Processes in Petri Nets

Grzegorz Bancerek
Białystok Technical University

Mitsuru Aoki
Shinshu University
Nagano

Akio Matsumoto
Shinshu University
Nagano
Yasunari Shidama
Shinshu University
Nagano

Summary. Sequential and concurrent compositions of processes in Petri nets are introduced. A process is formalized as a set of (possible), so called, firing sequences. In the definition of the sequential composition the standard concatenation is used

$$
R_{1} \text { before } R_{2}=\left\{p_{1} \frown p_{2}: p_{1} \in R_{1} \wedge p_{2} \in R_{2}\right\}
$$

The definition of the concurrent composition is more complicated

$$
R_{1} \text { concur } R_{2}=\left\{q_{1} \cup q_{2}: q_{1} \text { misses } q_{2} \wedge \operatorname{Seq} q_{1} \in R_{1} \wedge \operatorname{Seq} q_{2} \in R_{2}\right\}
$$

For example,

$$
\left\{\left\langle t_{0}\right\rangle\right\} \operatorname{concur}\left\{\left\langle t_{1}, t_{2}\right\rangle\right\}=\left\{\left\langle t_{0}, t_{1}, t_{2}\right\rangle,\left\langle t_{1}, t_{0}, t_{2}\right\rangle,\left\langle t_{1}, t_{2}, t_{0}\right\rangle\right\}
$$

The basic properties of the compositions are shown.

MML Identifier: PNPROC_1.

The notation and terminology used in this paper are introduced in the following papers: [14], [13], [18], [6], [17], [9], [1], [3], [7], [12], [2], [10], [15], [5], [16], [8], [11], and [4].

1. Preliminaries

We adopt the following rules: i is a natural number and $x, x_{1}, x_{2}, y_{1}, y_{2}$ are sets.

Next we state three propositions:
(1) If $i>0$, then $\{\langle i, x\rangle\}$ is a finite subsequence.
(2) For every finite subsequence q holds $q=\emptyset$ iff $\operatorname{Seq} q=\emptyset$.
(3) For every finite subsequence q such that $q=\{\langle i, x\rangle\}$ holds $\operatorname{Seq} q=\langle x\rangle$. Let us observe that every finite subsequence is finite.
We now state several propositions:
(4) For every finite subsequence q such that $\operatorname{Seq} q=\langle x\rangle$ there exists i such that $q=\{\langle i, x\rangle\}$.
(5) If $\left\{\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right\}$ is a finite sequence, then $x_{1}=1$ and $x_{2}=1$ and $y_{1}=y_{2}$ or $x_{1}=1$ and $x_{2}=2$ or $x_{1}=2$ and $x_{2}=1$.
(6) $\left\langle x_{1}, x_{2}\right\rangle=\left\{\left\langle 1, x_{1}\right\rangle,\left\langle 2, x_{2}\right\rangle\right\}$.
(7) For every finite subsequence p holds $\overline{\bar{p}}=\operatorname{len~Seq~} p$.
(8) For all binary relations P, R such that $\operatorname{dom} P$ misses dom R holds P misses R.
(9) For all sets X, Y and for all binary relations P, R such that X misses Y holds $P \upharpoonright X$ misses $R \upharpoonright Y$.
(10) For all functions f, g, h such that $f \subseteq h$ and $g \subseteq h$ and f misses g holds $\operatorname{dom} f$ misses $\operatorname{dom} g$.
(11) For every set Y and for every binary relation R holds $Y \upharpoonright R \subseteq R \upharpoonright R^{-1}(Y)$.
(12) For every set Y and for every function f holds $Y \upharpoonright f=f \upharpoonright f^{-1}(Y)$.

2. Markings on Petri Nets

Let P be a set. A function is called a marking of P if:
(Def. 1) dom it $=P$ and rng it $\subseteq \mathbb{N}$.
We adopt the following convention: P, p, x denote sets, $m_{1}, m_{2}, m_{3}, m_{4}, m$ denote markings of P, and i, j, j_{1}, k denote natural numbers.

Let P be a set, let m be a marking of P, and let p be a set. Then $m(p)$ is a natural number. We introduce the m multitude of p as a synonym of $m(p)$.

The scheme MarkingLambda deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding a natural number, and states that:

There exists a marking m of \mathcal{A} such that for every p such that $p \in \mathcal{A}$ holds the m multitude of $p=\mathcal{F}(p)$
for all values of the parameters.
Let us consider P, m_{1}, m_{2}. Let us observe that $m_{1}=m_{2}$ if and only if:
(Def. 2) For every p such that $p \in P$ holds the m_{1} multitude of $p=$ the m_{2} multitude of p.
Let us consider P. The functor $\left\}_{P}\right.$ yielding a marking of P is defined by:
(Def. 3) $\quad\left\}_{P}=P \longmapsto 0\right.$.
Let P be a set and let m_{1}, m_{2} be markings of P. The predicate $m_{1} \subseteq m_{2}$ is defined by:
(Def. 4) For every set p such that $p \in P$ holds the m_{1} multitude of $p \leqslant$ the m_{2} multitude of p.
Let us note that the predicate $m_{1} \subseteq m_{2}$ is reflexive.
We now state two propositions:
(13) $\left\}_{P} \subseteq m\right.$.
(14) If $m_{1} \subseteq m_{2}$ and $m_{2} \subseteq m_{3}$, then $m_{1} \subseteq m_{3}$.

Let P be a set and let m_{1}, m_{2} be markings of P. The functor $m_{1}+m_{2}$ yields a marking of P and is defined as follows:
(Def. 5) For every set p such that $p \in P$ holds the $m_{1}+m_{2}$ multitude of $p=$ (the m_{1} multitude of $\left.p\right)+\left(\right.$ the m_{2} multitude of $\left.p\right)$.
Let us notice that the functor $m_{1}+m_{2}$ is commutative.
The following proposition is true
(15) $m+\{ \}_{P}=m$.

Let P be a set and let m_{1}, m_{2} be markings of P. Let us assume that $m_{2} \subseteq m_{1}$. The functor $m_{1}-m_{2}$ yielding a marking of P is defined by:
(Def. 6) For every set p such that $p \in P$ holds the $m_{1}-m_{2}$ multitude of $p=$ (the m_{1} multitude of $\left.p\right)-\left(\right.$ the m_{2} multitude of $\left.p\right)$.
One can prove the following propositions:
(16) $\quad m_{1} \subseteq m_{1}+m_{2}$.
(17) $m-\{ \}_{P}=m$.
(18) If $m_{1} \subseteq m_{2}$ and $m_{2} \subseteq m_{3}$, then $m_{3}-m_{2} \subseteq m_{3}-m_{1}$.
(19) $\quad\left(m_{1}+m_{2}\right)-m_{2}=m_{1}$.
(20) If $m \subseteq m_{1}$ and $m_{1} \subseteq m_{2}$, then $m_{1}-m \subseteq m_{2}-m$.
(21) If $m_{1} \subseteq m_{2}$, then $\left(m_{2}+m_{3}\right)-m_{1}=\left(m_{2}-m_{1}\right)+m_{3}$.
(22) If $m_{1} \subseteq m_{2}$ and $m_{2} \subseteq m_{1}$, then $m_{1}=m_{2}$.
(23) $\quad\left(m_{1}+m_{2}\right)+m_{3}=m_{1}+\left(m_{2}+m_{3}\right)$.
(24) If $m_{1} \subseteq m_{2}$ and $m_{3} \subseteq m_{4}$, then $m_{1}+m_{3} \subseteq m_{2}+m_{4}$.
(25) If $m_{1} \subseteq m_{2}$, then $m_{2}-m_{1} \subseteq m_{2}$.
(26) If $m_{1} \subseteq m_{2}$ and $m_{3} \subseteq m_{4}$ and $m_{4} \subseteq m_{1}$, then $m_{1}-m_{4} \subseteq m_{2}-m_{3}$.
(27) If $m_{1} \subseteq m_{2}$, then $m_{2}=\left(m_{2}-m_{1}\right)+m_{1}$.
(28) $\quad\left(m_{1}+m_{2}\right)-m_{1}=m_{2}$.
(29) If $m_{2}+m_{3} \subseteq m_{1}$, then $m_{1}-m_{2}-m_{3}=m_{1}-\left(m_{2}+m_{3}\right)$.
(30) If $m_{3} \subseteq m_{2}$ and $m_{2} \subseteq m_{1}$, then $m_{1}-\left(m_{2}-m_{3}\right)=\left(m_{1}-m_{2}\right)+m_{3}$.
(31) $m \in \mathbb{N}^{P}$.
(32) If $x \in \mathbb{N}^{P}$, then x is a marking of P.

3. Transitions and Firing

Let us consider P. Transition of P is defined by:
(Def. 7) There exist m_{1}, m_{2} such that it $=\left\langle m_{1}, m_{2}\right\rangle$.
In the sequel t, t_{1}, t_{2} denote transitions of P.
Let us consider P, t. Then t_{1} is a marking of P. We introduce Pre t as a synonym of $t_{\mathbf{1}} \cdot t_{\mathbf{2}}$ is a marking of P. We introduce Post t as a synonym of t_{2}.

Let us consider P, m, t. The functor fire (t, m) yielding a marking of P is defined by:
(Def. 8) fire $(t, m)=\left\{\begin{array}{l}(m-\text { Pre } t)+\text { Post } t, \text { if Pre } t \subseteq m, \\ m, \text { otherwise. }\end{array}\right.$
The following proposition is true
(33) If Pre $t_{1}+\operatorname{Pre} t_{2} \subseteq m$, then fire $\left(t_{2}\right.$, fire $\left.\left(t_{1}, m\right)\right)=\left(m-\operatorname{Pre} t_{1}-\operatorname{Pre} t_{2}\right)+$ Post $t_{1}+$ Post t_{2}.
Let us consider P, t. The functor fire t yielding a function is defined by:
(Def. 9) dom fire $t=\mathbb{N}^{P}$ and for every marking m of P holds (fire $\left.t\right)(m)=$ fire (t, m).
Next we state two propositions:
(34) \quad rng fire $t \subseteq \mathbb{N}^{P}$.
(35) fire $\left(t_{2}\right.$, fire $\left.\left(t_{1}, m\right)\right)=\left(\right.$ fire $t_{2} \cdot$ fire $\left.t_{1}\right)(m)$.

Let us consider P. A non empty set is called a Petri net over P if:
(Def. 10) For every set x such that $x \in$ it holds x is a transition of P.
In the sequel N denotes a Petri net over P.
Let us consider P, N. We see that the element of N is a transition of P.
In the sequel e, e_{1}, e_{2} denote elements of N.

4. Firing Sequences of Transitions

Let us consider P, N. A firing-sequence of N is an element of N^{*}.
In the sequel C, C_{1}, C_{2} are firing-sequences of N.
Let us consider P, N, C. The functor fire C yielding a function is defined by the condition (Def. 11).
(Def. 11) There exists a function yielding finite sequence F such that fire $C=$ compose $_{\mathbb{N}^{P}} F$ and len $F=$ len C and for every natural number i such that $i \in \operatorname{dom} C$ holds $F(i)=$ fire (C_{i} qua element of N).

The following propositions are true:
(36) fire $\left(\varepsilon_{N}\right)=\operatorname{id}_{\mathbb{N} P}$.
(37) fire $\langle e\rangle=$ fire e.
(38) fire $e \cdot \mathrm{id}_{\mathbb{N} P}=$ fire e.
(39) fire $\left\langle e_{1}, e_{2}\right\rangle=$ fire $e_{2} \cdot$ fire e_{1}.
(40) dom fire $C=\mathbb{N}^{P}$ and rng fire $C \subseteq \mathbb{N}^{P}$.
(41) fire $\left(C_{1}{ }^{\wedge} C_{2}\right)=$ fire C_{2}. fire C_{1}.
(42) fire $\left(C^{\frown}\langle e\rangle\right)=$ fire $e \cdot$ fire C.

Let us consider P, N, C, m. The functor fire (C, m) yielding a marking of P is defined as follows:
(Def. 12) fire $(C, m)=($ fire $C)(m)$.

5. Sequential Composition

Let us consider P, N. A process in N is a subset of N^{*}.
In the sequel $R, R_{1}, R_{2}, R_{3}, P_{1}, P_{2}$ denote processes in N.
One can verify that every function which is finite sequence-like is also finite subsequence-like.

Let us consider P, N, R_{1}, R_{2}. The functor R_{1} before R_{2} yields a process in N and is defined by:
(Def. 13) $\quad R_{1}$ before $R_{2}=\left\{C_{1} \frown C_{2}: C_{1} \in R_{1} \wedge C_{2} \in R_{2}\right\}$.
Let us consider P, N and let R_{1}, R_{2} be non empty processes in N. One can verify that R_{1} before R_{2} is non empty.

One can prove the following propositions:
(43) $\quad\left(R_{1} \cup R_{2}\right)$ before $R=\left(R_{1}\right.$ before $\left.R\right) \cup\left(R_{2}\right.$ before $\left.R\right)$.
(44) $\quad R$ before $\left(R_{1} \cup R_{2}\right)=\left(R\right.$ before $\left.R_{1}\right) \cup\left(R\right.$ before $\left.R_{2}\right)$.
(45) $\left\{C_{1}\right\}$ before $\left\{C_{2}\right\}=\left\{C_{1}{ }^{\wedge} C_{2}\right\}$.
(46) $\left\{C_{1}, C_{2}\right\}$ before $\{C\}=\left\{C_{1} \cap C, C_{2} \cap C\right\}$.
(47) $\{C\}$ before $\left\{C_{1}, C_{2}\right\}=\left\{C^{\frown} C_{1}, C^{\frown} C_{2}\right\}$.

6. Concurrent Composition

Let us consider P, N, R_{1}, R_{2}. The functor R_{1} concur R_{2} yielding a process in N is defined as follows:
(Def. 14) $\quad R_{1}$ concur $R_{2}=\left\{C: \bigvee_{q_{1}, q_{2}: \text { finite subsequence }}\left(C=q_{1} \cup q_{2} \wedge q_{1}\right.\right.$ misses $\left.\left.q_{2} \wedge \operatorname{Seq} q_{1} \in R_{1} \wedge \operatorname{Seq} q_{2} \in R_{2}\right)\right\}$.
Let us observe that the functor R_{1} concur R_{2} is commutative.
Next we state four propositions:
(48) $\quad\left(R_{1} \cup R_{2}\right)$ concur $R=\left(R_{1}\right.$ concur $\left.R\right) \cup\left(R_{2}\right.$ concur $\left.R\right)$.
(49) $\left\{\left\langle e_{1}\right\rangle\right\}$ concur $\left\{\left\langle e_{2}\right\rangle\right\}=\left\{\left\langle e_{1}, e_{2}\right\rangle,\left\langle e_{2}, e_{1}\right\rangle\right\}$.
(50) $\left\{\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle\right\}$ concur $\{\langle e\rangle\}=\left\{\left\langle e_{1}, e\right\rangle,\left\langle e_{2}, e\right\rangle,\left\langle e, e_{1}\right\rangle,\left\langle e, e_{2}\right\rangle\right\}$.
(51) (R_{1} before R_{2}) before $R_{3}=R_{1}$ before (R_{2} before R_{3}).

Let p be a finite subsequence and let i be a natural number. The functor Shift ${ }^{i} p$ yielding a finite subsequence is defined as follows:
(Def. 15) dom Shift ${ }^{i} p=\{i+k ; k$ ranges over natural numbers: $k \in \operatorname{dom} p\}$ and for every natural number j such that $j \in \operatorname{dom} p$ holds $\left(\operatorname{Shift}^{i} p\right)(i+j)=p(j)$.
In the sequel q, q_{1}, q_{2} denote finite subsequences.
One can prove the following propositions:
(52) $\operatorname{Shift}^{0} q=q$.
(53) $\operatorname{Shift}^{i+j} q=\operatorname{Shift}^{i}$ Shift $^{j} q$.
(54) For every finite sequence p such that $p \neq \emptyset$ holds dom Shift ${ }^{i} p=\left\{j_{1}\right.$: $\left.i+1 \leqslant j_{1} \wedge j_{1} \leqslant i+\operatorname{len} p\right\}$.
(55) For every finite subsequence q holds $q=\emptyset$ iff $\operatorname{Shift}^{i} q=\emptyset$.
(56) Let q be a finite subsequence. Then there exists a finite subsequence s_{1} such that $\operatorname{dom} s_{1}=\operatorname{dom} q$ and $\operatorname{rng} s_{1}=\operatorname{dom} \operatorname{Shift}^{i} q$ and for every k such that $k \in \operatorname{dom} q$ holds $s_{1}(k)=i+k$ and s_{1} is one-to-one.
(57) For every finite subsequence q holds $\overline{\bar{q}}=\overline{\overline{\text { Shift }^{i}} q}$.
(58) For every finite sequence p holds $\operatorname{dom} p=\operatorname{dom} \operatorname{Seq} \operatorname{Shift}^{i} p$.
(59) For every finite sequence p such that $k \in \operatorname{dom} p$ holds $\left(\right.$ Sgm dom Shift $\left.{ }^{i} p\right)(k)=i+k$.
(60) For every finite sequence p such that $k \in \operatorname{dom} p$ holds (Seq Shift $\left.{ }^{i} p\right)(k)=$ $p(k)$.
(61) For every finite sequence p holds Seq $\operatorname{Shift}^{i} p=p$.

In the sequel p_{1}, p_{2} are finite sequences.
One can prove the following propositions:
(62) $\operatorname{dom}\left(p_{1} \cup \operatorname{Shift}{ }^{\operatorname{len} p_{1}} p_{2}\right)=\operatorname{Seg}\left(\operatorname{len} p_{1}+\operatorname{len} p_{2}\right)$.
(63) For every finite sequence p_{1} and for every finite subsequence p_{2} such that len $p_{1} \leqslant i$ holds dom p_{1} misses dom Shift ${ }^{i} p_{2}$.
(64) For all finite sequences p_{1}, p_{2} holds $p_{1}{ }^{\wedge} p_{2}=p_{1} \cup$ Shift ${ }^{\operatorname{len} p_{1}} p_{2}$.
(65) For every finite sequence p_{1} and for every finite subsequence p_{2} such that $i \geqslant \operatorname{len} p_{1}$ holds p_{1} misses Shift ${ }^{i} p_{2}$.
(66) (R_{1} concur R_{2}) concur $R_{3}=R_{1}$ concur (R_{2} concur R_{3}).
(67) $\quad R_{1}$ before $R_{2} \subseteq R_{1}$ concur R_{2}.
(68) If $R_{1} \subseteq P_{1}$ and $R_{2} \subseteq P_{2}$, then R_{1} before $R_{2} \subseteq P_{1}$ before P_{2}.
(69) If $R_{1} \subseteq P_{1}$ and $R_{2} \subseteq P_{2}$, then R_{1} concur $R_{2} \subseteq P_{1}$ concur P_{2}.
(70) For all finite subsequences p, q such that $q \subseteq p$ holds $\operatorname{Shift}^{i} q \subseteq \operatorname{Shift}^{i} p$.
(71) For all finite sequences p_{1}, p_{2} holds Shift ${ }^{\text {len } p_{1}} p_{2} \subseteq p_{1}{ }^{\wedge} p_{2}$.
(72) If dom q_{1} misses dom q_{2}, then dom Shift ${ }^{i} q_{1}$ misses dom Shift ${ }^{i} q_{2}$.
(73) For all finite subsequences q, q_{1}, q_{2} such that $q=q_{1} \cup q_{2}$ and q_{1} misses q_{2} holds $\operatorname{Shift}^{i} q_{1} \cup \operatorname{Shift}^{i} q_{2}=\operatorname{Shift}^{i} q$.
(74) For every finite subsequence q holds dom $\operatorname{Seq} q=\operatorname{dom} \operatorname{Seq} \operatorname{Shift}^{i} q$.
(75) For every finite subsequence q such that $k \in \operatorname{dom} \operatorname{Seq} q$ there exists j such that $j=(\operatorname{Sgm} \operatorname{dom} q)(k)$ and $\left(\operatorname{Sgm~dom~Shift~}^{i} q\right)(k)=i+j$.
(76) For every finite subsequence q such that $k \in \operatorname{dom} \operatorname{Seq} q$ holds $\left(\operatorname{Seq} \operatorname{Shift}^{i} q\right)(k)=(\operatorname{Seq} q)(k)$.
(77) For every finite subsequence q holds $\operatorname{Seq} q=\operatorname{Seq} \operatorname{Shift}^{i} q$.
(78) For every finite subsequence q such that $\operatorname{dom} q \subseteq \operatorname{Seg} k$ holds $\operatorname{dom} \operatorname{Shift}^{i} q \subseteq \operatorname{Seg}(i+k)$.
(79) Let p be a finite sequence and q_{1}, q_{2} be finite subsequences. If $q_{1} \subseteq p$, then there exists a finite subsequence s_{1} such that $s_{1}=q_{1} \cup \operatorname{Shift}^{\operatorname{len} p} q_{2}$.
(80) Let p_{1}, p_{2} be finite sequences and q_{1}, q_{2} be finite subsequences. Suppose $q_{1} \subseteq p_{1}$ and $q_{2} \subseteq p_{2}$. Then there exists a finite subsequence s_{1} such that $s_{1}=q_{1} \cup \operatorname{Shift}{ }^{\operatorname{len} p_{1}} q_{2}$ and dom Seq $s_{1}=\operatorname{Seg}\left(\operatorname{len} \operatorname{Seq} q_{1}+\operatorname{len} \operatorname{Seq} q_{2}\right)$.
(81) Let p_{1}, p_{2} be finite sequences and q_{1}, q_{2} be finite subsequences. Suppose $q_{1} \subseteq p_{1}$ and $q_{2} \subseteq p_{2}$. Then there exists a finite subsequence s_{1} such that $s_{1}=q_{1} \cup \operatorname{Shift}{ }^{\text {len } p_{1}} q_{2}$ and dom Seq $s_{1}=\operatorname{Seg}\left(\operatorname{len} \operatorname{Seq} q_{1}+\operatorname{len} \operatorname{Seq} q_{2}\right)$ and Seq $s_{1}=\operatorname{Seq} q_{1} \cup$ Shift $^{\text {len Seq } q_{1}} \operatorname{Seq} q_{2}$.
(82) Let p_{1}, p_{2} be finite sequences and q_{1}, q_{2} be finite subsequences. Suppose $q_{1} \subseteq p_{1}$ and $q_{2} \subseteq p_{2}$. Then there exists a finite subsequence s_{1} such that $s_{1}=q_{1} \cup \operatorname{Shift}{ }^{\operatorname{len} p_{1}} q_{2}$ and $\left(\operatorname{Seq} q_{1}\right)^{\wedge}\left(\operatorname{Seq} q_{2}\right)=\operatorname{Seq} s_{1}$.
(83) $\quad\left(R_{1}\right.$ concur $\left.R_{2}\right)$ before $\left(P_{1}\right.$ concur $\left.P_{2}\right) \subseteq\left(R_{1}\right.$ before $\left.P_{1}\right)$ concur $\left(R_{2}\right.$ before $\left.P_{2}\right)$.

Let us consider P, N and let R_{1}, R_{2} be non empty processes in N. Note that R_{1} concur R_{2} is non empty.

7. Neutral Process

Let us consider P and let N be a Petri net over P. The neutral process in N yields a non empty process in N and is defined as follows:
(Def. 16) The neutral process in $N=\left\{\varepsilon_{N}\right\}$.
Let us consider P, let N be a Petri net over P, and let t be an element of N. The elementary process with t yielding a non empty process in N is defined as follows:
(Def. 17) The elementary process with $t=\{\langle t\rangle\}$.
One can prove the following propositions:
(84) (The neutral process in N) before $R=R$.
(85) $\quad R$ before the neutral process in $N=R$.
(86) (The neutral process in N) concur $R=R$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103108, 1993.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[16] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

