Quotient Vector Spaces and Functionals ${ }^{1}$

Jarosław Kotowicz
University of Białystok

Abstract

Summary. The article presents well known facts about quotient vector spaces and functionals (see [8]). There are repeated theorems and constructions with either weaker assumptions or in more general situations (see [11], [7], [10]). The construction of coefficient functionals and non-degenerate functional in quotient vector space generated by functional in the given vector space are the only new things which are done.

MML Identifier: VECTSP10.

The articles [15], [5], [21], [13], [3], [1], [20], [2], [17], [7], [22], [4], [6], [14], [19], [12], [18], [16], and [9] provide the notation and terminology for this paper.

1. Auxiliary Facts about Double Loops and Vector Spaces

The following proposition is true
(1) Let K be an add-associative right zeroed right complementable left distributive left unital non empty double loop structure and a be an element of the carrier of K. Then $\left(-\mathbf{1}_{K}\right) \cdot a=-a$.
Let K be a double loop structure. The functor $\operatorname{StructVectSp}(K)$ yields a strict vector space structure over K and is defined as follows:
(Def. 1) $\operatorname{StructVectSp}(K)=\langle$ the carrier of K, the addition of K, the zero of K, the multiplication of $K\rangle$.
Let K be a non empty double loop structure. Note that $\operatorname{StructVectSp}(K)$ is non empty.

Let K be an Abelian non empty double loop structure. One can verify that StructVectSp (K) is Abelian.

[^0]Let K be an add-associative non empty double loop structure. Note that StructVectSp (K) is add-associative.

Let K be a right zeroed non empty double loop structure.
Note that $\operatorname{StructVectSp}(K)$ is right zeroed.
Let K be a right complementable non empty double loop structure. Observe that StructVectSp (K) is right complementable.

Let K be an associative left unital distributive non empty double loop structure. One can check that $\operatorname{StructVectSp}(K)$ is vector space-like.

Let K be a non degenerated non empty double loop structure. Note that StructVectSp (K) is non trivial.

Let K be a non degenerated non empty double loop structure. Note that there exists a non empty vector space structure over K which is non trivial.

Let K be an add-associative right zeroed right complementable non empty double loop structure. Observe that there exists a non empty vector space structure over K which is add-associative, right zeroed, right complementable, and strict.

Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure. One can check that there exists a non empty vector space structure over K which is add-associative, right zeroed, right complementable, vector space-like, and strict.

Let K be an Abelian add-associative right zeroed right complementable associative left unital distributive non degenerated non empty double loop structure. One can verify that there exists a non empty vector space structure over K which is Abelian, add-associative, right zeroed, right complementable, vector space-like, strict, and non trivial.

Next we state a number of propositions:
(2) Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure, a be an element of the carrier of K, V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over K, and v be a vector of V. Then $0_{K} \cdot v=0_{V}$ and $a \cdot 0_{V}=0_{V}$.
(3) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, S, T be subspaces of V, and v be a vector of V. If $S \cap T=\mathbf{0}_{V}$ and $v \in S$ and $v \in T$, then $v=0_{V}$.
(4) Let K be a field, V be a vector space over K, x be a set, and v be a vector of V. Then $x \in \operatorname{Lin}(\{v\})$ if and only if there exists an element a of the carrier of K such that $x=a \cdot v$.
(5) Let K be a field, V be a vector space over K, v be a vector of V, and a, b be scalars of V. If $v \neq 0_{V}$ and $a \cdot v=b \cdot v$, then $a=b$.
(6) Let K be an add-associative right zeroed right complementable associa-
tive Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $v=v_{1}+v_{2}$, then $v_{\left\langle W_{1}, W_{2}\right\rangle}=\left\langle v_{1}, v_{2}\right\rangle$.
(7) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v_{\left\langle W_{1}, W_{2}\right\rangle}=\left\langle v_{1}\right.$, $\left.v_{2}\right\rangle$, then $v=v_{1}+v_{2}$.
(8) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v_{\left\langle W_{1}, W_{2}\right\rangle}=\left\langle v_{1}\right.$, $\left.v_{2}\right\rangle$, then $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$.
(9) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v_{\left\langle W_{1}, W_{2}\right\rangle}=\left\langle v_{1}\right.$, $\left.v_{2}\right\rangle$, then $v_{\left\langle W_{2}, W_{1}\right\rangle}=\left\langle v_{2}, v_{1}\right\rangle$.
(10) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v be a vector of V. If $v \in W_{1}$, then $v_{\left\langle W_{1}, W_{2}\right\rangle}=\left\langle v, 0_{V}\right\rangle$.
(11) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v be a vector of V. If $v \in W_{2}$, then ${ }^{v}\left\langle W_{1}, W_{2}\right\rangle=\left\langle 0_{V}, v\right\rangle$.
(12) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, V_{1} be a subspace of V, W_{1} be a subspace of V_{1}, and v be a vector of V. If $v \in W_{1}$, then v is a vector of V_{1}.
(13) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, V_{1}, V_{2}, W be subspaces of V, and W_{1}, W_{2} be subspaces of W. If $W_{1}=V_{1}$ and $W_{2}=V_{2}$, then $W_{1}+W_{2}=V_{1}+V_{2}$.
(14) Let K be a field, V be a vector space over K, W be a subspace of V, v be a vector of V, and w be a vector of W. If $v=w$, then $\operatorname{Lin}(\{w\})=\operatorname{Lin}(\{v\})$.
(15) Let K be a field, V be a vector space over K, v be a vector of V, and X be a subspace of V. Suppose $v \notin X$. Let y be a vector of $X+\operatorname{Lin}(\{v\})$ and W be a subspace of $X+\operatorname{Lin}(\{v\})$. If $v=y$ and $W=X$, then $X+\operatorname{Lin}(\{v\})$ is the direct sum of W and $\operatorname{Lin}(\{y\})$.
(16) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X+\operatorname{Lin}(\{v\})$, and W be a subspace of $X+\operatorname{Lin}(\{v\})$. If $v=y$ and $X=W$ and $v \notin X$, then $y_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\left\langle 0_{W}\right.$, $y\rangle$.
(17) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X+\operatorname{Lin}(\{v\})$, and W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w be a vector of $X+\operatorname{Lin}(\{v\})$. If $w \in X$, then $w_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\left\langle w, 0_{V}\right\rangle$.
(18) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, v be a vector of V, and W_{1}, W_{2} be subspaces of V. Then there exist vectors v_{1}, v_{2} of V such that $v_{\left\langle W_{1}, W_{2}\right\rangle}=\left\langle v_{1}, v_{2}\right\rangle$.
(19) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X+\operatorname{Lin}(\{v\})$, and W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w be a vector of $X+\operatorname{Lin}(\{v\})$. Then there exists a vector x of X and there exists an element r of the carrier of K such that $w_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\langle x, r \cdot v\rangle$.
(20) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X+\operatorname{Lin}(\{v\})$, and W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w_{1}, w_{2} be vectors of $X+\operatorname{Lin}(\{v\}), x_{1}, x_{2}$ be vectors of X, and r_{1}, r_{2} be elements of the carrier of K. If $\left(w_{1}\right)_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\left\langle x_{1}, r_{1} \cdot v\right\rangle$ and $\left(w_{2}\right)_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\left\langle x_{2}, r_{2} \cdot v\right\rangle$, then $\left(w_{1}+w_{2}\right)_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\left\langle x_{1}+x_{2},\left(r_{1}+r_{2}\right) \cdot v\right\rangle$.
(21) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X+\operatorname{Lin}(\{v\})$, and W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w be a vector of $X+\operatorname{Lin}(\{v\}), x$ be a vector of X, and t, r be elements of the carrier of K. If $w_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\langle x, r \cdot v\rangle$, then $(t \cdot w)_{\langle W, \operatorname{Lin}(\{y\})\rangle}=\langle t \cdot x, t \cdot r \cdot v\rangle$.

2. Quotient Vector Space for Non-Commutative Double Loop

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor $\operatorname{CosetSet}(V, W)$ yielding a non empty family of subsets of the carrier of V is defined as follows:
(Def. 2) $\operatorname{CosetSet}(V, W)=\{A: A$ ranges over cosets of $W\}$.
Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor $\operatorname{addCoset}(V, W)$ yields a binary operation on $\operatorname{CosetSet}(V, W)$ and is defined by:
(Def. 3) For all elements A, B of $\operatorname{CosetSet}(V, W)$ and for all vectors a, b of V such that $A=a+W$ and $B=b+W$ holds $(\operatorname{addCoset}(V, W))(A, B)=a+b+W$.
Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor zeroCoset (V, W) yielding an element of $\operatorname{CosetSet}(V, W)$ is defined as follows:
(Def. 4) zeroCoset $(V, W)=$ the carrier of W.
Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor $\operatorname{lmultCoset}(V, W)$ yields a function from : the carrier of $K, \operatorname{CosetSet}(V, W): \operatorname{into} \operatorname{CosetSet}(V, W)$ and is defined by the condition (Def. 5).
(Def. 5) Let z be an element of the carrier of K, A be an element of $\operatorname{CosetSet}(V, W)$, and a be a vector of V. If $A=a+W$, then $(\operatorname{lmult} \operatorname{Coset}(V, W))(z, A)=z \cdot a+W$.
Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor V / W yielding a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over K is defined by the conditions (Def. 6).
(Def. 6)(i) The carrier of $V / W=\operatorname{CosetSet}(V, W)$,
(ii) the addition of $V / W=\operatorname{addCoset}(V, W)$,
(iii) the zero of $V / W=\operatorname{zeroCoset}(V, W)$, and
(iv) the left multiplication of $V / W=\operatorname{lmult} \operatorname{Coset}(V, W)$.

The following propositions are true:
(22) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, and W be a subspace of V. Then $\operatorname{zeroCoset}(V, W)=$ $0_{V}+W$ and $0_{V} /{ }_{W}=\operatorname{zeroCoset}(V, W)$.
(23) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, and w be a vector of V / W. Then w is a coset of W and there exists a vector v of V such that $w=v+W$.
(24) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, and v be a vector of V. Then $v+W$ is a coset of W and $v+W$ is a vector of V / W.
(25) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, and W be a subspace of V. Then every coset of W is a vector of V / W.
(26) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, A be a vector of $V / W, v$ be a vector of V, and a be a scalar of V. If $A=v+W$, then $a \cdot A=a \cdot v+W$.
(27) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, A_{1}, A_{2} be vectors of V / W, and v_{1}, v_{2} be vectors of V. If $A_{1}=v_{1}+W$ and $A_{2}=v_{2}+W$, then $A_{1}+A_{2}=v_{1}+v_{2}+W$.

3. Auxiliary Facts about Functionals

Next we state the proposition
(28) Let K be a field, V be a vector space over K, X be a subspace of V, f_{1} be a linear functional in X, v be a vector of V, and y be a vector of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $v \notin X$. Let r be an element of the carrier of K. Then there exists a linear functional p_{1} in $X+\operatorname{Lin}(\{v\})$ such that p_{1} lthe carrier of $X=f_{1}$ and $p_{1}(y)=r$.

Let K be a right zeroed non empty loop structure and let V be a non empty vector space structure over K. One can verify that there exists a functional in V which is additive and 0-preserving.

Let K be an add-associative right zeroed right complementable non empty double loop structure and let V be a right zeroed non empty vector space structure over K. Observe that every functional in V which is additive is also 0 preserving.

Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure and let V be an addassociative right zeroed right complementable vector space-like non empty vector space structure over K. One can verify that every functional in V which is homogeneous is also 0-preserving.

Let K be a non empty zero structure and let V be a non empty vector space structure over K. One can check that 0Functional V is constant.

Let K be a non empty zero structure and let V be a non empty vector space structure over K. Note that there exists a functional in V which is constant.

Let K be an add-associative right zeroed right complementable non empty double loop structure, let V be a right zeroed non empty vector space structure over K, and let f be a 0 -preserving functional in V. Let us observe that f is constant if and only if:
(Def. 7) $f=0$ Functional V.
Let K be an add-associative right zeroed right complementable non empty double loop structure and let V be a right zeroed non empty vector space structure over K. Note that there exists a functional in V which is constant, additive, and 0-preserving.

Let K be a non empty 1 -sorted structure and let V be a non empty vector space structure over K. One can check that every functional in V which is non constant is also non trivial.

Let K be a field and let V be a non trivial vector space over K. Observe that there exists a functional in V which is additive, homogeneous, non constant, and non trivial.

Let K be a field and let V be a non trivial vector space over K. One can check that every functional in V which is trivial is also constant.

Let K be a field, let V be a non trivial vector space over K, let v be a vector of V, and let W be a linear complement of $\operatorname{Lin}(\{v\})$. Let us assume that $v \neq 0_{V}$. The functor coeffifunctional (v, W) yielding a non constant non trivial linear functional in V is defined as follows:
(Def. 8) (coeffFunctional $(v, W))(v)=\mathbf{1}_{K}$ and coeffFunctional (v, W) |the carrier of $W=0$ Functional W.
We now state several propositions:
(29) Let K be a field, V be a non trivial vector space over K, and f be a non constant 0-preserving functional in V. Then there exists a vector v of V such that $v \neq 0_{V}$ and $f(v) \neq 0_{K}$.
(30) Let K be a field, V be a non trivial vector space over K, v be a vector of V, a be a scalar of V, and W be a linear complement of $\operatorname{Lin}(\{v\})$. If $v \neq 0_{V}$, then $($ coeffFunctional $(v, W))(a \cdot v)=a$.
(31) Let K be a field, V be a non trivial vector space over K, v, w be vectors of V, and W be a linear complement of $\operatorname{Lin}(\{v\})$. If $v \neq 0_{V}$ and $w \in W$, then $($ coeffFunctional $(v, W))(w)=0_{K}$.
(32) Let K be a field, V be a non trivial vector space over K, v, w be vectors of V, a be a scalar of V, and W be a linear complement of $\operatorname{Lin}(\{v\})$. If $v \neq 0_{V}$ and $w \in W$, then ($\left.\operatorname{coeffFunctional}(v, W)\right)(a \cdot v+w)=a$.
(33) Let K be a non empty loop structure, V be a non empty vector space structure over K, f, g be functionals in V, and v be a vector of V. Then

$$
(f-g)(v)=f(v)-g(v)
$$

Let K be a field and let V be a non trivial vector space over K. Note that \bar{V} is non trivial.

4. Kernel of Additive Functional. Linear Functionals in Quotient Vector Spaces

Let K be a non empty zero structure, let V be a non empty vector space structure over K, and let f be a functional in V. The functor $\operatorname{ker} f$ yields a subset of the carrier of V and is defined by:
(Def. 9) ker $f=\left\{v ; v\right.$ ranges over vectors of $\left.V: f(v)=0_{K}\right\}$.
Let K be a right zeroed non empty loop structure, let V be a non empty vector space structure over K, and let f be a 0 -preserving functional in V. One can check that ker f is non empty.

One can prove the following proposition
(34) Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure, V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over K, and f be a linear functional in V. Then ker f is linearly closed.
Let K be a non empty zero structure, let V be a non empty vector space structure over K, and let f be a functional in V. We say that f is degenerated if and only if:
(Def. 10) $\operatorname{ker} f \neq\left\{0_{V}\right\}$.
Let K be a non degenerated non empty double loop structure and let V be a non trivial non empty vector space structure over K. One can check that every functional in V which is non degenerated and 0 -preserving is also non constant.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let f be a linear functional in V. The functor Ker f yields a strict non empty subspace of V and is defined as follows:
(Def. 11) The carrier of $\operatorname{Ker} f=\operatorname{ker} f$.
Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, let W be a subspace of V, and let f be an additive functional in V. Let us assume that the carrier of $W \subseteq \operatorname{ker} f$. The functor ${ }^{f} / W$ yielding an additive functional in V / W is defined by:
(Def. 12) For every vector A of V / W and for every vector v of V such that $A=$ $v+W$ holds $(f / W)(A)=f(v)$.
One can prove the following proposition
(35) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, and f be a linear functional in V. If the carrier of $W \subseteq \operatorname{ker} f$, then ${ }^{f} / W$ is homogeneous.
Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let f be a linear functional in V. The functor CQFunctional f yielding a linear functional in ${ }^{V} / \mathrm{Ker} f$ is defined as follows:
(Def. 13) CQFunctional $f=f / \operatorname{Ker} f$.
One can prove the following proposition
(36) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, f be a linear functional in V, A be a vector of ${ }^{V} / \operatorname{Ker} f$, and v be a vector of V. If $A=v+\operatorname{Ker} f$, then CQFunctional $f(A)=f(v)$.
Let K be a field, let V be a non trivial vector space over K, and let f be a non constant linear functional in V. Observe that CQFunctional f is non constant.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let f be a linear functional in V. One can verify that CQFunctional f is non degenerated.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Serge Lang. Algebra. Addison-Wesley Publishing Co., 1980.
[9] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363-371, 2001.
[10] Michał Muzalewski. Domains of submodules, join and meet of finite sequences of submodules and quotient modules. Formalized Mathematics, 3(2):289-296, 1992.
[11] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics, 4(1):29-34, 1993.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[17] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[18] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, $1(5): 871-876,1990$.
[19] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and SPUB-M grant of KBN.

