Processes in Petri Nets

Grzegorz Bancerek Białystok Technical University Mitsuru Aoki Shinshu University Nagano

Akio Matsumoto Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. Sequential and concurrent compositions of processes in Petri nets are introduced. A process is formalized as a set of (possible), so called, firing sequences. In the definition of the sequential composition the standard concatenation is used

 R_1 before $R_2 = \{p_1 \cap p_2 : p_1 \in R_1 \land p_2 \in R_2\}$

The definition of the concurrent composition is more complicated

 $R_1 \operatorname{concur} R_2 = \{q_1 \cup q_2 : q_1 \text{ misses } q_2 \land \operatorname{Seq} q_1 \in R_1 \land \operatorname{Seq} q_2 \in R_2\}$

For example,

 $\{\langle t_0 \rangle\} \operatorname{concur}\{\langle t_1, t_2 \rangle\} = \{\langle t_0, t_1, t_2 \rangle, \langle t_1, t_0, t_2 \rangle, \langle t_1, t_2, t_0 \rangle\}$

The basic properties of the compositions are shown.

MML Identifier: PNPROC_1.

The notation and terminology used in this paper are introduced in the following papers: [14], [13], [18], [6], [17], [9], [1], [3], [7], [12], [2], [10], [15], [5], [16], [8], [11], and [4].

C 2003 University of Białystok ISSN 1426-2630

1. Preliminaries

We adopt the following rules: i is a natural number and x, x_1, x_2, y_1, y_2 are sets.

Next we state three propositions:

- (1) If i > 0, then $\{\langle i, x \rangle\}$ is a finite subsequence.
- (2) For every finite subsequence q holds $q = \emptyset$ iff Seq $q = \emptyset$.
- (3) For every finite subsequence q such that $q = \{\langle i, x \rangle\}$ holds Seq $q = \langle x \rangle$.

Let us observe that every finite subsequence is finite.

We now state several propositions:

- (4) For every finite subsequence q such that $\text{Seq } q = \langle x \rangle$ there exists i such that $q = \{\langle i, x \rangle\}.$
- (5) If $\{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle\}$ is a finite sequence, then $x_1 = 1$ and $x_2 = 1$ and $y_1 = y_2$ or $x_1 = 1$ and $x_2 = 2$ or $x_1 = 2$ and $x_2 = 1$.
- (6) $\langle x_1, x_2 \rangle = \{ \langle 1, x_1 \rangle, \langle 2, x_2 \rangle \}.$
- (7) For every finite subsequence p holds $\overline{\overline{p}} = \operatorname{len} \operatorname{Seq} p$.
- (8) For all binary relations P, R such that dom P misses dom R holds P misses R.
- (9) For all sets X, Y and for all binary relations P, R such that X misses Y holds $P \upharpoonright X$ misses $R \upharpoonright Y$.
- (10) For all functions f, g, h such that $f \subseteq h$ and $g \subseteq h$ and f misses g holds dom f misses dom g.
- (11) For every set Y and for every binary relation R holds $Y \upharpoonright R \subseteq R \upharpoonright R^{-1}(Y)$.
- (12) For every set Y and for every function f holds $Y \restriction f = f \restriction f^{-1}(Y)$.

2. Markings on Petri Nets

Let P be a set. A function is called a marking of P if:

(Def. 1) dom it = P and rng it $\subseteq \mathbb{N}$.

We adopt the following convention: P, p, x denote sets, m_1 , m_2 , m_3 , m_4 , m denote markings of P, and i, j, j_1, k denote natural numbers.

Let P be a set, let m be a marking of P, and let p be a set. Then m(p) is a natural number. We introduce the m multitude of p as a synonym of m(p).

The scheme *MarkingLambda* deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding a natural number, and states that:

There exists a marking m of \mathcal{A} such that for every p such that

 $p \in \mathcal{A}$ holds the *m* multitude of $p = \mathcal{F}(p)$

for all values of the parameters.

Let us consider P, m_1, m_2 . Let us observe that $m_1 = m_2$ if and only if:

(Def. 2) For every p such that $p \in P$ holds the m_1 multitude of p = the m_2 multitude of p.

Let us consider P. The functor $\{\}_P$ yielding a marking of P is defined by:

(Def. 3) $\{\}_P = P \longmapsto 0.$

Let P be a set and let m_1, m_2 be markings of P. The predicate $m_1 \subseteq m_2$ is defined by:

- (Def. 4) For every set p such that $p \in P$ holds the m_1 multitude of $p \leq$ the m_2 multitude of p.
 - Let us note that the predicate $m_1 \subseteq m_2$ is reflexive.

We now state two propositions:

- (13) $\{\}_P \subseteq m.$
- (14) If $m_1 \subseteq m_2$ and $m_2 \subseteq m_3$, then $m_1 \subseteq m_3$.

Let P be a set and let m_1, m_2 be markings of P. The functor $m_1 + m_2$ yields a marking of P and is defined as follows:

(Def. 5) For every set p such that $p \in P$ holds the $m_1 + m_2$ multitude of p = (the m_1 multitude of p) + (the m_2 multitude of p).

Let us notice that the functor $m_1 + m_2$ is commutative.

The following proposition is true

(15) $m + \{\}_P = m.$

Let P be a set and let m_1, m_2 be markings of P. Let us assume that $m_2 \subseteq m_1$. The functor $m_1 - m_2$ yielding a marking of P is defined by:

(Def. 6) For every set p such that $p \in P$ holds the $m_1 - m_2$ multitude of p = (the m_1 multitude of p) – (the m_2 multitude of p).

One can prove the following propositions:

- $(16) \quad m_1 \subseteq m_1 + m_2.$
- (17) $m \{\}_P = m.$
- (18) If $m_1 \subseteq m_2$ and $m_2 \subseteq m_3$, then $m_3 m_2 \subseteq m_3 m_1$.
- $(19) \quad (m_1 + m_2) m_2 = m_1.$
- (20) If $m \subseteq m_1$ and $m_1 \subseteq m_2$, then $m_1 m \subseteq m_2 m$.
- (21) If $m_1 \subseteq m_2$, then $(m_2 + m_3) m_1 = (m_2 m_1) + m_3$.
- (22) If $m_1 \subseteq m_2$ and $m_2 \subseteq m_1$, then $m_1 = m_2$.
- (23) $(m_1 + m_2) + m_3 = m_1 + (m_2 + m_3).$
- (24) If $m_1 \subseteq m_2$ and $m_3 \subseteq m_4$, then $m_1 + m_3 \subseteq m_2 + m_4$.
- (25) If $m_1 \subseteq m_2$, then $m_2 m_1 \subseteq m_2$.
- (26) If $m_1 \subseteq m_2$ and $m_3 \subseteq m_4$ and $m_4 \subseteq m_1$, then $m_1 m_4 \subseteq m_2 m_3$.
- (27) If $m_1 \subseteq m_2$, then $m_2 = (m_2 m_1) + m_1$.
- $(28) \quad (m_1 + m_2) m_1 = m_2.$
- (29) If $m_2 + m_3 \subseteq m_1$, then $m_1 m_2 m_3 = m_1 (m_2 + m_3)$.

- (30) If $m_3 \subseteq m_2$ and $m_2 \subseteq m_1$, then $m_1 (m_2 m_3) = (m_1 m_2) + m_3$.
- (31) $m \in \mathbb{N}^P$.
- (32) If $x \in \mathbb{N}^P$, then x is a marking of P.

3. TRANSITIONS AND FIRING

Let us consider P. Transition of P is defined by:

(Def. 7) There exist m_1, m_2 such that it = $\langle m_1, m_2 \rangle$.

In the sequel t, t_1, t_2 denote transitions of P.

- Let us consider P, t. Then t_1 is a marking of P. We introduce Pre t as a synonym of t_1 . t_2 is a marking of P. We introduce Post t as a synonym of t_2 .
- Let us consider P, m, t. The functor fire(t, m) yielding a marking of P is defined by:

(Def. 8) fire
$$(t,m) = \begin{cases} (m - \operatorname{Pre} t) + \operatorname{Post} t, \text{ if } \operatorname{Pre} t \subseteq m, \\ m, \text{ otherwise.} \end{cases}$$

The following proposition is true

(33) If Pre t_1 + Pre $t_2 \subseteq m$, then fire $(t_2, \text{fire}(t_1, m)) = (m - \text{Pre } t_1 - \text{Pre } t_2) + \text{Post } t_1 + \text{Post } t_2$.

Let us consider P, t. The functor fire t yielding a function is defined by:

(Def. 9) domfire $t = \mathbb{N}^P$ and for every marking m of P holds (fire t)(m) = fire(t, m).

Next we state two propositions:

- (34) rng fire $t \subseteq \mathbb{N}^P$.
- (35) $\operatorname{fire}(t_2, \operatorname{fire}(t_1, m)) = (\operatorname{fire} t_2 \cdot \operatorname{fire} t_1)(m).$

Let us consider P. A non empty set is called a Petri net over P if:

(Def. 10) For every set x such that $x \in it$ holds x is a transition of P.

In the sequel N denotes a Petri net over P.

Let us consider P, N. We see that the element of N is a transition of P. In the sequel e, e_1 , e_2 denote elements of N.

4. FIRING SEQUENCES OF TRANSITIONS

Let us consider P, N. A firing-sequence of N is an element of N^* .

In the sequel C, C_1, C_2 are firing-sequences of N.

Let us consider P, N, C. The functor fire C yielding a function is defined by the condition (Def. 11).

(Def. 11) There exists a function yielding finite sequence F such that fire $C = \text{compose}_{\mathbb{N}^P} F$ and len F = len C and for every natural number i such that $i \in \text{dom } C$ holds $F(i) = \text{fire } (C_i \text{ qua element of } N)$.

128

The following propositions are true:

- (36) fire $(\varepsilon_N) = \mathrm{id}_{\mathbb{N}^P}$.
- (37) fire $\langle e \rangle$ = fire e.
- (38) fire $e \cdot \mathrm{id}_{\mathbb{N}^P}$ = fire e.
- (39) fire $\langle e_1, e_2 \rangle$ = fire $e_2 \cdot$ fire e_1 .
- (40) dom fire $C = \mathbb{N}^P$ and rng fire $C \subseteq \mathbb{N}^P$.
- (41) fire $(C_1 \cap C_2)$ = fire $C_2 \cdot$ fire C_1 .
- (42) fire $(C \cap \langle e \rangle)$ = fire $e \cdot$ fire C.

Let us consider P, N, C, m. The functor fire(C, m) yielding a marking of P is defined as follows:

(Def. 12) fire(C, m) = (fire C)(m).

5. SEQUENTIAL COMPOSITION

Let us consider P, N. A process in N is a subset of N^* .

In the sequel $R, R_1, R_2, R_3, P_1, P_2$ denote processes in N.

One can verify that every function which is finite sequence-like is also finite subsequence-like.

Let us consider P, N, R_1 , R_2 . The functor R_1 before R_2 yields a process in N and is defined by:

(Def. 13) R_1 before $R_2 = \{C_1 \cap C_2 : C_1 \in R_1 \land C_2 \in R_2\}.$

Let us consider P, N and let R_1 , R_2 be non empty processes in N. One can verify that R_1 before R_2 is non empty.

One can prove the following propositions:

- (43) $(R_1 \cup R_2)$ before $R = (R_1 \text{ before } R) \cup (R_2 \text{ before } R)$.
- (44) R before $(R_1 \cup R_2) = (R$ before $R_1) \cup (R$ before $R_2)$.
- (45) $\{C_1\}$ before $\{C_2\} = \{C_1 \cap C_2\}.$
- (46) $\{C_1, C_2\}$ before $\{C\} = \{C_1 \cap C, C_2 \cap C\}.$
- (47) $\{C\}$ before $\{C_1, C_2\} = \{C \cap C_1, C \cap C_2\}.$

6. CONCURRENT COMPOSITION

Let us consider P, N, R_1 , R_2 . The functor R_1 concur R_2 yielding a process in N is defined as follows:

(Def. 14) $R_1 \operatorname{concur} R_2 = \{C : \bigvee_{q_1,q_2: \text{finite subsequence}} (C = q_1 \cup q_2 \land q_1 \text{ misses} q_2 \land \operatorname{Seq} q_1 \in R_1 \land \operatorname{Seq} q_2 \in R_2)\}.$

Let us observe that the functor R_1 concur R_2 is commutative.

Next we state four propositions:

- (48) $(R_1 \cup R_2)$ concur $R = (R_1 \operatorname{concur} R) \cup (R_2 \operatorname{concur} R).$
- (49) $\{\langle e_1 \rangle\}$ concur $\{\langle e_2 \rangle\} = \{\langle e_1, e_2 \rangle, \langle e_2, e_1 \rangle\}.$
- (50) $\{\langle e_1 \rangle, \langle e_2 \rangle\}$ concur $\{\langle e \rangle\} = \{\langle e_1, e \rangle, \langle e_2, e \rangle, \langle e, e_1 \rangle, \langle e, e_2 \rangle\}.$
- (51) $(R_1 \text{ before } R_2) \text{ before } R_3 = R_1 \text{ before}(R_2 \text{ before } R_3).$

Let p be a finite subsequence and let i be a natural number. The functor Shift^{*i*} p yielding a finite subsequence is defined as follows:

(Def. 15) dom Shiftⁱ $p = \{i + k; k \text{ ranges over natural numbers: } k \in \text{dom } p\}$ and for every natural number j such that $j \in \text{dom } p$ holds $(\text{Shift}^i p)(i+j) = p(j)$.

In the sequel q, q_1, q_2 denote finite subsequences.

One can prove the following propositions:

- (52) Shift⁰ q = q.
- (53) Shift^{i+j} q =Shiftⁱ Shift^j q.
- (54) For every finite sequence p such that $p \neq \emptyset$ holds dom Shiftⁱ $p = \{j_1 : i+1 \leq j_1 \land j_1 \leq i+\ln p\}.$
- (55) For every finite subsequence q holds $q = \emptyset$ iff Shiftⁱ $q = \emptyset$.
- (56) Let q be a finite subsequence. Then there exists a finite subsequence s_1 such that dom $s_1 = \text{dom } q$ and $\text{rng } s_1 = \text{dom Shift}^i q$ and for every k such that $k \in \text{dom } q$ holds $s_1(k) = i + k$ and s_1 is one-to-one.
- (57) For every finite subsequence q holds $\overline{\overline{q}} = \overline{\text{Shift}^i q}$.
- (58) For every finite sequence p holds dom $p = \text{dom Seq Shift}^i p$.
- (59) For every finite sequence p such that $k \in \text{dom } p$ holds $(\text{Sgm dom Shift}^i p)(k) = i + k.$
- (60) For every finite sequence p such that $k \in \text{dom } p$ holds $(\text{Seq Shift}^i p)(k) = p(k)$.
- (61) For every finite sequence p holds Seq Shift^{*i*} p = p.

In the sequel p_1 , p_2 are finite sequences.

One can prove the following propositions:

- (62) $\operatorname{dom}(p_1 \cup \operatorname{Shift}^{\operatorname{len} p_1} p_2) = \operatorname{Seg}(\operatorname{len} p_1 + \operatorname{len} p_2).$
- (63) For every finite sequence p_1 and for every finite subsequence p_2 such that $\operatorname{len} p_1 \leq i$ holds dom p_1 misses dom Shiftⁱ p_2 .
- (64) For all finite sequences p_1, p_2 holds $p_1 \cap p_2 = p_1 \cup \text{Shift}^{\text{len } p_1} p_2$.
- (65) For every finite sequence p_1 and for every finite subsequence p_2 such that $i \ge \ln p_1$ holds p_1 misses Shiftⁱ p_2 .
- (66) $(R_1 \operatorname{concur} R_2) \operatorname{concur} R_3 = R_1 \operatorname{concur} (R_2 \operatorname{concur} R_3).$
- (67) R_1 before $R_2 \subseteq R_1$ concur R_2 .
- (68) If $R_1 \subseteq P_1$ and $R_2 \subseteq P_2$, then R_1 before $R_2 \subseteq P_1$ before P_2 .
- (69) If $R_1 \subseteq P_1$ and $R_2 \subseteq P_2$, then R_1 concur $R_2 \subseteq P_1$ concur P_2 .
- (70) For all finite subsequences p, q such that $q \subseteq p$ holds $\operatorname{Shift}^{i} q \subseteq \operatorname{Shift}^{i} p$.

- (71) For all finite sequences p_1, p_2 holds Shift^{len p_1} $p_2 \subseteq p_1 \cap p_2$.
- (72) If dom q_1 misses dom q_2 , then dom Shiftⁱ q_1 misses dom Shiftⁱ q_2 .
- (73) For all finite subsequences q, q_1 , q_2 such that $q = q_1 \cup q_2$ and q_1 misses q_2 holds Shiftⁱ $q_1 \cup$ Shiftⁱ $q_2 =$ Shiftⁱ q.
- (74) For every finite subsequence q holds dom Seq $q = \text{dom Seq Shift}^{i} q$.
- (75) For every finite subsequence q such that $k \in \text{dom Seq } q$ there exists j such that j = (Sgm dom q)(k) and $(\text{Sgm dom Shift}^i q)(k) = i + j$.
- (76) For every finite subsequence q such that $k \in \operatorname{dom} \operatorname{Seq} q$ holds (Seq Shiftⁱ q) $(k) = (\operatorname{Seq} q)(k)$.
- (77) For every finite subsequence q holds $\operatorname{Seq} q = \operatorname{Seq} \operatorname{Shift}^{i} q$.
- (78) For every finite subsequence q such that dom $q \subseteq \operatorname{Seg} k$ holds dom Shiftⁱ $q \subseteq \operatorname{Seg}(i+k)$.
- (79) Let p be a finite sequence and q_1, q_2 be finite subsequences. If $q_1 \subseteq p$, then there exists a finite subsequence s_1 such that $s_1 = q_1 \cup \text{Shift}^{\text{len } p} q_2$.
- (80) Let p_1 , p_2 be finite sequences and q_1 , q_2 be finite subsequences. Suppose $q_1 \subseteq p_1$ and $q_2 \subseteq p_2$. Then there exists a finite subsequence s_1 such that $s_1 = q_1 \cup \text{Shift}^{\text{len } p_1} q_2$ and dom $\text{Seq } s_1 = \text{Seg}(\text{len Seq } q_1 + \text{len Seq } q_2)$.
- (81) Let p_1, p_2 be finite sequences and q_1, q_2 be finite subsequences. Suppose $q_1 \subseteq p_1$ and $q_2 \subseteq p_2$. Then there exists a finite subsequence s_1 such that $s_1 = q_1 \cup \operatorname{Shift}^{\operatorname{len} p_1} q_2$ and dom $\operatorname{Seq} s_1 = \operatorname{Seq} (\operatorname{len} \operatorname{Seq} q_1 + \operatorname{len} \operatorname{Seq} q_2)$ and $\operatorname{Seq} s_1 = \operatorname{Seq} q_1 \cup \operatorname{Shift}^{\operatorname{len} \operatorname{Seq} q_1} \operatorname{Seq} q_2$.
- (82) Let p_1, p_2 be finite sequences and q_1, q_2 be finite subsequences. Suppose $q_1 \subseteq p_1$ and $q_2 \subseteq p_2$. Then there exists a finite subsequence s_1 such that $s_1 = q_1 \cup \text{Shift}^{\text{len } p_1} q_2$ and $(\text{Seq } q_1) \cap (\text{Seq } q_2) = \text{Seq } s_1$.
- (83) $(R_1 \operatorname{concur} R_2) \operatorname{before}(P_1 \operatorname{concur} P_2) \subseteq (R_1 \operatorname{before} P_1) \operatorname{concur}(R_2 \operatorname{before} P_2).$

Let us consider P, N and let R_1 , R_2 be non empty processes in N. Note that R_1 concur R_2 is non empty.

7. Neutral Process

Let us consider P and let N be a Petri net over P. The neutral process in N yields a non empty process in N and is defined as follows:

(Def. 16) The neutral process in $N = \{\varepsilon_N\}$.

Let us consider P, let N be a Petri net over P, and let t be an element of N. The elementary process with t yielding a non empty process in N is defined as follows:

(Def. 17) The elementary process with $t = \{\langle t \rangle\}$.

One can prove the following propositions:

(84) (The neutral process in N) before R = R.

- (85) R before the neutral process in N = R.
- (86) (The neutral process in N) concur R = R.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] 1990.
- [8] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part 1. Formalized Mathematics, 2(5):683-687, 1991.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103– 108, 1993.
- [12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [16] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
 [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Zimaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):07-71, 1990.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received December 20, 2002