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Summary. We continue the formalization of [5] towards Gröbner Bases.
Here we deal with term orders, that is with orders on bags. We introduce the

notions of head term, head coefficient, and head monomial necessary to define

reduction for polynomials.

MML Identifier: TERMORD.

The papers [16], [21], [22], [1], [10], [23], [7], [8], [3], [2], [12], [20], [17], [4], [6],

[9], [11], [24], [14], [13], [18], [19], and [15] provide the terminology and notation

for this paper.

1. Preliminaries

One can check that there exists a loop structure which is non trivial.

Let us mention that there exists a non trivial loop structure which is add-

associative, right complementable, and right zeroed.

Let X be a set and let b be a bag of X. We say that b is non-zero if and only

if:

(Def. 1) b 6= EmptyBagX.

Next we state two propositions:

(1) For every set X and for all bags b1, b2 of X holds b1 | b2 iff there exists

a bag b of X such that b2 = b1 + b.

(2) Let n be an ordinal number, L be an add-associative right complementa-

ble right zeroed unital distributive non empty double loop structure, and

p be a series of n, L. Then 0 (n,L) ∗ p = 0 (n,L).

Let n be an ordinal number, let L be an add-associative right complemen-

table right zeroed unital distributive non empty double loop structure, and let

m1, m2 be monomials of n, L. Note that m1 ∗m2 is monomial-like.
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Let n be an ordinal number, let L be an add-associative right complemen-

table right zeroed distributive non empty double loop structure, and let c1, c2

be constant polynomials of n, L. One can verify that c1 ∗ c2 is constant.

One can prove the following two propositions:

(3) Let n be an ordinal number, L be an add-associative right complementa-

ble right zeroed unital distributive integral domain-like non trivial double

loop structure, b, b′ be bags of n, and a, a′ be non-zero elements of L.

Then Monom(a · a′, b + b′) = Monom(a, b) ∗Monom(a′, b′).

(4) Let n be an ordinal number, L be an add-associative right complemen-

table right zeroed unital distributive integral domain-like non trivial do-

uble loop structure, and a, a′ be elements of L. Then a · a′ (n,L) =

(a (n,L)) ∗ (a′ (n,L)).

2. Term Orders

Let n be an ordinal number. One can verify that there exists a term order

of n which is admissible and connected.

Let n be a natural number. Observe that every admissible term order of n

is well founded.

Let n be an ordinal number, let T be a term order of n, and let b, b′ be bags

of n. The predicate b ¬T b′ is defined by:

(Def. 2) 〈〈b, b′〉〉 ∈ T.

Let n be an ordinal number, let T be a term order of n, and let b, b′ be bags

of n. The predicate b <T b′ is defined by:

(Def. 3) b ¬T b′ and b 6= b′.

Let n be an ordinal number, let T be a term order of n, and let b1, b2 be

bags of n. The functor minT (b1, b2) yields a bag of n and is defined as follows:

(Def. 4) minT (b1, b2) =

{

b1, if b1 ¬T b2,

b2, otherwise.

The functor maxT (b1, b2) yields a bag of n and is defined as follows:

(Def. 5) maxT (b1, b2) =

{

b1, if b2 ¬T b1,

b2, otherwise.

We now state a number of propositions:

(5) Let n be an ordinal number, T be a connected term order of n, and b1,

b2 be bags of n. Then b1 ¬T b2 if and only if b2 6<T b1.

(6) For every ordinal number n and for every term order T of n and for

every bag b of n holds b ¬T b.

(7) Let n be an ordinal number, T be a term order of n, and b1, b2 be bags

of n. If b1 ¬T b2 and b2 ¬T b1, then b1 = b2.
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(8) Let n be an ordinal number, T be a term order of n, and b1, b2, b3 be

bags of n. If b1 ¬T b2 and b2 ¬T b3, then b1 ¬T b3.

(9) For every ordinal number n and for every admissible term order T of n

and for every bag b of n holds EmptyBagn ¬T b.

(10) Let n be an ordinal number, T be an admissible term order of n, and b1,

b2 be bags of n. If b1 | b2, then b1 ¬T b2.

(11) For every ordinal number n and for every term order T of n and for all

bags b1, b2 of n holds minT (b1, b2) = b1 or minT (b1, b2) = b2.

(12) For every ordinal number n and for every term order T of n and for all

bags b1, b2 of n holds maxT (b1, b2) = b1 or maxT (b1, b2) = b2.

(13) Let n be an ordinal number, T be a connected term order of n, and b1,

b2 be bags of n. Then minT (b1, b2) ¬T b1 and minT (b1, b2) ¬T b2.

(14) Let n be an ordinal number, T be a connected term order of n, and b1,

b2 be bags of n. Then b1 ¬T maxT (b1, b2) and b2 ¬T maxT (b1, b2).

(15) Let n be an ordinal number, T be a connected term order of n, and

b1, b2 be bags of n. Then minT (b1, b2) = minT (b2, b1) and maxT (b1, b2) =

maxT (b2, b1).

(16) Let n be an ordinal number, T be a connected term order of n, and b1,

b2 be bags of n. Then minT (b1, b2) = b1 if and only if maxT (b1, b2) = b2.

3. Head Terms, Head Monomials, and Head Coefficients

Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor

HT(p, T ) yields an element of Bagsn and is defined as follows:

(Def. 6) Support p = ∅ and HT(p, T ) = EmptyBagn or HT(p, T ) ∈ Support p

and for every bag b of n such that b ∈ Support p holds b ¬T HT(p, T ).

Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor

HC(p, T ) yielding an element of L is defined as follows:

(Def. 7) HC(p, T ) = p(HT(p, T )).

Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor

HM(p, T ) yielding a monomial of n, L is defined by:

(Def. 8) HM(p, T ) = Monom(HC(p, T ),HT(p, T )).

Let n be an ordinal number, let T be a connected term order of n, let L be a

non trivial zero structure, and let p be a non-zero polynomial of n, L. Observe

that HM(p, T ) is non-zero and HC(p, T ) is non-zero.

The following propositions are true:
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(17) Let n be an ordinal number, T be a connected term order of n, L be a non

empty zero structure, and p be a polynomial of n, L. Then HC(p, T ) = 0L

if and only if p = 0 (n,L).

(18) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then

(HM(p, T ))(HT(p, T )) = p(HT(p, T )).

(19) Let n be an ordinal number, T be a connected term order of n, L be a

non trivial zero structure, p be a polynomial of n, L, and b be a bag of n.

If b 6= HT(p, T ), then (HM(p, T ))(b) = 0L.

(20) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then

SupportHM(p, T ) ⊆ Support p.

(21) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then

SupportHM(p, T ) = ∅ or SupportHM(p, T ) = {HT(p, T )}.

(22) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then

termHM(p, T ) = HT(p, T ) and coefficientHM(p, T ) = HC(p, T ).

(23) Let n be an ordinal number, T be a connected term order of n, L be a non

empty zero structure, and m be a monomial of n, L. Then HT(m,T ) =

termm and HC(m,T ) = coefficientm and HM(m,T ) = m.

(24) Let n be an ordinal number, T be a connected term order of n, L be a

non empty zero structure, and c be a constant polynomial of n, L. Then

HT(c, T ) = EmptyBagn and HC(c, T ) = c(EmptyBagn).

(25) Let n be an ordinal number, T be a connected term order of n, L be a non

empty zero structure, and a be an element of L. Then HT(a (n,L), T ) =

EmptyBagn and HC(a (n,L), T ) = a.

(26) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then

HT(HM(p, T ), T ) = HT(p, T ).

(27) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then

HC(HM(p, T ), T ) = HC(p, T ).

(28) Let n be an ordinal number, T be a connected term order of n, L

be a non empty zero structure, and p be a polynomial of n, L. Then

HM(HM(p, T ), T ) = HM(p, T ).

(29) Let n be an ordinal number, T be an admissible connected term order of

n, L be an add-associative right complementable left zeroed right zeroed

unital distributive integral domain-like non trivial double loop structure,

and p, q be non-zero polynomials of n, L. Then HT(p, T ) + HT(q, T ) ∈
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Support(p ∗ q).

(30) Let n be an ordinal number, L be an add-associative right complementa-

ble right zeroed unital distributive non empty double loop structure, and

p, q be polynomials of n, L. Then Support(p ∗ q) ⊆ {s + t; s ranges over

elements of Bagsn, t ranges over elements of Bagsn : s ∈ Support p ∧ t ∈

Support q}.

(31) Let n be an ordinal number, T be an admissible connected term order

of n, L be an add-associative right complementable right zeroed unital

distributive integral domain-like non trivial double loop structure, and p, q

be non-zero polynomials of n, L. Then HT(p∗q, T ) = HT(p, T )+HT(q, T ).

(32) Let n be an ordinal number, T be an admissible connected term order

of n, L be an add-associative right complementable right zeroed unital

distributive integral domain-like non trivial double loop structure, and p,

q be non-zero polynomials of n, L. Then HC(p∗q, T ) = HC(p, T )·HC(q, T ).

(33) Let n be an ordinal number, T be an admissible connected term order

of n, L be an add-associative right complementable right zeroed unital

distributive integral domain-like non trivial double loop structure, and p, q

be non-zero polynomials of n, L. Then HM(p∗q, T ) = HM(p, T )∗HM(q, T ).

(34) Let n be an ordinal number, T be an admissible connected term order of

n, L be a right zeroed non empty loop structure, and p, q be polynomials

of n, L. Then HT(p + q, T ) ¬T maxT (HT(p, T ),HT(q, T )).

4. Reductum of a Polynomial

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed non empty loop structure,

and let p be a polynomial of n, L. The functor Red(p, T ) yielding a polynomial

of n, L is defined by:

(Def. 9) Red(p, T ) = p−HM(p, T ).

The following propositions are true:

(35) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial loop struc-

ture, and p be a polynomial of n, L. Then SupportRed(p, T ) ⊆ Support p.

(36) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed non trivial loop

structure, and p be a polynomial of n, L. Then SupportRed(p, T ) =

Support p \ {HT(p, T )}.

(37) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed non trivial loop
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structure, and p be a polynomial of n, L. Then Support(HM(p, T ) +

Red(p, T )) = Support p.

(38) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial loop struc-

ture, and p be a polynomial of n, L. Then HM(p, T ) + Red(p, T ) = p.

(39) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial loop struc-

ture, and p be a polynomial of n, L. Then (Red(p, T ))(HT(p, T )) = 0L.

(40) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial loop struc-

ture, p be a polynomial of n, L, and b be a bag of n. If b ∈ Support p and

b 6= HT(p, T ), then (Red(p, T ))(b) = p(b).
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