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Summary. The paper introduces some preliminary notions concerning
the graph theory according to [20]. We define Necklace n as a graph with vertex

{1, 2, 3, . . . , n} and edge set {(1, 2), (2, 3), . . . , (n− 1, n)}. The goal of the article

is to prove that Necklace n and Complement of Necklace n are isomorphic for

n = 0, 1, 4.

MML Identifier: NECKLACE.

The terminology and notation used in this paper are introduced in the following

papers: [23], [22], [25], [12], [1], [15], [5], [11], [2], [24], [26], [28], [18], [6], [7], [21],

[13], [19], [27], [8], [9], [10], [17], [3], [4], [14], and [16].

1. Preliminaries

We adopt the following rules: n is a natural number and x1, x2, x3, x4, x5,

y1, y2, y3 are sets.

Let x1, x2, x3, x4, x5 be sets. We say that x1, x2, x3, x4, x5 are mutually

different if and only if:

(Def. 1) x1 6= x2 and x1 6= x3 and x1 6= x4 and x1 6= x5 and x2 6= x3 and x2 6= x4

and x2 6= x5 and x3 6= x4 and x3 6= x5 and x4 6= x5.

Next we state several propositions:

(1) If x1, x2, x3, x4, x5 are mutually different, then card{x1, x2, x3, x4, x5} =

5.

(2) 4 = {0, 1, 2, 3}.

(3) [: {x1, x2, x3}, {y1, y2, y3} :] = {〈〈x1, y1〉〉, 〈〈x1, y2〉〉, 〈〈x1, y3〉〉, 〈〈x2, y1〉〉, 〈〈x2,

y2〉〉, 〈〈x2, y3〉〉, 〈〈x3, y1〉〉, 〈〈x3, y2〉〉, 〈〈x3, y3〉〉}.

(4) For every set x and for every natural number n such that x ∈ n holds x

is a natural number.
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(5) For every non empty natural number x holds 0 ∈ x.

Let us observe that every set which is natural is also cardinal.

Let X be a set. One can check that δX is one-to-one.

Next we state the proposition

(6) For every set X holds △X = X .

Let R be a trivial binary relation. Observe that domR is trivial.

Let us observe that every function which is trivial is also one-to-one.

We now state several propositions:

(7) For all functions f , g such that dom f misses dom g holds rng(f+·g) =

rng f ∪ rng g.

(8) For all one-to-one functions f , g such that dom f misses dom g and rng f

misses rng g holds (f+·g)−1 = f−1+·g−1.

(9) For all sets A, a, b holds (A 7−→ a)+·(A 7−→ b) = A 7−→ b.

(10) For all sets a, b holds (a7−→. b)−1 = b7−→. a.

(11) For all sets a, b, c, d such that a = b iff c = d holds [a 7−→ c, b 7−→ d]−1 =

[c 7−→ a, d 7−→ b].

The scheme Convers deals with a non empty set A, a binary relation B, two

unary functors F and G yielding sets, and a unary predicate P, and states that:

B` = {〈〈F(x), G(x)〉〉; x ranges over elements of A : P[x]}

provided the parameters meet the following condition:

• B = {〈〈G(x), F(x)〉〉;x ranges over elements of A : P[x]}.

Next we state the proposition

(12) For all natural numbers i, j, n such that i < j and j ∈ n holds i ∈ n.

2. Auxiliary Concepts

Let R, S be non empty relational structures. We say that S embeds R if and

only if the condition (Def. 2) is satisfied.

(Def. 2) There exists a map f from R into S such that

(i) f is one-to-one, and

(ii) for all elements x, y of the carrier of R holds 〈〈x, y〉〉 ∈ the internal

relation of R iff 〈〈f(x), f(y)〉〉 ∈ the internal relation of S.

Let us note that the predicate S embeds R is reflexive.

One can prove the following proposition

(13) For all non empty relational structures R, S, T such that R embeds S

and S embeds T holds R embeds T .

Let R, S be non empty relational structures. We say that R is equimorphic

to S if and only if:

(Def. 3) R embeds S and S embeds R.
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Let us notice that the predicateR is equimorphic to S is reflexive and symmetric.

The following proposition is true

(14) Let R, S, T be non empty relational structures. Suppose R is equimor-

phic to S and S is equimorphic to T . Then R is equimorphic to T .

Let R be a non empty relational structure. We introduce R is parallel as an

antonym of R is connected.

Let R be a relational structure. We say that R is symmetric if and only if:

(Def. 4) The internal relation of R is symmetric in the carrier of R.

Let R be a relational structure. We say that R is asymmetric if and only if:

(Def. 5) The internal relation of R is asymmetric.

We now state the proposition

(15) Let R be a relational structure. Suppose R is asymmetric. Then the

internal relation of R misses (the internal relation of R)`.

Let R be a relational structure. We say that R is irreflexive if and only if:

(Def. 6) For every set x such that x ∈ the carrier of R holds 〈〈x, x〉〉 /∈ the internal

relation of R.

Let n be a natural number. The functor n -SuccRelStr yielding a strict rela-

tional structure is defined as follows:

(Def. 7) The carrier of n -SuccRelStr = n and the internal relation of

n -SuccRelStr = {〈〈i, i + 1〉〉; i ranges over natural numbers: i + 1 < n}.

The following propositions are true:

(16) For every natural number n holds n -SuccRelStr is asymmetric.

(17) If n > 0, then the internal relation of n -SuccRelStr = n− 1.

Let R be a relational structure. The functor SymRelStrR yielding a strict

relational structure is defined by the conditions (Def. 8).

(Def. 8)(i) The carrier of SymRelStrR = the carrier of R, and

(ii) the internal relation of SymRelStrR = (the internal relation of R)∪(the

internal relation of R)`.

Let R be a relational structure. Note that SymRelStrR is symmetric.

Let us mention that there exists a relational structure which is non empty

and symmetric.

Let R be a symmetric relational structure. One can verify that the internal

relation of R is symmetric.

Let R be a relational structure. The functor ComplRelStrR yielding a strict

relational structure is defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of ComplRelStrR = the carrier of R, and

(ii) the internal relation of ComplRelStrR = (the internal relation of R)c \

△the carrier of R.
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Let R be a non empty relational structure. Observe that ComplRelStrR is

non empty.

Next we state the proposition

(18) Let S, R be relational structures. Suppose S and R are isomorphic. Then

the internal relation of S = the internal relation of R.

3. Necklace n

Let n be a natural number. The functor Necklacen yielding a strict relational

structure is defined as follows:

(Def. 10) Necklacen = SymRelStrn -SuccRelStr .

Let n be a natural number. One can check that Necklacen is symmetric.

We now state two propositions:

(19) The internal relation of Necklacen = {〈〈i, i + 1〉〉; i ranges over natural

numbers: i+1 < n}∪{〈〈i+1, i〉〉; i ranges over natural numbers: i+1 < n}.

(20) Let x be a set. Then x ∈ the internal relation of Necklacen if and only

if there exists a natural number i such that i + 1 < n but x = 〈〈i, i + 1〉〉 or

x = 〈〈i + 1, i〉〉.

Let n be a natural number. Observe that Necklacen is irreflexive.

Next we state the proposition

(21) For every natural number n holds the carrier of Necklacen = n.

Let n be a non empty natural number. Observe that Necklacen is non empty.

Let n be a natural number. Observe that the carrier of Necklacen is finite.

One can prove the following propositions:

(22) For all natural numbers n, i such that i + 1 < n holds 〈〈i, i + 1〉〉 ∈ the

internal relation of Necklacen.

(23) For every natural number n and for every natural number i such that

i ∈ the carrier of Necklacen holds i < n.

(24) For every non empty natural number n holds Necklacen is connected.

(25) For all natural numbers i, j such that 〈〈i, j〉〉 ∈ the internal relation of

Necklacen holds i = j + 1 or j = i + 1.

(26) Let i, j be natural numbers. Suppose i = j + 1 or j = i + 1 but i ∈ the

carrier of Necklacen but j ∈ the carrier of Necklacen. Then 〈〈i, j〉〉 ∈ the

internal relation of Necklacen.

(27) If n > 0, then {〈〈i + 1, i〉〉; i ranges over natural numbers: i + 1 < n} =

n− 1.

(28) If n > 0, then the internal relation of Necklacen = 2 · (n− 1).

(29) Necklace 1 and ComplRelStrNecklace 1 are isomorphic.

(30) Necklace 4 and ComplRelStrNecklace 4 are isomorphic.
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(31) If Necklacen and ComplRelStrNecklacen are isomorphic, then n = 0 or

n = 1 or n = 4.
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