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Summary. In this article we describe the dimension of real unitary space.
Most of theorems are restricted from real linear space. In the last section, we

introduce affine subset of real unitary space.

MML Identifier: RUSUB 4.

The papers [14], [13], [19], [2], [3], [4], [1], [5], [11], [18], [6], [10], [17], [16], [12],

[15], [9], [8], and [7] provide the terminology and notation for this paper.

1. Finite-dimensional Real Unitary Space

One can prove the following two propositions:

(1) Let V be a real unitary space, A, B be finite subsets of V , and v be a

vector of V . Suppose v ∈ Lin(A∪B) and v /∈ Lin(B). Then there exists a

vector w of V such that w ∈ A and w ∈ Lin(((A ∪B) \ {w}) ∪ {v}).

(2) Let V be a real unitary space and A, B be finite subsets of V . Suppose

the unitary space structure of V = Lin(A) and B is linearly independent.

Then B ¬ A and there exists a finite subset C of V such that C ⊆ A and

C = A − B and the unitary space structure of V = Lin(B ∪ C).

Let V be a real unitary space. We say that V is finite dimensional if and

only if:

(Def. 1) There exists a finite subset of the carrier of V which is a basis of V .

23
c© 2003 University of Białystok

ISSN 1426–2630



24 noboru endou et al.

Let us mention that there exists a real unitary space which is strict and

finite dimensional.

Let V be a real unitary space. Let us observe that V is finite dimensional if

and only if:

(Def. 2) There exists a finite subset of V which is a basis of V .

We now state several propositions:

(3) For every real unitary space V such that V is finite dimensional holds

every basis of V is finite.

(4) Let V be a real unitary space and A be a subset of V . Suppose V is

finite dimensional and A is linearly independent. Then A is finite.

(5) For every real unitary space V and for all bases A, B of V such that V

is finite dimensional holds A = B.

(6) For every real unitary space V holds 0V is finite dimensional.

(7) Let V be a real unitary space and W be a subspace of V . If V is finite

dimensional, then W is finite dimensional.

Let V be a real unitary space. Note that there exists a subspace of V which

is finite dimensional and strict.

Let V be a finite dimensional real unitary space. Observe that every subspace

of V is finite dimensional.

Let V be a finite dimensional real unitary space. Observe that there exists

a subspace of V which is strict.

2. Dimension of Real Unitary Space

Let V be a real unitary space. Let us assume that V is finite dimensional.

The functor dim(V ) yielding a natural number is defined by:

(Def. 3) For every basis I of V holds dim(V ) = I .

One can prove the following propositions:

(8) For every finite dimensional real unitary space V and for every subspace

W of V holds dim(W ) ¬ dim(V ).

(9) Let V be a finite dimensional real unitary space and A be a subset of V .

If A is linearly independent, then A = dim(Lin(A)).

(10) For every finite dimensional real unitary space V holds dim(V ) =

dim(ΩV ).

(11) Let V be a finite dimensional real unitary space and W be a subspace

of V . Then dim(V ) = dim(W ) if and only if ΩV = ΩW .

(12) For every finite dimensional real unitary space V holds dim(V ) = 0 iff

ΩV = 0V .
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(13) Let V be a finite dimensional real unitary space. Then dim(V ) = 1 if and

only if there exists a vector v of V such that v 6= 0V and ΩV = Lin({v}).

(14) Let V be a finite dimensional real unitary space. Then dim(V ) = 2 if

and only if there exist vectors u, v of V such that u 6= v and {u, v} is

linearly independent and ΩV = Lin({u, v}).

(15) For every finite dimensional real unitary space V and for all subspaces

W1, W2 of V holds dim(W1 +W2)+dim(W1∩W2) = dim(W1)+dim(W2).

(16) For every finite dimensional real unitary space V and for all subspaces

W1, W2 of V holds dim(W1 ∩W2)  (dim(W1) + dim(W2))− dim(V ).

(17) Let V be a finite dimensional real unitary space andW1,W2 be subspaces

of V . If V is the direct sum of W1 and W2, then dim(V ) = dim(W1) +

dim(W2).

3. Fixed-dimensional Subspace Family

We now state the proposition

(18) Let V be a finite dimensional real unitary space, W be a subspace of V ,

and n be a natural number. Then n ¬ dim(V ) if and only if there exists

a strict subspace W of V such that dim(W ) = n.

Let V be a finite dimensional real unitary space and let n be a natural

number. The functor Subn(V ) yields a set and is defined as follows:

(Def. 4) For every set x holds x ∈ Subn(V ) iff there exists a strict subspace W

of V such that W = x and dim(W ) = n.

Next we state three propositions:

(19) Let V be a finite dimensional real unitary space and n be a natural

number. If n ¬ dim(V ), then Subn(V ) is non empty.

(20) For every finite dimensional real unitary space V and for every natural

number n such that dim(V ) < n holds Subn(V ) = ∅.

(21) Let V be a finite dimensional real unitary space, W be a subspace of V ,

and n be a natural number. Then Subn(W ) ⊆ Subn(V ).

4. Affine Set

Let V be a non empty RLS structure and let S be a subset of V . We say

that S is Affine if and only if:

(Def. 5) For all vectors x, y of V and for every real number a such that x ∈ S

and y ∈ S holds (1− a) · x + a · y ∈ S.

One can prove the following propositions:
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(22) For every non empty RLS structure V holds ΩV is Affine and ∅V is

Affine.

(23) For every real linear space-like non empty RLS structure V and for every

vector v of V holds {v} is Affine.

Let V be a non empty RLS structure. Observe that there exists a subset of

V which is non empty and Affine and there exists a subset of V which is empty

and Affine.

Let V be a real linear space and let W be a subspace of V . The functor

Up(W ) yielding a non empty subset of V is defined by:

(Def. 6) Up(W ) = the carrier of W .

Let V be a real unitary space and let W be a subspace of V . The functor

Up(W ) yielding a non empty subset of V is defined by:

(Def. 7) Up(W ) = the carrier of W .

We now state two propositions:

(24) For every real linear space V and for every subspace W of V holds

Up(W ) is Affine and 0V ∈ the carrier of W .

(25) Let V be a real linear space and A be a Affine subset of V . Suppose

0V ∈ A. Let x be a vector of V and a be a real number. If x ∈ A, then

a · x ∈ A.

Let V be a non empty RLS structure and let S be a non empty subset of V .

We say that S is Subspace-like if and only if the conditions (Def. 8) are satisfied.

(Def. 8)(i) The zero of V ∈ S, and

(ii) for all elements x, y of the carrier of V and for every real number a

such that x ∈ S and y ∈ S holds x + y ∈ S and a · x ∈ S.

One can prove the following propositions:

(26) Let V be a real linear space and A be a non empty Affine subset of V .

If 0V ∈ A, then A is Subspace-like and A = the carrier of Lin(A).

(27) For every real linear space V and for every subspace W of V holds

Up(W ) is Subspace-like.

(28) For every real linear space V and for every strict subspace W of V holds

W = Lin(Up(W )).

(29) Let V be a real unitary space and A be a non empty Affine subset of V .

If 0V ∈ A, then A = the carrier of Lin(A).

(30) For every real unitary space V and for every subspace W of V holds

Up(W ) is Subspace-like.

(31) For every real unitary space V and for every strict subspace W of V

holds W = Lin(Up(W )).

Let V be a non empty loop structure, let M be a subset of the carrier of V ,

and let v be an element of the carrier of V . The functor v + M yields a subset
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of V and is defined as follows:

(Def. 9) v + M = {v + u;u ranges over elements of the carrier of V : u ∈M}.

We now state three propositions:

(32) Let V be a real linear space, W be a strict subspace of V , M be a

subset of the carrier of V , and v be a vector of V . If Up(W ) = M, then

v + W = v + M.

(33) Let V be an Abelian add-associative real linear space-like non empty

RLS structure, M be a Affine subset of V , and v be a vector of V . Then

v + M is Affine.

(34) Let V be a real unitary space, W be a strict subspace of V , M be a

subset of the carrier of V , and v be a vector of V . If Up(W ) = M, then

v + W = v + M.

Let V be a non empty loop structure and let M , N be subsets of the carrier

of V . The functor M + N yields a subset of V and is defined as follows:

(Def. 10) M + N = {u + v; u ranges over elements of the carrier of V , v ranges

over elements of the carrier of V : u ∈M ∧ v ∈ N}.

We now state the proposition

(35) For every Abelian non empty loop structure V and for all subsets M , N

of V holds N + M = M + N.

Let V be an Abelian non empty loop structure and let M , N be subsets of

V . Let us observe that the functor M + N is commutative.

Next we state four propositions:

(36) Let V be a non empty loop structure, M be a subset of V , and v be an

element of the carrier of V . Then {v}+ M = v + M.

(37) Let V be an Abelian add-associative real linear space-like non empty

RLS structure, M be a Affine subset of V , and v be a vector of V . Then

{v}+ M is Affine.

(38) For every non empty RLS structure V and for all Affine subsets M , N

of V holds M ∩N is Affine.

(39) Let V be an Abelian add-associative real linear space-like non empty

RLS structure and M , N be Affine subsets of V . Then M + N is Affine.
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