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Summary. In [1] the pseudo-metric distineX on compact subsets A and B
of a topological space generated from arbitrary metric space is defined. Using
this notion we define the Hausdorff distance (see e.g. [5]) of A and B as a maxi-
mum of the two pseudo-distances: from A to B and from B to A. We justify its
distance properties. At the end we define some special notions which enable to
apply the Hausdorff distance operator “HausDist” to the subsets of the Euclidean
topological space EF.

MML Identifier: HAUSDORF.

The papers [16], [18], [15], (10], [17], (19], [3], [14], [6], [9], [}, [11], [2], (7], [4]
[1], [13], and [12] provide the terminology and notation for this paper.

1. PRELIMINARIES

Let r be a real number. Then {r} is a subset of R.
Let M be a non empty metric space. One can verify that M., is 1.
Next we state a number of propositions:

(1) For all real numbers x, y such that x > 0 and y > 0 and max(z,y) = 0
holds = = 0.

(2) For every non empty metric space M and for every point = of M holds
(dist(z))(x) = 0.

(3) For every non empty metric space M and for every subset P of M,
and for every point x of M such that z € P holds 0 € (dist(z))°P.
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(4) Let M be a non empty metric space, P be a subset of M;,p,  be a point
of M, and y be a real number. If y € (dist(z))°P, then y > 0.

(5) For every non empty metric space M and for every subset P of Moy
and for every set x such that z € P holds (distmin(P))(x) = 0.

(6) Let M be a non empty metric space, p be a point of M, ¢ be a point
of Miop, and 7 be a real number. If p = ¢ and r > 0, then Ball(p,r) is a
neighbourhood of g.

(7) Let M be a non empty metric space, A be a subset of M, and p be a
point of M. Then p € A if and only if for every real number r such that
r > 0 holds Ball(p, ) meets A.

(8) Let M be a non empty metric space, p be a point of M, and A be a
subset of Miop,. Then p € A if and only if for every real number r such
that r > 0 there exists a point g of M such that ¢ € A and p(p,q) < r.

(9) Let M be a non empty metric space, P be a non empty subset of Mip,
and = be a point of M. Then (distyin(P))(x) = 0 if and only if for every
real number r such that r > 0 there exists a point p of M such that p € P
and p(x,p) < r.

(10) Let M be a non empty metric space, P be a non empty subset of Miqp,
and z be a point of M. Then = € P if and only if (distmn(P))(z) = 0.
(11) Let M be a non empty metric space, P be a non empty closed subset of

Myop, and z be a point of M. Then x € P if and only if (distmin(P))(z) = 0.

(12) For every non empty subset A of the carrier of R there exists a non
empty subset X of R such that A = X and inf A = inf X.

(13) For every non empty subset A of the carrier of R there exists a non
empty subset X of R such that A = X and sup A = sup X.

(14) Let M be a non empty metric space, P be a non empty subset of Miqp,
x be a point of M, and X be a subset of R. If X = (dist(x))°P, then X is
lower bounded.

(15) Let M be a non empty metric space, P be a non empty subset of Miqp,
and z, y be points of M. If y € P, then (distyin(P))(z) < p(z,y).

(16) Let M be a non empty metric space, P be a non empty subset of Miqp,
r be a real number, and z be a point of M. If for every point y of M such
that y € P holds p(z,y) > r, then (distyin(P))(x) > 7.

(17) Let M be a non empty metric space, P be a non empty subset of Miqp,
and x, y be points of M. Then (distmin(P))(z) < p(x,y) + (distmin(P))(y).

(18) Let M be a non empty metric space, P be a subset of the carrier of
Miop, and @ be a non empty subset of the carrier of M. If P = @, then
Mtop TP = (M rQ)top-

(19) Let M be a non empty metric space, A be a subset of M, B be a non
empty subset of the carrier of M, and C' be a subset of M[B. If AC B
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and A = C and C is bounded, then A is bounded.

(20) Let M be a non empty metric space, B be a subset of M, and A be a
subset of Mip. If A = B and A is compact, then B is bounded.

(21) Let M be a non empty metric space, P be a non empty subset of My,
and z be a point of M. Then there exists a point w of M such that w € P
and (distmin(P))(2) < p(w, 2).

Let M be a non empty metric space and let x be a point of M. Note that
dist(z) is continuous.

Let M be a non empty metric space and let X be a compact non empty
subset of Miop. One can check that distmax(X) is continuous and distmin(X) is
continuous.

One can prove the following propositions:

(22) Let M be a non empty metric space, P be a non empty subset of My,
and x, y be points of M. If y € P and P is compact, then (distyax(P))(z) >
p(z,y).

(23) Let M be a non empty metric space, P be a non empty subset of My,

and z be a point of M. If P is compact, then there exists a point w of M
such that w € P and (distmax(P))(z) = p(w, 2).

(24) Let M be a non empty metric space, P, Q be non empty subsets of Mgy,
and z be a point of M. If P is compact and () is compact and z € @), then
(distmin (P))(2) < dist;33 (P, Q).

(25) Let M be a non empty metric space, P, @ be non empty subsets of Miqp,
and z be a point of M. If P is compact and @) is compact and z € @, then
(distmax(P))(z) < distmaX(P, Q).

(26) Let M be a non empty metric space, P, () be non empty subsets of My,
and X be a subset of R. If X = (distyax(P))°Q and P is compact and @

is compact, then X is upper bounded.

(27) Let M be a non empty metric space, P, ) be non empty subsets of My,
and X be a subset of R. If X = (distyin(P))°Q and P is compact and @
is compact, then X is upper bounded.

(28) Let M be a non empty metric space, P be a non empty subset of
Miop, and z be a point of M. If P is compact, then (distmin(P))(z) <

(distmax(P))(2).

(29) For every non empty metric space M and for every non empty subset P
of Miop holds (distmin(P))°P = {0}.

(30) Let M be a non empty metric space and P, ) be non empty subsets of
Miop. If P is compact and @ is compact, then distjin (P, Q) > 0.

min
(31) For every non empty metric space M and for every non empty subset P
of Miep, holds distiiix (P, P) = 0.

min
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(32) Let M be a non empty metric space and P, Q be non empty subsets of
Miop. If P is compact and @ is compact, then distya, (P, Q) > 0.

max
(33) Let M be anon empty metric space, ), R be non empty subsets of Miqp,
and y be a point of M. If Q) is compact and R is compact and y € @, then
(distmin(12))(y) < distyiy (R, Q).

2. THE HAUSDORFF DISTANCE

Let M be a non empty metric space and let P, @) be subsets of M;q,. The
functor HausDist(P, Q) yields a real number and is defined by:

(Def. 1) HausDist(P, Q) = max(distiiis (P, @), distjis (Q, P)).
Let us notice that the functor HausDist(P, Q) is commutative.

The following propositions are true:

(34) Let M be a non empty metric space, ), R be non empty subsets of Miqp,
and y be a point of M. If () is compact and R is compact and y € @), then
(distmin(R))(y) < HausDist(Q, R).

(35) Let M be a non empty metric space and P, @}, R be non empty sub-
sets of Miop. If P is compact and ) is compact and R is compact, then
distn® (P, R) < HausDist(P, Q) + HausDist(Q, R).

(36) Let M be a non empty metric space and P, @), R be non empty sub-
sets of Miop. If P is compact and () is compact and R is compact, then
dist?®(R, P) < HausDist(P, Q) + HausDist(Q, R).

(37) Let M be a non empty metric space and P, Q be non empty subsets of
Miop. If P is compact and @ is compact, then HausDist(P, Q) > 0.

(38) For every non empty metric space M and for every non empty subset P
of M;p holds HausDist(P, P) = 0.

(39) Let M be a non empty metric space and P, ) be non empty subsets of
Miop. If P is compact and @ is compact and HausDist(P, Q) = 0, then
P=qQ.

(40) Let M be a non empty metric space and P, @), R be non empty sub-
sets of Miep. If P is compact and ) is compact and R is compact, then
HausDist(P, R) < HausDist(P, Q) + HausDist(Q, R).

Let n be a natural number and let P, ) be subsets of the carrier of £f. The
functor distiiX(P, Q) yields a real number and is defined by:
(Def. 2) There exist subsets P/, Q' of (£")top such that P = P" and Q = Q' and
distpiy (P, Q) = distpiy (P, Q).

Let n be a natural number and let P, () be subsets of the carrier of £F. The
functor HausDist(P, Q) yields a real number and is defined by:

(Def. 3) There exist subsets P/, Q" of (£")top such that P = P" and Q = Q' and
HausDist(P, Q) = HausDist(P’, Q’).
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Let us note that the functor HausDist(P, @) is commutative.
In the sequel n denotes a natural number.
Next we state four propositions:

(41) For all non empty subsets P, @ of £} such that P is compact and @ is
compact holds HausDist(P, Q) > 0.

(42) For every non empty subset P of &} holds HausDist(P, P) = 0.

(43) For all non empty subsets P, @ of &} such that P is compact and @ is
compact and HausDist(P, Q) = 0 holds P = Q.

(44) For all non empty subsets P, @, R of £} such that P is compact and Q
is compact and R is compact holds HausDist(P, R) < HausDist(P, Q) +
HausDist(Q, R).
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