Quotient Vector Spaces and Functionals¹

Jarosław Kotowicz University of Białystok

Summary. The article presents well known facts about quotient vector spaces and functionals (see [8]). There are repeated theorems and constructions with either weaker assumptions or in more general situations (see [11], [7], [10]). The construction of coefficient functionals and non-degenerate functional in quotient vector space generated by functional in the given vector space are the only new things which are done.

MML Identifier: VECTSP10.

The articles [15], [5], [21], [13], [3], [1], [20], [2], [17], [7], [22], [4], [6], [14], [19], [12], [18], [16], and [9] provide the notation and terminology for this paper.

1. Auxiliary Facts about Double Loops and Vector Spaces

The following proposition is true

(1) Let K be an add-associative right zeroed right complementable left distributive left unital non empty double loop structure and a be an element of the carrier of K. Then $(-\mathbf{1}_K) \cdot a = -a$.

Let K be a double loop structure. The functor StructVectSp(K) yields a strict vector space structure over K and is defined as follows:

(Def. 1) StructVectSp(K) = \langle the carrier of K, the addition of K, the zero of K, the multiplication of K \rangle .

Let K be a non empty double loop structure. Note that StructVectSp(K) is non empty.

Let K be an Abelian non empty double loop structure. One can verify that $\mathrm{StructVectSp}(K)$ is Abelian.

 $^{^1{\}rm This}$ work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and SPUB-M grant of KBN.

Let K be an add-associative non empty double loop structure. Note that StructVectSp(K) is add-associative.

Let K be a right zeroed non empty double loop structure.

Note that StructVectSp(K) is right zeroed.

Let K be a right complementable non empty double loop structure. Observe that StructVectSp(K) is right complementable.

Let K be an associative left unital distributive non empty double loop structure. One can check that StructVectSp(K) is vector space-like.

Let K be a non degenerated non empty double loop structure. Note that StructVectSp(K) is non trivial.

Let K be a non degenerated non empty double loop structure. Note that there exists a non empty vector space structure over K which is non trivial.

Let K be an add-associative right zeroed right complementable non empty double loop structure. Observe that there exists a non empty vector space structure over K which is add-associative, right zeroed, right complementable, and strict.

Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure. One can check that there exists a non empty vector space structure over K which is add-associative, right zeroed, right complementable, vector space-like, and strict.

Let K be an Abelian add-associative right zeroed right complementable associative left unital distributive non degenerated non empty double loop structure. One can verify that there exists a non empty vector space structure over K which is Abelian, add-associative, right zeroed, right complementable, vector space-like, strict, and non trivial.

Next we state a number of propositions:

- (2) Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure, a be an element of the carrier of K, V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over K, and v be a vector of V. Then $0_K \cdot v = 0_V$ and $a \cdot 0_V = 0_V$.
- (3) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, S, T be subspaces of V, and v be a vector of V. If $S \cap T = \mathbf{0}_V$ and $v \in S$ and $v \in T$, then $v = 0_V$.
- (4) Let K be a field, V be a vector space over K, x be a set, and v be a vector of V. Then $x \in \text{Lin}(\{v\})$ if and only if there exists an element a of the carrier of K such that $x = a \cdot v$.
- (5) Let K be a field, V be a vector space over K, v be a vector of V, and a, b be scalars of V. If $v \neq 0_V$ and $a \cdot v = b \cdot v$, then a = b.
- (6) Let K be an add-associative right zeroed right complementable associa-

- tive Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$, then $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$.
- (7) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$, then $v = v_1 + v_2$.
- (8) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$, then $v_1 \in W_1$ and $v_2 \in W_2$.
- (9) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$, then $v_{\langle W_2, W_1 \rangle} = \langle v_2, v_1 \rangle$.
- (10) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v be a vector of V. If $v \in W_1$, then $v_{\langle W_1, W_2 \rangle} = \langle v, 0_V \rangle$.
- (11) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v be a vector of V. If $v \in W_2$, then $v_{\langle W_1, W_2 \rangle} = \langle 0_V, v \rangle$.
- (12) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, V_1 be a subspace of V, W_1 be a subspace of V_1 , and V be a vector of V. If $V \in W_1$, then V is a vector of V_1 .
- (13) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, V_1 , V_2 , W be subspaces of V, and W_1 , W_2 be subspaces of W. If $W_1 = V_1$ and $W_2 = V_2$, then $W_1 + W_2 = V_1 + V_2$.
- (14) Let K be a field, V be a vector space over K, W be a subspace of V, v be a vector of V, and w be a vector of W. If v = w, then $\text{Lin}(\{w\}) = \text{Lin}(\{v\})$.

- (15) Let K be a field, V be a vector space over K, v be a vector of V, and X be a subspace of V. Suppose $v \notin X$. Let y be a vector of $X + \text{Lin}(\{v\})$ and W be a subspace of $X + \text{Lin}(\{v\})$. If v = y and W = X, then $X + \text{Lin}(\{v\})$ is the direct sum of W and $\text{Lin}(\{y\})$.
- (16) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. If v = y and X = W and $v \notin X$, then $y_{\{W, \text{Lin}(\{y\})\}} = \langle 0_W, y \rangle$.
- (17) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$. If $w \in X$, then $w_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle w, 0_V \rangle$.
- (18) Let K be an add-associative right zeroed right complementable associative Abelian left unital distributive non empty double loop structure, V be a vector space over K, v be a vector of V, and W_1 , W_2 be subspaces of V. Then there exist vectors v_1 , v_2 of V such that $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$.
- (19) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$. Then there exists a vector x of X and there exists an element r of the carrier of K such that $w_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle x, r \cdot v \rangle$.
- (20) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, Y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w_1, w_2 be vectors of $X + \text{Lin}(\{v\})$, x_1, x_2 be vectors of X, and r_1, r_2 be elements of the carrier of K. If $(w_1)_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle x_1, r_1 \cdot v \rangle$ and $(w_2)_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle x_2, r_2 \cdot v \rangle$, then $(w_1 + w_2)_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle x_1 + x_2, (r_1 + r_2) \cdot v \rangle$.
- (21) Let K be a field, V be a vector space over K, v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$, x be a vector of X, and t, r be elements of the carrier of K. If $w_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle x, r \cdot v \rangle$, then $(t \cdot w)_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle t \cdot x, t \cdot r \cdot v \rangle$.

2. Quotient Vector Space for Non-Commutative Double Loop

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor $\operatorname{CosetSet}(V,W)$ yielding a non empty family of subsets of the carrier of V is defined as follows:

(Def. 2) $\operatorname{CosetSet}(V, W) = \{A : A \text{ ranges over cosets of } W\}.$

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor addCoset(V, W) yields a binary operation on CosetSet(V, W) and is defined by:

(Def. 3) For all elements A, B of CosetSet(V, W) and for all vectors a, b of V such that A = a + W and B = b + W holds (addCoset(V, W))(A, B) = a + b + W.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor zeroCoset(V, W) yielding an element of CosetSet(V, W) is defined as follows:

(Def. 4) zeroCoset(V, W) = the carrier of W.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor lmultCoset(V, W) yields a function from [the carrier of K, CosetSet(V, W) into CosetSet(V, W) and is defined by the condition (Def. 5).

(Def. 5) Let z be an element of the carrier of K, A be an element of CosetSet(V, W), and a be a vector of V. If A = a + W, then $(\text{lmultCoset}(V, W))(z, A) = z \cdot a + W$.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let W be a subspace of V. The functor V/W yielding a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over K is defined by the conditions (Def. 6).

- (Def. 6)(i) The carrier of V/W = CosetSet(V, W),
 - (ii) the addition of V/W = addCoset(V, W),
 - (iii) the zero of V/W = zeroCoset(V, W), and
 - (iv) the left multiplication of V/W = lmultCoset(V, W).

The following propositions are true:

- (22) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, and W be a subspace of V. Then zeroCoset(V, W) = $0_V + W$ and $0_{V/W} = \text{zeroCoset}(V, W)$.
- (23) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, and w be a vector of V/W. Then w is a coset of W and there exists a vector v of V such that w = v + W.

- (24) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, and v be a vector of V. Then v + W is a coset of W and v + W is a vector of V/W.
- (25) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, and W be a subspace of V. Then every coset of W is a vector of V/W.
- (26) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, A be a vector of V/W, v be a vector of V, and v be a scalar of V. If v if v
- (27) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, A_1 , A_2 be vectors of V/W, and v_1 , v_2 be vectors of V. If $A_1 = v_1 + W$ and $A_2 = v_2 + W$, then $A_1 + A_2 = v_1 + v_2 + W$.

3. Auxiliary Facts about Functionals

Next we state the proposition

(28) Let K be a field, V be a vector space over K, X be a subspace of V, f_1 be a linear functional in X, v be a vector of V, and y be a vector of $X + \text{Lin}(\{v\})$. Suppose v = y and $v \notin X$. Let r be an element of the carrier of K. Then there exists a linear functional p_1 in $X + \text{Lin}(\{v\})$ such that $p_1 \upharpoonright \text{the carrier of } X = f_1$ and $p_1(y) = r$.

Let K be a right zeroed non empty loop structure and let V be a non empty vector space structure over K. One can verify that there exists a functional in V which is additive and 0-preserving.

Let K be an add-associative right zeroed right complementable non empty double loop structure and let V be a right zeroed non empty vector space structure over K. Observe that every functional in V which is additive is also 0-preserving.

Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure and let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over K. One can verify that every functional in V which is homogeneous is also 0-preserving.

Let K be a non empty zero structure and let V be a non empty vector space structure over K. One can check that 0Functional V is constant.

Let K be a non empty zero structure and let V be a non empty vector space structure over K. Note that there exists a functional in V which is constant.

Let K be an add-associative right zeroed right complementable non empty double loop structure, let V be a right zeroed non empty vector space structure over K, and let f be a 0-preserving functional in V. Let us observe that f is constant if and only if:

(Def. 7) f = 0Functional V.

Let K be an add-associative right zeroed right complementable non empty double loop structure and let V be a right zeroed non empty vector space structure over K. Note that there exists a functional in V which is constant, additive, and 0-preserving.

Let K be a non empty 1-sorted structure and let V be a non empty vector space structure over K. One can check that every functional in V which is non constant is also non trivial.

Let K be a field and let V be a non trivial vector space over K. Observe that there exists a functional in V which is additive, homogeneous, non constant, and non trivial.

Let K be a field and let V be a non trivial vector space over K. One can check that every functional in V which is trivial is also constant.

Let K be a field, let V be a non trivial vector space over K, let v be a vector of V, and let W be a linear complement of $\text{Lin}(\{v\})$. Let us assume that $v \neq 0_V$. The functor coeffFunctional(v, W) yielding a non constant non trivial linear functional in V is defined as follows:

(Def. 8) (coeffFunctional(v, W)) $(v) = \mathbf{1}_K$ and coeffFunctional(v, W) the carrier of W = 0Functional W.

We now state several propositions:

- (29) Let K be a field, V be a non trivial vector space over K, and f be a non constant 0-preserving functional in V. Then there exists a vector v of V such that $v \neq 0_V$ and $f(v) \neq 0_K$.
- (30) Let K be a field, V be a non trivial vector space over K, v be a vector of V, a be a scalar of V, and W be a linear complement of $\text{Lin}(\{v\})$. If $v \neq 0_V$, then $(\text{coeffFunctional}(v, W))(a \cdot v) = a$.
- (31) Let K be a field, V be a non trivial vector space over K, v, w be vectors of V, and W be a linear complement of $\text{Lin}(\{v\})$. If $v \neq 0_V$ and $w \in W$, then $(\text{coeffFunctional}(v, W))(w) = 0_K$.
- (32) Let K be a field, V be a non trivial vector space over K, v, w be vectors of V, a be a scalar of V, and W be a linear complement of $\text{Lin}(\{v\})$. If $v \neq 0_V$ and $w \in W$, then $(\text{coeffFunctional}(v, W))(a \cdot v + w) = a$.
- (33) Let K be a non empty loop structure, V be a non empty vector space structure over K, f, g be functionals in V, and v be a vector of V. Then

$$(f-g)(v) = f(v) - g(v).$$

Let K be a field and let V be a non trivial vector space over K. Note that \overline{V} is non trivial.

4. Kernel of Additive Functional. Linear Functionals in Quotient Vector Spaces

Let K be a non empty zero structure, let V be a non empty vector space structure over K, and let f be a functional in V. The functor ker f yields a subset of the carrier of V and is defined by:

(Def. 9) $\ker f = \{v; v \text{ ranges over vectors of } V: f(v) = 0_K\}.$

Let K be a right zeroed non empty loop structure, let V be a non empty vector space structure over K, and let f be a 0-preserving functional in V. One can check that ker f is non empty.

One can prove the following proposition

(34) Let K be an add-associative right zeroed right complementable associative left unital distributive non empty double loop structure, V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over K, and f be a linear functional in V. Then ker f is linearly closed.

Let K be a non empty zero structure, let V be a non empty vector space structure over K, and let f be a functional in V. We say that f is degenerated if and only if:

(Def. 10) $\ker f \neq \{0_V\}.$

Let K be a non degenerated non empty double loop structure and let V be a non trivial non empty vector space structure over K. One can check that every functional in V which is non degenerated and 0-preserving is also non constant.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let f be a linear functional in V. The functor $\ker f$ yields a strict non empty subspace of V and is defined as follows:

(Def. 11) The carrier of Ker $f = \ker f$.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, let W be a subspace of V, and let f be an additive functional in V. Let us assume that the carrier of $W \subseteq \ker f$. The functor f/W yielding an additive functional in V/W is defined by:

(Def. 12) For every vector A of V/W and for every vector v of V such that A = v + W holds (f/W)(A) = f(v).

One can prove the following proposition

(35) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, W be a subspace of V, and f be a linear functional in V. If the carrier of $W \subseteq \ker f$, then f/W is homogeneous.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let f be a linear functional in V. The functor CQFunctional f yielding a linear functional in V/K is defined as follows:

(Def. 13) CQFunctional $f = f/_{\text{Ker } f}$.

One can prove the following proposition

(36) Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be a vector space over K, f be a linear functional in V, A be a vector of $V/_{\text{Ker }f}$, and v be a vector of V. If A = v + Ker f, then CQFunctional f(A) = f(v).

Let K be a field, let V be a non trivial vector space over K, and let f be a non constant linear functional in V. Observe that CQFunctional f is non constant.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V be a vector space over K, and let f be a linear functional in V. One can verify that CQFunctional f is non degenerated.

References

- [1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [8] Serge Lang. Algebra. Addison-Wesley Publishing Co., 1980.
- [9] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363–371, 2001.
- [10] Michał Muzalewski. Domains of submodules, join and meet of finite sequences of submodules and quotient modules. Formalized Mathematics, 3(2):289–296, 1992.
- [11] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics, 4(1):29–34, 1993.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

- [16] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.
- 1990. [17] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
- [18] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871–876, 1990.
- [19] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- 1990. [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

 $Received\ November\ 5,\ 2002$