and x, y be points of M . If y ∈ P, then (distmin(P ))(x) ¬ ρ(x, y).

(16) Let M be a non empty metric space, P be a non empty subset of Mtop,

r be a real number, and x be a point of M . If for every point y of M such

that y ∈ P holds ρ(x, y) ­ r, then (distmin(P ))(x) ­ r.

(17) Let M be a non empty metric space, P be a non empty subset of Mtop,

and x, y be points ofM . Then (distmin(P ))(x) ¬ ρ(x, y)+(distmin(P ))(y).

(18) Let M be a non empty metric space, P be a subset of the carrier of

Mtop, and Q be a non empty subset of the carrier of M . If P = Q, then

Mtop↾P = (M↾Q)top.

(19) Let M be a non empty metric space, A be a subset of M , B be a non

empty subset of the carrier of M , and C be a subset of M↾B. If A ⊆ B
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and A = C and C is bounded, then A is bounded.

(20) Let M be a non empty metric space, B be a subset of M , and A be a

subset of Mtop. If A = B and A is compact, then B is bounded.

(21) Let M be a non empty metric space, P be a non empty subset of Mtop,

and z be a point of M . Then there exists a point w of M such that w ∈ P

and (distmin(P ))(z) ¬ ρ(w, z).

Let M be a non empty metric space and let x be a point of M . Note that

dist(x) is continuous.

Let M be a non empty metric space and let X be a compact non empty

subset of Mtop. One can check that distmax(X) is continuous and distmin(X) is

continuous.

One can prove the following propositions:

(22) Let M be a non empty metric space, P be a non empty subset of Mtop,

and x, y be points ofM . If y ∈ P and P is compact, then (distmax(P ))(x) ­

ρ(x, y).

(23) Let M be a non empty metric space, P be a non empty subset of Mtop,

and z be a point of M . If P is compact, then there exists a point w of M

such that w ∈ P and (distmax(P ))(z) ­ ρ(w, z).

(24) LetM be a non empty metric space, P , Q be non empty subsets ofMtop,

and z be a point of M . If P is compact and Q is compact and z ∈ Q, then

(distmin(P ))(z) ¬ distmaxmax(P, Q).

(25) LetM be a non empty metric space, P , Q be non empty subsets ofMtop,

and z be a point of M . If P is compact and Q is compact and z ∈ Q, then

(distmax(P ))(z) ¬ distmaxmax(P, Q).

(26) LetM be a non empty metric space, P , Q be non empty subsets ofMtop,

and X be a subset of R. If X = (distmax(P ))◦Q and P is compact and Q

is compact, then X is upper bounded.

(27) LetM be a non empty metric space, P , Q be non empty subsets ofMtop,

and X be a subset of R. If X = (distmin(P ))◦Q and P is compact and Q

is compact, then X is upper bounded.

(28) Let M be a non empty metric space, P be a non empty subset of

Mtop, and z be a point of M . If P is compact, then (distmin(P ))(z) ¬

(distmax(P ))(z).

(29) For every non empty metric space M and for every non empty subset P

of Mtop holds (distmin(P ))◦P = {0}.

(30) Let M be a non empty metric space and P , Q be non empty subsets of

Mtop. If P is compact and Q is compact, then distmaxmin (P, Q) ­ 0.

(31) For every non empty metric space M and for every non empty subset P

of Mtop holds dist
max
min (P, P ) = 0.
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(32) Let M be a non empty metric space and P , Q be non empty subsets of

Mtop. If P is compact and Q is compact, then distminmax(P, Q) ­ 0.

(33) LetM be a non empty metric space, Q, R be non empty subsets ofMtop,

and y be a point of M . If Q is compact and R is compact and y ∈ Q, then

(distmin(R))(y) ¬ distmaxmin (R, Q).

2. The Hausdorff Distance

Let M be a non empty metric space and let P , Q be subsets of Mtop. The

functor HausDist(P, Q) yields a real number and is defined by:

(Def. 1) HausDist(P,Q) = max(distmaxmin (P, Q),distmaxmin (Q,P )).

Let us notice that the functor HausDist(P, Q) is commutative.

The following propositions are true:

(34) LetM be a non empty metric space, Q, R be non empty subsets ofMtop,

and y be a point of M . If Q is compact and R is compact and y ∈ Q, then

(distmin(R))(y) ¬ HausDist(Q,R).

(35) Let M be a non empty metric space and P , Q, R be non empty sub-

sets of Mtop. If P is compact and Q is compact and R is compact, then

distmaxmin (P, R) ¬ HausDist(P,Q) +HausDist(Q,R).

(36) Let M be a non empty metric space and P , Q, R be non empty sub-

sets of Mtop. If P is compact and Q is compact and R is compact, then

distmaxmin (R,P ) ¬ HausDist(P,Q) +HausDist(Q,R).

(37) Let M be a non empty metric space and P , Q be non empty subsets of

Mtop. If P is compact and Q is compact, then HausDist(P,Q) ­ 0.

(38) For every non empty metric space M and for every non empty subset P

of Mtop holds HausDist(P, P ) = 0.

(39) Let M be a non empty metric space and P , Q be non empty subsets of

Mtop. If P is compact and Q is compact and HausDist(P,Q) = 0, then

P = Q.

(40) Let M be a non empty metric space and P , Q, R be non empty sub-

sets of Mtop. If P is compact and Q is compact and R is compact, then

HausDist(P, R) ¬ HausDist(P,Q) +HausDist(Q,R).

Let n be a natural number and let P , Q be subsets of the carrier of En

T. The

functor distmaxmin (P, Q) yields a real number and is defined by:

(Def. 2) There exist subsets P ′, Q′ of (En)top such that P = P ′ and Q = Q′ and

distmaxmin (P, Q) = distmaxmin (P ′, Q′).

Let n be a natural number and let P , Q be subsets of the carrier of En

T. The

functor HausDist(P, Q) yields a real number and is defined by:

(Def. 3) There exist subsets P ′, Q′ of (En)top such that P = P ′ and Q = Q′ and

HausDist(P, Q) = HausDist(P ′, Q′).
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Let us note that the functor HausDist(P,Q) is commutative.

In the sequel n denotes a natural number.

Next we state four propositions:

(41) For all non empty subsets P , Q of En

T such that P is compact and Q is

compact holds HausDist(P, Q) ­ 0.

(42) For every non empty subset P of En

T holds HausDist(P, P ) = 0.

(43) For all non empty subsets P , Q of En

T such that P is compact and Q is

compact and HausDist(P, Q) = 0 holds P = Q.

(44) For all non empty subsets P , Q, R of En

T such that P is compact and Q

is compact and R is compact holds HausDist(P, R) ¬ HausDist(P,Q) +

HausDist(Q,R).
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