
FORMALIZED MATHEMATICS

Volume 11, Number 1, 2003

University of Białystok

Processes in Petri Nets

Grzegorz Bancerek

Białystok Technical University

Mitsuru Aoki

Shinshu University

Nagano

Akio Matsumoto

Shinshu University

Nagano

Yasunari Shidama

Shinshu University

Nagano

Summary. Sequential and concurrent compositions of processes in Petri
nets are introduced. A process is formalized as a set of (possible), so called,

firing sequences. In the definition of the sequential composition the standard

concatenation is used

R1 beforeR2 = {p1

⌢
p2 : p1 ∈ R1 ∧ p2 ∈ R2}

The definition of the concurrent composition is more complicated

R1 concurR2 = {q1 ∪ q2 : q1 misses q2 ∧ Seq q1 ∈ R1 ∧ Seq q2 ∈ R2}

For example,

{〈t0〉} concur{〈t1, t2〉} = {〈t0, t1, t2〉, 〈t1, t0, t2〉, 〈t1, t2, t0〉}

The basic properties of the compositions are shown.

MML Identifier: PNPROC 1.

The notation and terminology used in this paper are introduced in the following

papers: [14], [13], [18], [6], [17], [9], [1], [3], [7], [12], [2], [10], [15], [5], [16], [8],

[11], and [4].

125
c© 2003 University of Białystok

ISSN 1426–2630

126 grzegorz bancerek et al.

1. Preliminaries

We adopt the following rules: i is a natural number and x, x1, x2, y1, y2 are

sets.

Next we state three propositions:

(1) If i > 0, then {〈〈i, x〉〉} is a finite subsequence.

(2) For every finite subsequence q holds q = ∅ iff Seq q = ∅.

(3) For every finite subsequence q such that q = {〈〈i, x〉〉} holds Seq q = 〈x〉.

Let us observe that every finite subsequence is finite.

We now state several propositions:

(4) For every finite subsequence q such that Seq q = 〈x〉 there exists i such

that q = {〈〈i, x〉〉}.

(5) If {〈〈x1, y1〉〉, 〈〈x2, y2〉〉} is a finite sequence, then x1 = 1 and x2 = 1 and

y1 = y2 or x1 = 1 and x2 = 2 or x1 = 2 and x2 = 1.

(6) 〈x1, x2〉 = {〈〈1, x1〉〉, 〈〈2, x2〉〉}.

(7) For every finite subsequence p holds p = len Seq p.

(8) For all binary relations P , R such that domP misses domR holds P

misses R.

(9) For all sets X, Y and for all binary relations P , R such that X misses

Y holds P ↾X misses R↾Y.

(10) For all functions f , g, h such that f ⊆ h and g ⊆ h and f misses g holds

dom f misses dom g.

(11) For every set Y and for every binary relation R holds Y ↾R ⊆ R↾R−1(Y).

(12) For every set Y and for every function f holds Y ↾f = f↾f−1(Y).

2. Markings on Petri Nets

Let P be a set. A function is called a marking of P if:

(Def. 1) dom it = P and rng it ⊆ N.

We adopt the following convention: P , p, x denote sets, m1, m2, m3, m4, m

denote markings of P , and i, j, j1, k denote natural numbers.

Let P be a set, let m be a marking of P , and let p be a set. Then m(p) is a

natural number. We introduce the m multitude of p as a synonym of m(p).

The scheme MarkingLambda deals with a set A and a unary functor F

yielding a natural number, and states that:

There exists a marking m of A such that for every p such that

p ∈ A holds the m multitude of p = F(p)

for all values of the parameters.

Let us consider P , m1, m2. Let us observe that m1 = m2 if and only if:

processes in petri nets 127

(Def. 2) For every p such that p ∈ P holds the m1 multitude of p = the m2

multitude of p.

Let us consider P . The functor {}P yielding a marking of P is defined by:

(Def. 3) {}P = P 7−→ 0.

Let P be a set and let m1, m2 be markings of P . The predicate m1 ⊆ m2 is

defined by:

(Def. 4) For every set p such that p ∈ P holds the m1 multitude of p ¬ the m2

multitude of p.

Let us note that the predicate m1 ⊆ m2 is reflexive.

We now state two propositions:

(13) {}P ⊆ m.

(14) If m1 ⊆ m2 and m2 ⊆ m3, then m1 ⊆ m3.

Let P be a set and let m1, m2 be markings of P . The functor m1 +m2 yields

a marking of P and is defined as follows:

(Def. 5) For every set p such that p ∈ P holds the m1 +m2 multitude of p = (the

m1 multitude of p) + (the m2 multitude of p).

Let us notice that the functor m1 + m2 is commutative.

The following proposition is true

(15) m + {}P = m.

Let P be a set and letm1,m2 be markings of P . Let us assume thatm2 ⊆ m1.

The functor m1 −m2 yielding a marking of P is defined by:

(Def. 6) For every set p such that p ∈ P holds the m1−m2 multitude of p = (the

m1 multitude of p)− (the m2 multitude of p).

One can prove the following propositions:

(16) m1 ⊆ m1 + m2.

(17) m− {}P = m.

(18) If m1 ⊆ m2 and m2 ⊆ m3, then m3 −m2 ⊆ m3 −m1.

(19) (m1 + m2)−m2 = m1.

(20) If m ⊆ m1 and m1 ⊆ m2, then m1 −m ⊆ m2 −m.

(21) If m1 ⊆ m2, then (m2 + m3)−m1 = (m2 −m1) + m3.

(22) If m1 ⊆ m2 and m2 ⊆ m1, then m1 = m2.

(23) (m1 + m2) + m3 = m1 + (m2 + m3).

(24) If m1 ⊆ m2 and m3 ⊆ m4, then m1 + m3 ⊆ m2 + m4.

(25) If m1 ⊆ m2, then m2 −m1 ⊆ m2.

(26) If m1 ⊆ m2 and m3 ⊆ m4 and m4 ⊆ m1, then m1 −m4 ⊆ m2 −m3.

(27) If m1 ⊆ m2, then m2 = (m2 −m1) + m1.

(28) (m1 + m2)−m1 = m2.

(29) If m2 + m3 ⊆ m1, then m1 −m2 −m3 = m1 − (m2 + m3).

128 grzegorz bancerek et al.

(30) If m3 ⊆ m2 and m2 ⊆ m1, then m1 − (m2 −m3) = (m1 −m2) + m3.

(31) m ∈ N
P .

(32) If x ∈ N
P , then x is a marking of P .

3. Transitions and Firing

Let us consider P . Transition of P is defined by:

(Def. 7) There exist m1, m2 such that it = 〈〈m1, m2〉〉.

In the sequel t, t1, t2 denote transitions of P .

Let us consider P , t. Then t1 is a marking of P . We introduce Pre t as a

synonym of t1. t2 is a marking of P . We introduce Post t as a synonym of t2.

Let us consider P , m, t. The functor fire(t,m) yielding a marking of P is

defined by:

(Def. 8) fire(t, m) =

{

(m− Pre t) + Post t, if Pre t ⊆ m,

m, otherwise.

The following proposition is true

(33) If Pre t1 +Pre t2 ⊆ m, then fire(t2,fire(t1, m)) = (m−Pre t1−Pre t2)+

Post t1 + Post t2.

Let us consider P , t. The functor fire t yielding a function is defined by:

(Def. 9) domfire t = N
P and for every marking m of P holds (fire t)(m) =

fire(t,m).

Next we state two propositions:

(34) rng fire t ⊆ N
P .

(35) fire(t2,fire(t1,m)) = (fire t2 · fire t1)(m).

Let us consider P . A non empty set is called a Petri net over P if:

(Def. 10) For every set x such that x ∈ it holds x is a transition of P .

In the sequel N denotes a Petri net over P .

Let us consider P , N . We see that the element of N is a transition of P .

In the sequel e, e1, e2 denote elements of N .

4. Firing Sequences of Transitions

Let us consider P , N . A firing-sequence of N is an element of N∗.

In the sequel C, C1, C2 are firing-sequences of N .

Let us consider P , N , C. The functor fire C yielding a function is defined

by the condition (Def. 11).

(Def. 11) There exists a function yielding finite sequence F such that fire C =

composeNP F and lenF = lenC and for every natural number i such that

i ∈ domC holds F (i) = fire (Ci qua element of N).

processes in petri nets 129

The following propositions are true:

(36) fire (εN) = idNP .

(37) fire 〈e〉 = fire e.

(38) fire e · idNP = fire e.

(39) fire 〈e1, e2〉 = fire e2 · fire e1.

(40) domfire C = N
P and rng fire C ⊆ N

P .

(41) fire (C1
a C2) = fire C2 · fire C1.

(42) fire (C a 〈e〉) = fire e · fire C.

Let us consider P , N , C, m. The functor fire(C, m) yielding a marking of P

is defined as follows:

(Def. 12) fire(C,m) = (fire C)(m).

5. Sequential Composition

Let us consider P , N . A process in N is a subset of N∗.

In the sequel R, R1, R2, R3, P1, P2 denote processes in N .

One can verify that every function which is finite sequence-like is also finite

subsequence-like.

Let us consider P , N , R1, R2. The functor R1 beforeR2 yields a process in

N and is defined by:

(Def. 13) R1 beforeR2 = {C1
a C2 : C1 ∈ R1 ∧ C2 ∈ R2}.

Let us consider P , N and let R1, R2 be non empty processes in N . One can

verify that R1 beforeR2 is non empty.

One can prove the following propositions:

(43) (R1 ∪R2)beforeR = (R1 beforeR) ∪ (R2 beforeR).

(44) R before(R1 ∪R2) = (R beforeR1) ∪ (R beforeR2).

(45) {C1}before{C2} = {C1
a C2}.

(46) {C1, C2}before{C} = {C1
a C,C2

a C}.

(47) {C}before{C1, C2} = {C a C1, C
a C2}.

6. Concurrent Composition

Let us consider P , N , R1, R2. The functor R1 concurR2 yielding a process

in N is defined as follows:

(Def. 14) R1 concurR2 = {C :
∨

q1,q2 : finite subsequence (C = q1 ∪ q2 ∧ q1 misses

q2 ∧ Seq q1 ∈ R1 ∧ Seq q2 ∈ R2)}.

Let us observe that the functor R1 concurR2 is commutative.

Next we state four propositions:

130 grzegorz bancerek et al.

(48) (R1 ∪R2) concurR = (R1 concurR) ∪ (R2 concurR).

(49) {〈e1〉} concur{〈e2〉} = {〈e1, e2〉, 〈e2, e1〉}.

(50) {〈e1〉, 〈e2〉} concur{〈e〉} = {〈e1, e〉, 〈e2, e〉, 〈e, e1〉, 〈e, e2〉}.

(51) (R1 beforeR2)beforeR3 = R1 before(R2 beforeR3).

Let p be a finite subsequence and let i be a natural number. The functor

Shifti p yielding a finite subsequence is defined as follows:

(Def. 15) domShifti p = {i+k; k ranges over natural numbers: k ∈ dom p} and for

every natural number j such that j ∈ dom p holds (Shifti p)(i + j) = p(j).

In the sequel q, q1, q2 denote finite subsequences.

One can prove the following propositions:

(52) Shift0 q = q.

(53) Shifti+j q = Shifti Shiftj q.

(54) For every finite sequence p such that p 6= ∅ holds domShifti p = {j1 :

i + 1 ¬ j1 ∧ j1 ¬ i + len p}.

(55) For every finite subsequence q holds q = ∅ iff Shifti q = ∅.

(56) Let q be a finite subsequence. Then there exists a finite subsequence s1

such that dom s1 = dom q and rng s1 = domShifti q and for every k such

that k ∈ dom q holds s1(k) = i + k and s1 is one-to-one.

(57) For every finite subsequence q holds q = Shifti q .

(58) For every finite sequence p holds dom p = domSeq Shifti p.

(59) For every finite sequence p such that k ∈ dom p holds

(SgmdomShifti p)(k) = i + k.

(60) For every finite sequence p such that k ∈ dom p holds (Seq Shifti p)(k) =

p(k).

(61) For every finite sequence p holds Seq Shifti p = p.

In the sequel p1, p2 are finite sequences.

One can prove the following propositions:

(62) dom(p1 ∪ Shift
len p1 p2) = Seg(len p1 + len p2).

(63) For every finite sequence p1 and for every finite subsequence p2 such that

len p1 ¬ i holds dom p1 misses domShift
i p2.

(64) For all finite sequences p1, p2 holds p1
a p2 = p1 ∪ Shift

len p1 p2.

(65) For every finite sequence p1 and for every finite subsequence p2 such that

i len p1 holds p1 misses Shift
i p2.

(66) (R1 concurR2) concurR3 = R1 concur(R2 concurR3).

(67) R1 beforeR2 ⊆ R1 concurR2.

(68) If R1 ⊆ P1 and R2 ⊆ P2, then R1 beforeR2 ⊆ P1 beforeP2.

(69) If R1 ⊆ P1 and R2 ⊆ P2, then R1 concurR2 ⊆ P1 concurP2.

(70) For all finite subsequences p, q such that q ⊆ p holds Shifti q ⊆ Shifti p.

processes in petri nets 131

(71) For all finite sequences p1, p2 holds Shift
len p1 p2 ⊆ p1

a p2.

(72) If dom q1 misses dom q2, then domShift
i q1 misses domShift

i q2.

(73) For all finite subsequences q, q1, q2 such that q = q1 ∪ q2 and q1 misses

q2 holds Shift
i q1 ∪ Shift

i q2 = Shifti q.

(74) For every finite subsequence q holds domSeq q = domSeq Shifti q.

(75) For every finite subsequence q such that k ∈ domSeq q there exists j

such that j = (Sgmdom q)(k) and (SgmdomShifti q)(k) = i + j.

(76) For every finite subsequence q such that k ∈ domSeq q holds

(Seq Shifti q)(k) = (Seq q)(k).

(77) For every finite subsequence q holds Seq q = Seq Shifti q.

(78) For every finite subsequence q such that dom q ⊆ Seg k holds

domShifti q ⊆ Seg(i + k).

(79) Let p be a finite sequence and q1, q2 be finite subsequences. If q1 ⊆ p,

then there exists a finite subsequence s1 such that s1 = q1 ∪ Shift
len p q2.

(80) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose

q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that

s1 = q1 ∪ Shift
len p1 q2 and domSeq s1 = Seg(len Seq q1 + len Seq q2).

(81) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose

q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that

s1 = q1 ∪ Shift
len p1 q2 and domSeq s1 = Seg(len Seq q1 + len Seq q2) and

Seq s1 = Seq q1 ∪ Shift
len Seq q1 Seq q2.

(82) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose

q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that

s1 = q1 ∪ Shift
len p1 q2 and (Seq q1)

a (Seq q2) = Seq s1.

(83) (R1 concurR2)before(P1 concurP2) ⊆ (R1 beforeP1) concur(R2 beforeP2).

Let us consider P , N and let R1, R2 be non empty processes in N . Note

that R1 concurR2 is non empty.

7. Neutral Process

Let us consider P and let N be a Petri net over P . The neutral process in

N yields a non empty process in N and is defined as follows:

(Def. 16) The neutral process in N = {εN}.

Let us consider P , let N be a Petri net over P , and let t be an element of

N . The elementary process with t yielding a non empty process in N is defined

as follows:

(Def. 17) The elementary process with t = {〈t〉}.

One can prove the following propositions:

(84) (The neutral process in N)beforeR = R.

132 grzegorz bancerek et al.

(85) R before the neutral process in N = R.

(86) (The neutral process in N) concurR = R.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized
Mathematics, 2(5):683–687, 1991.

[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–
108, 1993.

[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[16] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received December 20, 2002

