The Class of Series-Parallel Graphs. Part I

Krzysztof Retel
University of Białystok

Abstract

Summary. The paper introduces some preliminary notions concerning the graph theory according to [20]. We define Necklace n as a graph with vertex $\{1,2,3, \ldots, n\}$ and edge set $\{(1,2),(2,3), \ldots,(n-1, n)\}$. The goal of the article is to prove that Necklace n and Complement of Necklace n are isomorphic for $n=0,1,4$.

MML Identifier: NECKLACE.

The terminology and notation used in this paper are introduced in the following papers: [23], [22], [25], [12], [1], [15], [5], [11], [2], [24], [26], [28], [18], [6], [7], [21], [13], [19], [27], [8], [9], [10], [17], [3], [4], [14], and [16].

1. Preliminaries

We adopt the following rules: n is a natural number and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, y_{1}, y_{2}, y_{3} are sets.

Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be sets. We say that $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are mutually different if and only if:
(Def. 1) $\quad x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{1} \neq x_{4}$ and $x_{1} \neq x_{5}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{4}$ and $x_{2} \neq x_{5}$ and $x_{3} \neq x_{4}$ and $x_{3} \neq x_{5}$ and $x_{4} \neq x_{5}$.
Next we state several propositions:
(1) If $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are mutually different, then $\operatorname{card}\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=$ 5.
(2) $4=\{0,1,2,3\}$.
(3) $\left.:\left\{x_{1}, x_{2}, x_{3}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}:\right]=\left\{\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{1}, y_{2}\right\rangle,\left\langle x_{1}, y_{3}\right\rangle,\left\langle x_{2}, y_{1}\right\rangle,\left\langle x_{2}\right.\right.$, $\left.\left.y_{2}\right\rangle,\left\langle x_{2}, y_{3}\right\rangle,\left\langle x_{3}, y_{1}\right\rangle,\left\langle x_{3}, y_{2}\right\rangle,\left\langle x_{3}, y_{3}\right\rangle\right\}$.
(4) For every set x and for every natural number n such that $x \in n$ holds x is a natural number.
(5) For every non empty natural number x holds $0 \in x$.

Let us observe that every set which is natural is also cardinal.
Let X be a set. One can check that δ_{X} is one-to-one.
Next we state the proposition
(6) For every set X holds $\overline{\overline{\triangle_{X}}}=\overline{\bar{X}}$.

Let R be a trivial binary relation. Observe that $\operatorname{dom} R$ is trivial.
Let us observe that every function which is trivial is also one-to-one.
We now state several propositions:
(7) For all functions f, g such that $\operatorname{dom} f$ misses $\operatorname{dom} g$ holds $\operatorname{rng}(f+\cdot g)=$ $\operatorname{rng} f \cup \operatorname{rng} g$.
(8) For all one-to-one functions f, g such that $\operatorname{dom} f$ misses $\operatorname{dom} g$ and $\operatorname{rng} f$ misses rng g holds $(f+\cdot g)^{-1}=f^{-1}+\cdot g^{-1}$.
(9) For all sets A, a, b holds $(A \longmapsto a)+\cdot(A \longmapsto b)=A \longmapsto b$.
(10) For all sets a, b holds $(a \longmapsto b)^{-1}=b \mapsto a$.
(11) For all sets a, b, c, d such that $a=b$ iff $c=d$ holds $[a \longmapsto c, b \longmapsto d]^{-1}=$ $[c \longmapsto a, d \longmapsto b]$.
The scheme Convers deals with a non empty set \mathcal{A}, a binary relation \mathcal{B}, two unary functors \mathcal{F} and \mathcal{G} yielding sets, and a unary predicate \mathcal{P}, and states that: $\mathcal{B}^{\smile}=\{\langle\mathcal{F}(x), \mathcal{G}(x)\rangle ; x$ ranges over elements of $\mathcal{A}: \mathcal{P}[x]\}$
provided the parameters meet the following condition:

- $\mathcal{B}=\{\langle\mathcal{G}(x), \mathcal{F}(x)\rangle ; x$ ranges over elements of $\mathcal{A}: \mathcal{P}[x]\}$.

Next we state the proposition
(12) For all natural numbers i, j, n such that $i<j$ and $j \in n$ holds $i \in n$.

2. Auxiliary Concepts

Let R, S be non empty relational structures. We say that S embeds R if and only if the condition (Def. 2) is satisfied.
(Def. 2) There exists a map f from R into S such that
(i) f is one-to-one, and
(ii) for all elements x, y of the carrier of R holds $\langle x, y\rangle \in$ the internal relation of R iff $\langle f(x), f(y)\rangle \in$ the internal relation of S.
Let us note that the predicate S embeds R is reflexive.
One can prove the following proposition
(13) For all non empty relational structures R, S, T such that R embeds S and S embeds T holds R embeds T.
Let R, S be non empty relational structures. We say that R is equimorphic to S if and only if:
(Def. 3) $\quad R$ embeds S and S embeds R.

Let us notice that the predicate R is equimorphic to S is reflexive and symmetric.
The following proposition is true
(14) Let R, S, T be non empty relational structures. Suppose R is equimorphic to S and S is equimorphic to T. Then R is equimorphic to T.
Let R be a non empty relational structure. We introduce R is parallel as an antonym of R is connected.

Let R be a relational structure. We say that R is symmetric if and only if:
(Def. 4) The internal relation of R is symmetric in the carrier of R.
Let R be a relational structure. We say that R is asymmetric if and only if:
(Def. 5) The internal relation of R is asymmetric.
We now state the proposition
(15) Let R be a relational structure. Suppose R is asymmetric. Then the internal relation of R misses (the internal relation of $R)^{\smile}$.
Let R be a relational structure. We say that R is irreflexive if and only if:
(Def. 6) For every set x such that $x \in$ the carrier of R holds $\langle x, x\rangle \notin$ the internal relation of R.

Let n be a natural number. The functor n-SuccRelStr yielding a strict relational structure is defined as follows:
(Def. 7) The carrier of n-SuccRelStr $=n$ and the internal relation of n-SuccRelStr $=\{\langle i, i+1\rangle ; i$ ranges over natural numbers: $i+1<n\}$.
The following propositions are true:
(16) For every natural number n holds n-SuccRelStr is asymmetric.
(17) If $n>0$, then $\overline{\overline{\text { the internal relation of } n \text {-SuccRelStr }}}=n-1$.

Let R be a relational structure. The functor $\operatorname{SymRelStr} R$ yielding a strict relational structure is defined by the conditions (Def. 8).
(Def. 8)(i) The carrier of SymRelStr $R=$ the carrier of R, and
(ii) the internal relation of SymRelStr $R=$ (the internal relation of $R) \cup($ the internal relation of $R)^{\smile}$.
Let R be a relational structure. Note that $\operatorname{SymRelStr} R$ is symmetric.
Let us mention that there exists a relational structure which is non empty and symmetric.

Let R be a symmetric relational structure. One can verify that the internal relation of R is symmetric.

Let R be a relational structure. The functor ComplRelStr R yielding a strict relational structure is defined by the conditions (Def. 9).
(Def. 9)(i) The carrier of ComplRelStr $R=$ the carrier of R, and
(ii) the internal relation of ComplRelStr $R=(\text { the internal relation of } R)^{\mathrm{c}} \backslash$ $\triangle_{\text {the carrier of } R}$.

Let R be a non empty relational structure. Observe that ComplRelStr R is non empty.

Next we state the proposition
(18) Let S, R be relational structures. Suppose S and R are isomorphic. Then $\overline{\overline{\text { the internal relation of } S}}=\overline{\overline{\text { the internal relation of } R}}$.

3. NECKLACE n

Let n be a natural number. The functor Necklace n yielding a strict relational structure is defined as follows:
(Def. 10) Necklace $n=$ SymRelStr n-SuccRelStr .
Let n be a natural number. One can check that Necklace n is symmetric.
We now state two propositions:
(19) The internal relation of Necklace $n=\{\langle i, i+1\rangle ; i$ ranges over natural numbers: $i+1<n\} \cup\{\langle i+1, i\rangle ; i$ ranges over natural numbers: $i+1<n\}$.
(20) Let x be a set. Then $x \in$ the internal relation of Necklace n if and only if there exists a natural number i such that $i+1<n$ but $x=\langle i, i+1\rangle$ or $x=\langle i+1, i\rangle$.
Let n be a natural number. Observe that Necklace n is irreflexive.
Next we state the proposition
(21) For every natural number n holds the carrier of Necklace $n=n$.

Let n be a non empty natural number. Observe that Necklace n is non empty.
Let n be a natural number. Observe that the carrier of Necklace n is finite.
One can prove the following propositions:
(22) For all natural numbers n, i such that $i+1<n$ holds $\langle i, i+1\rangle \in$ the internal relation of Necklace n.
(23) For every natural number n and for every natural number i such that $i \in$ the carrier of Necklace n holds $i<n$.
(24) For every non empty natural number n holds Necklace n is connected.
(25) For all natural numbers i, j such that $\langle i, j\rangle \in$ the internal relation of Necklace n holds $i=j+1$ or $j=i+1$.
(26) Let i, j be natural numbers. Suppose $i=j+1$ or $j=i+1$ but $i \in$ the carrier of Necklace n but $j \in$ the carrier of Necklace n. Then $\langle i, j\rangle \in$ the internal relation of Necklace n.
(27) If $n>0$, then $\overline{\overline{\{\langle i+1, i\rangle ; i} \text { ranges over natural numbers: } i+1<n\}}=$ $n-1$.
(28) If $n>0$, then $\overline{\overline{\text { the internal relation of Necklace } n}}=2 \cdot(n-1)$.
(29) Necklace 1 and ComplRelStr Necklace 1 are isomorphic.
(30) Necklace 4 and ComplRelStr Necklace 4 are isomorphic.
(31) If Necklace n and ComplRelStr Necklace n are isomorphic, then $n=0$ or $n=1$ or $n=4$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[6] Czesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676,
[8] ${ }^{1990}$ Czesław Byliński. Functions and their basic properties. Formalized Mathematics, $1(1): 55-$ 65, 1990.
[9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Czesław Bylinski. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[14] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131-143, 1997.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501-505, 1996.
[17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[18] Shunichi Kobayashi. Predicate calculus for boolean valued functions. Part XII. Formalized Mathematics, 9(1):221-235, 2001.
[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[20] Stephan Thomasse. On better-quasi-ordering countable series-parallel orders. Transactions of American Mathematical Society, 352(6):2491-2505, 2000.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[28] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

