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The articles [6], [3], [10], [7], [1], [11], [2], [5], [9], [8], and [4] provide the notation

and terminology for this paper.

1. Definition and Axioms of the Subspace of Real Unitary Space

Let V be a real unitary space. A real unitary space is said to be a subspace

of V if it satisfies the conditions (Def. 1).

(Def. 1)(i) The carrier of it ⊆ the carrier of V ,

(ii) the zero of it = the zero of V ,

(iii) the addition of it = (the addition of V )↾[: the carrier of it, the carrier

of it :],

(iv) the external multiplication of it = (the external multiplication of

V )↾[: R, the carrier of it :], and

(v) the scalar product of it = (the scalar product of V )↾[: the carrier of it,

the carrier of it :].

We now state a number of propositions:
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(1) Let V be a real unitary space, W1, W2 be subspaces of V , and x be a

set. If x ∈W1 and W1 is a subspace of W2, then x ∈W2.

(2) For every real unitary space V and for every subspace W of V and for

every set x such that x ∈W holds x ∈ V.

(3) For every real unitary space V and for every subspace W of V holds

every vector of W is a vector of V .

(4) For every real unitary space V and for every subspace W of V holds

0W = 0V .

(5) For every real unitary space V and for all subspaces W1, W2 of V holds

0(W1) = 0(W2).

(6) Let V be a real unitary space, W be a subspace of V , u, v be vectors of

V , and w1, w2 be vectors ofW . If w1 = v and w2 = u, then w1+w2 = v+u.

(7) Let V be a real unitary space,W be a subspace of V , v be a vector of V ,

w be a vector of W , and a be a real number. If w = v, then a · w = a · v.

(8) Let V be a real unitary space, W be a subspace of V , v1, v2 be vectors

of V , and w1, w2 be vectors ofW . If w1 = v1 and w2 = v2, then (w1|w2) =

(v1|v2).

(9) Let V be a real unitary space, W be a subspace of V , v be a vector of

V , and w be a vector of W . If w = v, then −v = −w.

(10) Let V be a real unitary space, W be a subspace of V , u, v be vectors of

V , and w1, w2 be vectors ofW . If w1 = v and w2 = u, then w1−w2 = v−u.

(11) For every real unitary space V and for every subspace W of V holds

0V ∈W.

(12) For every real unitary space V and for all subspaces W1, W2 of V holds

0(W1) ∈W2.

(13) For every real unitary space V and for every subspace W of V holds

0W ∈ V.

(14) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . If u ∈W and v ∈W, then u + v ∈W.

(15) Let V be a real unitary space, W be a subspace of V , v be a vector of

V , and a be a real number. If v ∈W, then a · v ∈W.

(16) For every real unitary space V and for every subspace W of V and for

every vector v of V such that v ∈W holds −v ∈W.

(17) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . If u ∈W and v ∈W, then u− v ∈W.

(18) Let V be a real unitary space, V1 be a subset of the carrier of V , D be

a non empty set, d1 be an element of D, A be a binary operation on D,

M be a function from [: R, D :] into D, and S be a function from [:D, D :]

into R. Suppose that
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(i) V1 = D,

(ii) d1 = 0V ,

(iii) A = (the addition of V )↾[:V1, V1 :],

(iv) M = (the external multiplication of V )↾[: R, V1 :], and

(v) S = (the scalar product of V )↾[:V1, V1 :].

Then 〈D, d1, A, M, S〉 is a subspace of V .

(19) Every real unitary space V is a subspace of V .

(20) For all strict real unitary spaces V , X such that V is a subspace of X

and X is a subspace of V holds V = X.

(21) Let V , X, Y be real unitary spaces. Suppose V is a subspace of X and

X is a subspace of Y . Then V is a subspace of Y .

(22) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose

the carrier of W1 ⊆ the carrier of W2. Then W1 is a subspace of W2.

(23) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose

that for every vector v of V such that v ∈ W1 holds v ∈ W2. Then W1 is

a subspace of W2.

Let V be a real unitary space. Observe that there exists a subspace of V

which is strict.

Next we state several propositions:

(24) Let V be a real unitary space and W1, W2 be strict subspaces of V . If

the carrier of W1 = the carrier of W2, then W1 = W2.

(25) Let V be a real unitary space and W1, W2 be strict subspaces of V . If

for every vector v of V holds v ∈W1 iff v ∈W2, then W1 = W2.

(26) Let V be a strict real unitary space and W be a strict subspace of V . If

the carrier of W = the carrier of V , then W = V.

(27) Let V be a strict real unitary space and W be a strict subspace of V . If

for every vector v of V holds v ∈W iff v ∈ V, then W = V.

(28) Let V be a real unitary space,W be a subspace of V , and V1 be a subset

of the carrier of V . If the carrier of W = V1, then V1 is linearly closed.

(29) Let V be a real unitary space,W be a subspace of V , and V1 be a subset

of the carrier of V . Suppose V1 6= ∅ and V1 is linearly closed. Then there

exists a strict subspace W of V such that V1 = the carrier of W .

2. Definition of Zero Subspace and Improper Subspace of Real

Unitary Space

Let V be a real unitary space. The functor 0V yields a strict subspace of V

and is defined by:

(Def. 2) The carrier of 0V = {0V }.
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Let V be a real unitary space. The functor ΩV yielding a strict subspace of

V is defined by:

(Def. 3) ΩV = the unitary space structure of V .

3. Theorems of Zero Subspace and Improper Subspace

Next we state several propositions:

(30) For every real unitary space V and for every subspace W of V holds

0W = 0V .

(31) For every real unitary space V and for all subspaces W1, W2 of V holds

0(W1) = 0(W2).

(32) For every real unitary space V and for every subspace W of V holds 0W
is a subspace of V .

(33) For every real unitary space V and for every subspace W of V holds 0V
is a subspace of W .

(34) For every real unitary space V and for all subspaces W1, W2 of V holds

0(W1) is a subspace of W2.

(35) Every strict real unitary space V is a subspace of ΩV .

4. The Cosets of Subspace of Real Unitary Space

Let V be a real unitary space, let v be a vector of V , and letW be a subspace

of V . The functor v + W yields a subset of the carrier of V and is defined as

follows:

(Def. 4) v + W = {v + u; u ranges over vectors of V : u ∈W}.

Let V be a real unitary space and let W be a subspace of V . A subset of

the carrier of V is said to be a coset of W if:

(Def. 5) There exists a vector v of V such that it = v + W.

5. Theorems of the Cosets

We now state a number of propositions:

(36) Let V be a real unitary space, W be a subspace of V , and v be a vector

of V . Then 0V ∈ v + W if and only if v ∈W.

(37) For every real unitary space V and for every subspace W of V and for

every vector v of V holds v ∈ v + W.

(38) For every real unitary space V and for every subspace W of V holds

0V + W = the carrier of W .
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(39) For every real unitary space V and for every vector v of V holds v+0V =

{v}.

(40) For every real unitary space V and for every vector v of V holds v+ΩV =

the carrier of V .

(41) Let V be a real unitary space, W be a subspace of V , and v be a vector

of V . Then 0V ∈ v + W if and only if v + W = the carrier of W .

(42) Let V be a real unitary space, W be a subspace of V , and v be a vector

of V . Then v ∈W if and only if v + W = the carrier of W .

(43) Let V be a real unitary space, W be a subspace of V , v be a vector of

V , and a be a real number. If v ∈W, then a · v + W = the carrier of W .

(44) Let V be a real unitary space, W be a subspace of V , v be a vector of

V , and a be a real number. If a 6= 0 and a · v + W = the carrier of W ,

then v ∈W.

(45) Let V be a real unitary space, W be a subspace of V , and v be a vector

of V . Then v ∈W if and only if −v + W = the carrier of W .

(46) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . Then u ∈W if and only if v + W = v + u + W.

(47) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . Then u ∈W if and only if v + W = (v − u) + W.

(48) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . Then v ∈ u + W if and only if u + W = v + W.

(49) Let V be a real unitary space, W be a subspace of V , and v be a vector

of V . Then v + W = −v + W if and only if v ∈W.

(50) Let V be a real unitary space, W be a subspace of V , and u, v1, v2 be

vectors of V . If u ∈ v1 + W and u ∈ v2 + W, then v1 + W = v2 + W.

(51) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . If u ∈ v + W and u ∈ −v + W, then v ∈W.

(52) Let V be a real unitary space, W be a subspace of V , v be a vector of

V , and a be a real number. If a 6= 1 and a · v ∈ v + W, then v ∈W.

(53) Let V be a real unitary space, W be a subspace of V , v be a vector of

V , and a be a real number. If v ∈W, then a · v ∈ v + W.

(54) Let V be a real unitary space, W be a subspace of V , and v be a vector

of V . Then −v ∈ v + W if and only if v ∈W.

(55) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . Then u + v ∈ v + W if and only if u ∈W.

(56) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . Then v − u ∈ v + W if and only if u ∈W.

(57) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . Then u ∈ v +W if and only if there exists a vector v1 of V such that
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v1 ∈W and u = v + v1.

(58) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . Then u ∈ v +W if and only if there exists a vector v1 of V such that

v1 ∈W and u = v − v1.

(59) Let V be a real unitary space, W be a subspace of V , and v1, v2 be

vectors of V . Then there exists a vector v of V such that v1 ∈ v + W and

v2 ∈ v + W if and only if v1 − v2 ∈W.

(60) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . If v+W = u+W, then there exists a vector v1 of V such that v1 ∈W

and v + v1 = u.

(61) Let V be a real unitary space,W be a subspace of V , and u, v be vectors

of V . If v+W = u+W, then there exists a vector v1 of V such that v1 ∈W

and v − v1 = u.

(62) Let V be a real unitary space, W1, W2 be strict subspaces of V , and v

be a vector of V . Then v + W1 = v + W2 if and only if W1 = W2.

(63) Let V be a real unitary space, W1, W2 be strict subspaces of V , and u,

v be vectors of V . If v + W1 = u + W2, then W1 = W2.

(64) Let V be a real unitary space, W be a subspace of V , and C be a coset

of W . Then C is linearly closed if and only if C = the carrier of W .

(65) Let V be a real unitary space, W1, W2 be strict subspaces of V , C1 be

a coset of W1, and C2 be a coset of W2. If C1 = C2, then W1 = W2.

(66) Let V be a real unitary space, W be a subspace of V , C be a coset of

W , and v be a vector of V . Then {v} is a coset of 0V .

(67) Let V be a real unitary space, W be a subspace of V , V1 be a subset of

the carrier of V , and v be a vector of V . If V1 is a coset of 0V , then there

exists a vector v of V such that V1 = {v}.

(68) For every real unitary space V and for every subspace W of V holds the

carrier of W is a coset of W .

(69) For every real unitary space V holds the carrier of V is a coset of ΩV .

(70) Let V be a real unitary space,W be a subspace of V , and V1 be a subset

of the carrier of V . If V1 is a coset of ΩV , then V1 = the carrier of V .

(71) Let V be a real unitary space, W be a subspace of V , and C be a coset

of W . Then 0V ∈ C if and only if C = the carrier of W .

(72) Let V be a real unitary space, W be a subspace of V , C be a coset of

W , and u be a vector of V . Then u ∈ C if and only if C = u + W.

(73) Let V be a real unitary space,W be a subspace of V , C be a coset ofW ,

and u, v be vectors of V . If u ∈ C and v ∈ C, then there exists a vector

v1 of V such that v1 ∈W and u + v1 = v.

(74) Let V be a real unitary space,W be a subspace of V , C be a coset ofW ,
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and u, v be vectors of V . If u ∈ C and v ∈ C, then there exists a vector

v1 of V such that v1 ∈W and u− v1 = v.

(75) Let V be a real unitary space, W be a subspace of V , and v1, v2 be

vectors of V . Then there exists a coset C of W such that v1 ∈ C and

v2 ∈ C if and only if v1 − v2 ∈W.

(76) Let V be a real unitary space, W be a subspace of V , u be a vector of

V , and B, C be cosets of W . If u ∈ B and u ∈ C, then B = C.
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