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Summary. Sequential and concurrent compositions of processes in Petri
nets are introduced. A process is formalized as a set of (possible), so called,

firing sequences. In the definition of the sequential composition the standard

concatenation is used

R1 beforeR2 = {p1

⌢
p2 : p1 ∈ R1 ∧ p2 ∈ R2}

The definition of the concurrent composition is more complicated

R1 concurR2 = {q1 ∪ q2 : q1 misses q2 ∧ Seq q1 ∈ R1 ∧ Seq q2 ∈ R2}

For example,

{〈t0〉} concur{〈t1, t2〉} = {〈t0, t1, t2〉, 〈t1, t0, t2〉, 〈t1, t2, t0〉}

The basic properties of the compositions are shown.

MML Identifier: PNPROC 1.

The notation and terminology used in this paper are introduced in the following

papers: [14], [13], [18], [6], [17], [9], [1], [3], [7], [12], [2], [10], [15], [5], [16], [8],

[11], and [4].
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1. Preliminaries

We adopt the following rules: i is a natural number and x, x1, x2, y1, y2 are

sets.

Next we state three propositions:

(1) If i > 0, then {〈〈i, x〉〉} is a finite subsequence.

(2) For every finite subsequence q holds q = ∅ iff Seq q = ∅.

(3) For every finite subsequence q such that q = {〈〈i, x〉〉} holds Seq q = 〈x〉.

Let us observe that every finite subsequence is finite.

We now state several propositions:

(4) For every finite subsequence q such that Seq q = 〈x〉 there exists i such

that q = {〈〈i, x〉〉}.

(5) If {〈〈x1, y1〉〉, 〈〈x2, y2〉〉} is a finite sequence, then x1 = 1 and x2 = 1 and

y1 = y2 or x1 = 1 and x2 = 2 or x1 = 2 and x2 = 1.

(6) 〈x1, x2〉 = {〈〈1, x1〉〉, 〈〈2, x2〉〉}.

(7) For every finite subsequence p holds p = len Seq p.

(8) For all binary relations P , R such that domP misses domR holds P

misses R.

(9) For all sets X, Y and for all binary relations P , R such that X misses

Y holds P ↾X misses R↾Y.

(10) For all functions f , g, h such that f ⊆ h and g ⊆ h and f misses g holds

dom f misses dom g.

(11) For every set Y and for every binary relation R holds Y ↾R ⊆ R↾R−1(Y ).

(12) For every set Y and for every function f holds Y ↾f = f↾f−1(Y ).

2. Markings on Petri Nets

Let P be a set. A function is called a marking of P if:

(Def. 1) dom it = P and rng it ⊆ N.

We adopt the following convention: P , p, x denote sets, m1, m2, m3, m4, m

denote markings of P , and i, j, j1, k denote natural numbers.

Let P be a set, let m be a marking of P , and let p be a set. Then m(p) is a

natural number. We introduce the m multitude of p as a synonym of m(p).

The scheme MarkingLambda deals with a set A and a unary functor F

yielding a natural number, and states that:

There exists a marking m of A such that for every p such that

p ∈ A holds the m multitude of p = F(p)

for all values of the parameters.

Let us consider P , m1, m2. Let us observe that m1 = m2 if and only if:
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(Def. 2) For every p such that p ∈ P holds the m1 multitude of p = the m2

multitude of p.

Let us consider P . The functor {}P yielding a marking of P is defined by:

(Def. 3) {}P = P 7−→ 0.

Let P be a set and let m1, m2 be markings of P . The predicate m1 ⊆ m2 is

defined by:

(Def. 4) For every set p such that p ∈ P holds the m1 multitude of p ¬ the m2

multitude of p.

Let us note that the predicate m1 ⊆ m2 is reflexive.

We now state two propositions:

(13) {}P ⊆ m.

(14) If m1 ⊆ m2 and m2 ⊆ m3, then m1 ⊆ m3.

Let P be a set and let m1, m2 be markings of P . The functor m1 +m2 yields

a marking of P and is defined as follows:

(Def. 5) For every set p such that p ∈ P holds the m1 +m2 multitude of p = (the

m1 multitude of p) + (the m2 multitude of p).

Let us notice that the functor m1 + m2 is commutative.

The following proposition is true

(15) m + {}P = m.

Let P be a set and letm1,m2 be markings of P . Let us assume thatm2 ⊆ m1.

The functor m1 −m2 yielding a marking of P is defined by:

(Def. 6) For every set p such that p ∈ P holds the m1−m2 multitude of p = (the

m1 multitude of p)− (the m2 multitude of p).

One can prove the following propositions:

(16) m1 ⊆ m1 + m2.

(17) m− {}P = m.

(18) If m1 ⊆ m2 and m2 ⊆ m3, then m3 −m2 ⊆ m3 −m1.

(19) (m1 + m2)−m2 = m1.

(20) If m ⊆ m1 and m1 ⊆ m2, then m1 −m ⊆ m2 −m.

(21) If m1 ⊆ m2, then (m2 + m3)−m1 = (m2 −m1) + m3.

(22) If m1 ⊆ m2 and m2 ⊆ m1, then m1 = m2.

(23) (m1 + m2) + m3 = m1 + (m2 + m3).

(24) If m1 ⊆ m2 and m3 ⊆ m4, then m1 + m3 ⊆ m2 + m4.

(25) If m1 ⊆ m2, then m2 −m1 ⊆ m2.

(26) If m1 ⊆ m2 and m3 ⊆ m4 and m4 ⊆ m1, then m1 −m4 ⊆ m2 −m3.

(27) If m1 ⊆ m2, then m2 = (m2 −m1) + m1.

(28) (m1 + m2)−m1 = m2.

(29) If m2 + m3 ⊆ m1, then m1 −m2 −m3 = m1 − (m2 + m3).
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(30) If m3 ⊆ m2 and m2 ⊆ m1, then m1 − (m2 −m3) = (m1 −m2) + m3.

(31) m ∈ N
P .

(32) If x ∈ N
P , then x is a marking of P .

3. Transitions and Firing

Let us consider P . Transition of P is defined by:

(Def. 7) There exist m1, m2 such that it = 〈〈m1, m2〉〉.

In the sequel t, t1, t2 denote transitions of P .

Let us consider P , t. Then t1 is a marking of P . We introduce Pre t as a

synonym of t1. t2 is a marking of P . We introduce Post t as a synonym of t2.

Let us consider P , m, t. The functor fire(t,m) yielding a marking of P is

defined by:

(Def. 8) fire(t, m) =

{

(m− Pre t) + Post t, if Pre t ⊆ m,

m, otherwise.

The following proposition is true

(33) If Pre t1 +Pre t2 ⊆ m, then fire(t2,fire(t1, m)) = (m−Pre t1−Pre t2)+

Post t1 + Post t2.

Let us consider P , t. The functor fire t yielding a function is defined by:

(Def. 9) domfire t = N
P and for every marking m of P holds (fire t)(m) =

fire(t,m).

Next we state two propositions:

(34) rng fire t ⊆ N
P .

(35) fire(t2,fire(t1,m)) = (fire t2 · fire t1)(m).

Let us consider P . A non empty set is called a Petri net over P if:

(Def. 10) For every set x such that x ∈ it holds x is a transition of P .

In the sequel N denotes a Petri net over P .

Let us consider P , N . We see that the element of N is a transition of P .

In the sequel e, e1, e2 denote elements of N .

4. Firing Sequences of Transitions

Let us consider P , N . A firing-sequence of N is an element of N∗.

In the sequel C, C1, C2 are firing-sequences of N .

Let us consider P , N , C. The functor fire C yielding a function is defined

by the condition (Def. 11).

(Def. 11) There exists a function yielding finite sequence F such that fire C =

composeNP F and lenF = lenC and for every natural number i such that

i ∈ domC holds F (i) = fire (Ci qua element of N).
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The following propositions are true:

(36) fire (εN ) = idNP .

(37) fire 〈e〉 = fire e.

(38) fire e · idNP = fire e.

(39) fire 〈e1, e2〉 = fire e2 · fire e1.

(40) domfire C = N
P and rng fire C ⊆ N

P .

(41) fire (C1
a C2) = fire C2 · fire C1.

(42) fire (C a 〈e〉) = fire e · fire C.

Let us consider P , N , C, m. The functor fire(C, m) yielding a marking of P

is defined as follows:

(Def. 12) fire(C,m) = (fire C)(m).

5. Sequential Composition

Let us consider P , N . A process in N is a subset of N∗.

In the sequel R, R1, R2, R3, P1, P2 denote processes in N .

One can verify that every function which is finite sequence-like is also finite

subsequence-like.

Let us consider P , N , R1, R2. The functor R1 beforeR2 yields a process in

N and is defined by:

(Def. 13) R1 beforeR2 = {C1
a C2 : C1 ∈ R1 ∧ C2 ∈ R2}.

Let us consider P , N and let R1, R2 be non empty processes in N . One can

verify that R1 beforeR2 is non empty.

One can prove the following propositions:

(43) (R1 ∪R2)beforeR = (R1 beforeR) ∪ (R2 beforeR).

(44) R before(R1 ∪R2) = (R beforeR1) ∪ (R beforeR2).

(45) {C1}before{C2} = {C1
a C2}.

(46) {C1, C2}before{C} = {C1
a C,C2

a C}.

(47) {C}before{C1, C2} = {C a C1, C
a C2}.

6. Concurrent Composition

Let us consider P , N , R1, R2. The functor R1 concurR2 yielding a process

in N is defined as follows:

(Def. 14) R1 concurR2 = {C :
∨

q1,q2 : finite subsequence (C = q1 ∪ q2 ∧ q1 misses

q2 ∧ Seq q1 ∈ R1 ∧ Seq q2 ∈ R2)}.

Let us observe that the functor R1 concurR2 is commutative.

Next we state four propositions:
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(48) (R1 ∪R2) concurR = (R1 concurR) ∪ (R2 concurR).

(49) {〈e1〉} concur{〈e2〉} = {〈e1, e2〉, 〈e2, e1〉}.

(50) {〈e1〉, 〈e2〉} concur{〈e〉} = {〈e1, e〉, 〈e2, e〉, 〈e, e1〉, 〈e, e2〉}.

(51) (R1 beforeR2)beforeR3 = R1 before(R2 beforeR3).

Let p be a finite subsequence and let i be a natural number. The functor

Shifti p yielding a finite subsequence is defined as follows:

(Def. 15) domShifti p = {i+k; k ranges over natural numbers: k ∈ dom p} and for

every natural number j such that j ∈ dom p holds (Shifti p)(i + j) = p(j).

In the sequel q, q1, q2 denote finite subsequences.

One can prove the following propositions:

(52) Shift0 q = q.

(53) Shifti+j q = Shifti Shiftj q.

(54) For every finite sequence p such that p 6= ∅ holds domShifti p = {j1 :

i + 1 ¬ j1 ∧ j1 ¬ i + len p}.

(55) For every finite subsequence q holds q = ∅ iff Shifti q = ∅.

(56) Let q be a finite subsequence. Then there exists a finite subsequence s1

such that dom s1 = dom q and rng s1 = domShifti q and for every k such

that k ∈ dom q holds s1(k) = i + k and s1 is one-to-one.

(57) For every finite subsequence q holds q = Shifti q .

(58) For every finite sequence p holds dom p = domSeq Shifti p.

(59) For every finite sequence p such that k ∈ dom p holds

(SgmdomShifti p)(k) = i + k.

(60) For every finite sequence p such that k ∈ dom p holds (Seq Shifti p)(k) =

p(k).

(61) For every finite sequence p holds Seq Shifti p = p.

In the sequel p1, p2 are finite sequences.

One can prove the following propositions:

(62) dom(p1 ∪ Shift
len p1 p2) = Seg(len p1 + len p2).

(63) For every finite sequence p1 and for every finite subsequence p2 such that

len p1 ¬ i holds dom p1 misses domShift
i p2.

(64) For all finite sequences p1, p2 holds p1
a p2 = p1 ∪ Shift

len p1 p2.

(65) For every finite sequence p1 and for every finite subsequence p2 such that

i ­ len p1 holds p1 misses Shift
i p2.

(66) (R1 concurR2) concurR3 = R1 concur(R2 concurR3).

(67) R1 beforeR2 ⊆ R1 concurR2.

(68) If R1 ⊆ P1 and R2 ⊆ P2, then R1 beforeR2 ⊆ P1 beforeP2.

(69) If R1 ⊆ P1 and R2 ⊆ P2, then R1 concurR2 ⊆ P1 concurP2.

(70) For all finite subsequences p, q such that q ⊆ p holds Shifti q ⊆ Shifti p.
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(71) For all finite sequences p1, p2 holds Shift
len p1 p2 ⊆ p1

a p2.

(72) If dom q1 misses dom q2, then domShift
i q1 misses domShift

i q2.

(73) For all finite subsequences q, q1, q2 such that q = q1 ∪ q2 and q1 misses

q2 holds Shift
i q1 ∪ Shift

i q2 = Shifti q.

(74) For every finite subsequence q holds domSeq q = domSeq Shifti q.

(75) For every finite subsequence q such that k ∈ domSeq q there exists j

such that j = (Sgmdom q)(k) and (SgmdomShifti q)(k) = i + j.

(76) For every finite subsequence q such that k ∈ domSeq q holds

(Seq Shifti q)(k) = (Seq q)(k).

(77) For every finite subsequence q holds Seq q = Seq Shifti q.

(78) For every finite subsequence q such that dom q ⊆ Seg k holds

domShifti q ⊆ Seg(i + k).

(79) Let p be a finite sequence and q1, q2 be finite subsequences. If q1 ⊆ p,

then there exists a finite subsequence s1 such that s1 = q1 ∪ Shift
len p q2.

(80) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose

q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that

s1 = q1 ∪ Shift
len p1 q2 and domSeq s1 = Seg(len Seq q1 + len Seq q2).

(81) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose

q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that

s1 = q1 ∪ Shift
len p1 q2 and domSeq s1 = Seg(len Seq q1 + len Seq q2) and

Seq s1 = Seq q1 ∪ Shift
len Seq q1 Seq q2.

(82) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose

q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that

s1 = q1 ∪ Shift
len p1 q2 and (Seq q1)

a (Seq q2) = Seq s1.

(83) (R1 concurR2)before(P1 concurP2) ⊆ (R1 beforeP1) concur(R2 beforeP2).

Let us consider P , N and let R1, R2 be non empty processes in N . Note

that R1 concurR2 is non empty.

7. Neutral Process

Let us consider P and let N be a Petri net over P . The neutral process in

N yields a non empty process in N and is defined as follows:

(Def. 16) The neutral process in N = {εN}.

Let us consider P , let N be a Petri net over P , and let t be an element of

N . The elementary process with t yielding a non empty process in N is defined

as follows:

(Def. 17) The elementary process with t = {〈t〉}.

One can prove the following propositions:

(84) (The neutral process in N)beforeR = R.
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(85) R before the neutral process in N = R.

(86) (The neutral process in N) concurR = R.
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