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Summary. In the article we present antilinear functionals, sesquilinear
and hermitan forms. We prove Schwarz and Minkowski inequalities, and Paral-

lelogram Law for non-negative hermitan form. The proof of Schwarz inequality

is based on [14]. The incorrect proof of this fact can be found in [11]. The con-

struction of scalar product in quotient vector space from non-negative hermitan

functions is the main result of the article.

MML Identifier: HERMITAN.

The notation and terminology used in this paper have been introduced in the

following articles: [16], [5], [20], [6], [15], [3], [1], [19], [10], [21], [4], [17], [2], [7],

[18], [12], [13], [9], and [8].

1. Auxiliary Facts about Complex Numbers

The following propositions are true:

(1) For every element a of C such that a = a holds ℑ(a) = 0.

(2) For every element a of C such that a 6= 0C holds |
ℜ(a)
|a| + −ℑ(a)

|a| i| = 1 and

ℜ((ℜ(a)
|a| + −ℑ(a)

|a| i) · a) = |a| and ℑ((ℜ(a)
|a| + −ℑ(a)

|a| i) · a) = 0.

(3) For every element a of C there exists an element b of C such that |b| = 1

and ℜ(b · a) = |a| and ℑ(b · a) = 0.

(4) For every element a of C holds a · a = |a|2 + 0i.
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(5) For every element a of the carrier of CF such that a = a holds ℑ(a) = 0.

(6) iCF = (i)−1.

(7) iCF · iCF = 1CF
.

(8) Let a be an element of the carrier of CF. Suppose a 6= 0CF
. Then |ℜ(a)

|a| +
−ℑ(a)
|a| iCF | = 1 and ℜ((ℜ(a)

|a| + −ℑ(a)
|a| iCF) · a) = |a| and ℑ((ℜ(a)

|a| + −ℑ(a)
|a| iCF) ·

a) = 0.

(9) Let a be an element of the carrier of CF. Then there exists an element b

of the carrier of CF such that |b| = 1 and ℜ(b · a) = |a| and ℑ(b · a) = 0.

(10) For all elements a, b of the carrier of CF holds ℜ(a − b) = ℜ(a) − ℜ(b)

and ℑ(a− b) = ℑ(a)−ℑ(b).

(11) For all elements a, b of the carrier of CF such that ℑ(a) = 0 holds

ℜ(a · b) = ℜ(a) · ℜ(b) and ℑ(a · b) = ℜ(a) · ℑ(b).

(12) For all elements a, b of the carrier of CF such that ℑ(a) = 0 and ℑ(b) = 0

holds ℑ(a · b) = 0.

(13) For every element a of the carrier of CF holds ℜ(a) = ℜ(a).

(14) For every element a of the carrier of CF such that ℑ(a) = 0 holds a = a.

(15) For all real numbers r, s holds (r + 0iCF) · (s + 0iCF) = r · s + 0iCF .

(16) For every element a of the carrier of CF holds a · a = |a|2 + 0iCF .

(17) For every element a of the carrier of CF such that 0 ¬ ℜ(a) and ℑ(a) = 0

holds |a| = ℜ(a).

(18) For every element a of the carrier of CF holds ℜ(a) + ℜ(a) = 2 · ℜ(a).

2. Antilinear Functionals in Complex Vector Spaces

Let V be a non empty vector space structure over CF and let f be a functional

in V . We say that f is complex-homogeneous if and only if:

(Def. 1) For every vector v of V and for every scalar a of V holds f(a·v) = a ·f(v).

Let V be a non empty vector space structure over CF. Observe that

0FunctionalV is complex-homogeneous.

Let V be an add-associative right zeroed right complementable vector space-

like non empty vector space structure over CF. One can verify that every func-

tional in V which is complex-homogeneous is also 0-preserving.

Let V be a non empty vector space structure over CF. One can check that

there exists a functional in V which is additive, complex-homogeneous, and

0-preserving.

Let V be a non empty vector space structure over CF. An antilinear func-

tional of V is an additive complex-homogeneous functional in V .

Let V be a non empty vector space structure over CF and let f , g be complex-

homogeneous functionals in V . Observe that f + g is complex-homogeneous.
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Let V be a non empty vector space structure over CF and let f be a complex-

homogeneous functional in V . One can verify that −f is complex-homogeneous.

Let V be a non empty vector space structure over CF, let a be a scalar of V ,

and let f be a complex-homogeneous functional in V . One can verify that a · f

is complex-homogeneous.

Let V be a non empty vector space structure over CF and let f , g be

complex-homogeneous functionals in V . One can check that f − g is complex-

homogeneous.

Let V be a non empty vector space structure over CF and let f be a functional

in V . The functor f yields a functional in V and is defined by:

(Def. 2) For every vector v of V holds f (v) = f(v) .

Let V be a non empty vector space structure over CF and let f be an additive

functional in V . Note that f is additive.

Let V be a non empty vector space structure over CF and let f be a homo-

geneous functional in V . Note that f is complex-homogeneous.

Let V be a non empty vector space structure over CF and let f be a complex-

homogeneous functional in V . Note that f is homogeneous.

Let V be a non trivial vector space over CF and let f be a non constant

functional in V . One can check that f is non constant.

Let V be a non trivial vector space over CF. One can check that there exists

a functional in V which is additive, complex-homogeneous, non constant, and

non trivial.

The following propositions are true:

(19) For every non empty vector space structure V over CF and for every

functional f in V holds f = f.

(20) For every non empty vector space structure V over CF holds

0FunctionalV = 0FunctionalV.

(21) For every non empty vector space structure V over CF and for all func-

tionals f , g in V holds f + g = f + g .

(22) For every non empty vector space structure V over CF and for every

functional f in V holds −f = −f .

(23) Let V be a non empty vector space structure over CF, f be a functional

in V , and a be a scalar of V . Then a · f = a · f .

(24) For every non empty vector space structure V over CF and for all func-

tionals f , g in V holds f − g = f − g .

(25) Let V be a non empty vector space structure over CF, f be a functional

in V , and v be a vector of V . Then f(v) = 0CF
if and only if f (v) = 0CF

.

(26) For every non empty vector space structure V over CF and for every

functional f in V holds ker f = ker f .
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(27) Let V be an add-associative right zeroed right complementable vector

space-like non empty vector space structure over CF and f be an antilinear

functional of V . Then ker f is linearly closed.

(28) Let V be a vector space over CF, W be a subspace of V , and f be

an antilinear functional of V . If the carrier of W ⊆ ker f , then f/W is

complex-homogeneous.

Let V be a vector space over CF and let f be an antilinear functional of

V . The functor QcFunctional f yields an antilinear functional of V /
Ker f and is

defined as follows:

(Def. 3) QcFunctional f = f/
Ker f .

We now state the proposition

(29) Let V be a vector space over CF, f be an antilinear functional of V , A

be a vector of V /
Ker f , and v be a vector of V . If A = v + Ker f , then

(QcFunctional f)(A) = f(v).

Let V be a non trivial vector space over CF and let f be a non constant

antilinear functional of V . One can check that QcFunctional f is non constant.

Let V be a vector space over CF and let f be an antilinear functional of V .

Observe that QcFunctional f is non degenerated.

3. Sesquilinear Forms in Complex Vector Spaces

Let V , W be non empty vector space structures over CF and let f be a form

of V , W . We say that f is complex-homogeneous wrt. second argument if and

only if:

(Def. 4) For every vector v of V holds f(v, ·) is complex-homogeneous.

We now state the proposition

(30) Let V , W be non empty vector space structures over CF, v be a vector

of V , w be a vector of W , a be an element of the carrier of CF, and f be a

form of V , W . Suppose f is complex-homogeneous wrt. second argument.

Then f(〈〈v, a · w〉〉) = a · f(〈〈v, w〉〉).

Let V be a non empty vector space structure over CF and let f be a form

of V , V . We say that f is hermitan if and only if:

(Def. 5) For all vectors v, u of V holds f(〈〈v, u〉〉) = f(〈〈u, v〉〉) .

We say that f is diagonal real valued if and only if:

(Def. 6) For every vector v of V holds ℑ(f(〈〈v, v〉〉)) = 0.

We say that f is diagonal plus-real valued if and only if:

(Def. 7) For every vector v of V holds 0 ¬ ℜ(f(〈〈v, v〉〉)).

Let V , W be non empty vector space structures over CF. Observe that

NulForm(V,W ) is complex-homogeneous wrt. second argument.
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Let V be a non empty vector space structure over CF. Observe that

NulForm(V, V ) is hermitan and NulForm(V, V ) is diagonal plus-real valued.

Let V be a non empty vector space structure over CF. Observe that every

form of V , V which is hermitan is also diagonal real valued.

Let V be a non empty vector space structure over CF. One can check that

there exists a form of V , V which is diagonal plus-real valued, hermitan, diago-

nal real valued, additive wrt. first argument, homogeneous wrt. first argument,

additive wrt. second argument, and complex-homogeneous wrt. second argu-

ment.

Let V ,W be non empty vector space structures over CF. One can check that

there exists a form of V , W which is additive wrt. first argument, homogeneous

wrt. first argument, additive wrt. second argument, and complex-homogeneous

wrt. second argument.

Let V ,W be non empty vector space structures over CF. A sesquilinear form

of V , W is an additive wrt. first argument homogeneous wrt. first argument ad-

ditive wrt. second argument complex-homogeneous wrt. second argument form

of V , W .

Let V be a non empty vector space structure over CF. One can check that

every form of V , V which is hermitan and additive wrt. second argument is also

additive wrt. first argument.

Let V be a non empty vector space structure over CF. Observe that every

form of V , V which is hermitan and additive wrt. first argument is also additive

wrt. second argument.

Let V be a non empty vector space structure over CF. Observe that every

form of V , V which is hermitan and homogeneous wrt. first argument is also

complex-homogeneous wrt. second argument.

Let V be a non empty vector space structure over CF. Note that every form

of V , V which is hermitan and complex-homogeneous wrt. second argument is

also homogeneous wrt. first argument.

Let V be a non empty vector space structure over CF. A hermitan form of

V is a hermitan additive wrt. first argument homogeneous wrt. first argument

form of V , V .

Let V ,W be non empty vector space structures over CF, let f be a functional

in V , and let g be a complex-homogeneous functional in W . Note that f ⊗ g is

complex-homogeneous wrt. second argument.

Let V ,W be non empty vector space structures over CF, let f be a complex-

homogeneous wrt. second argument form of V , W , and let v be a vector of V .

One can verify that f(v, ·) is complex-homogeneous.

Let V , W be non empty vector space structures over CF and let f , g be

complex-homogeneous wrt. second argument forms of V , W . One can verify

that f + g is complex-homogeneous wrt. second argument.

Let V ,W be non empty vector space structures over CF, let f be a complex-



92 jarosław kotowicz

homogeneous wrt. second argument form of V , W , and let a be a scalar of V .

Observe that a · f is complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF and let f be a

complex-homogeneous wrt. second argument form of V , W . One can check that

−f is complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF and let f , g be

complex-homogeneous wrt. second argument forms of V , W . Observe that f−g

is complex-homogeneous wrt. second argument.

Let V , W be non trivial vector spaces over CF. Observe that there exists

a form of V , W which is additive wrt. first argument, homogeneous wrt. first

argument, additive wrt. second argument, complex-homogeneous wrt. second

argument, non constant, and non trivial.

Let V , W be non empty vector space structures over CF and let f be a form

of V , W . The functor f yielding a form of V , W is defined by:

(Def. 8) For every vector v of V and for every vector w of W holds f (〈〈v, w〉〉) =

f(〈〈v, w〉〉) .

Let V , W be non empty vector space structures over CF and let f be an

additive wrt. second argument form of V ,W . Note that f is additive wrt. second

argument.

Let V , W be non empty vector space structures over CF and let f be an

additive wrt. first argument form of V , W . Note that f is additive wrt. first

argument.

Let V , W be non empty vector space structures over CF and let f be a

homogeneous wrt. second argument form of V , W . One can check that f is

complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF and let f be a

complex-homogeneous wrt. second argument form of V , W . Note that f is

homogeneous wrt. second argument.

Let V , W be non trivial vector spaces over CF and let f be a non constant

form of V , W . One can verify that f is non constant.

The following proposition is true

(31) Let V be a non empty vector space structure over CF, f be a functional

in V , and v be a vector of V . Then f ⊗ f (〈〈v, v〉〉) = |f(v)|2 + 0iCF .

Let V be a non empty vector space structure over CF and let f be a functional

in V . One can verify that f ⊗ f is diagonal plus-real valued, hermitan, and

diagonal real valued.

Let V be a non trivial vector space over CF. Note that there exists a form of

V , V which is diagonal plus-real valued, hermitan, diagonal real valued, addi-

tive wrt. first argument, homogeneous wrt. first argument, additive wrt. second

argument, complex-homogeneous wrt. second argument, non constant, and non

trivial.
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We now state a number of propositions:

(32) For all non empty vector space structures V , W over CF and for every

form f of V , W holds f = f.

(33) For all non empty vector space structures V , W over CF holds

NulForm(V,W ) = NulForm(V,W ).

(34) For all non empty vector space structures V ,W over CF and for all forms

f , g of V , W holds f + g = f + g .

(35) For all non empty vector space structures V , W over CF and for every

form f of V , W holds −f = −f .

(36) Let V , W be non empty vector space structures over CF, f be a form of

V , W , and a be an element of CF. Then a · f = a · f .

(37) For all non empty vector space structures V ,W over CF and for all forms

f , g of V , W holds f − g = f − g .

(38) Let V ,W be vector spaces over CF, v be a vector of V , w, t be vectors of

W , and f be an additive wrt. second argument complex-homogeneous wrt.

second argument form of V , W . Then f(〈〈v, w − t〉〉) = f(〈〈v, w〉〉) − f(〈〈v,

t〉〉).

(39) Let V , W be vector spaces over CF, v, u be vectors of V , w, t be vectors

ofW , and f be a sesquilinear form of V ,W . Then f(〈〈v−u, w−t〉〉) = f(〈〈v,

w〉〉)− f(〈〈v, t〉〉)− (f(〈〈u, w〉〉)− f(〈〈u, t〉〉)).

(40) Let V , W be add-associative right zeroed right complementable vector

space-like non empty vector space structures over CF, v, u be vectors of

V , w, t be vectors of W , a, b be elements of the carrier of CF, and f

be a sesquilinear form of V , W . Then f(〈〈v + a · u, w + b · t〉〉) = f(〈〈v,

w〉〉) + b · f(〈〈v, t〉〉) + (a · f(〈〈u, w〉〉) + a · (b · f(〈〈u, t〉〉))).

(41) Let V , W be vector spaces over CF, v, u be vectors of V , w, t be vectors

of W , a, b be elements of the carrier of CF, and f be a sesquilinear form

of V , W . Then f(〈〈v−a ·u, w− b · t〉〉) = f(〈〈v, w〉〉)− b ·f(〈〈v, t〉〉)− (a ·f(〈〈u,

w〉〉)− a · (b · f(〈〈u, t〉〉))).

(42) Let V be an add-associative right zeroed right complementable vector

space-like non empty vector space structure over CF, f be a complex-

homogeneous wrt. second argument form of V , V , and v be a vector of V .

Then f(〈〈v, 0V 〉〉) = 0CF
.

(43) Let V be a vector space over CF, v, w be vectors of V , and f be a

hermitan form of V . Then f(〈〈v, w〉〉)+f(〈〈v, w〉〉)+f(〈〈v, w〉〉)+f(〈〈v, w〉〉) =

((f(〈〈v + w, v + w〉〉) − f(〈〈v − w, v − w〉〉)) + iCF · f(〈〈v + iCF · w, v + iCF ·

w〉〉))− iCF · f(〈〈v − iCF · w, v − iCF · w〉〉).

Let V be a non empty vector space structure over CF, let f be a form of

V , V , and let v be a vector of V . The functor ||v||2f yields a real number and is

defined as follows:
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(Def. 9) ||v||2f = ℜ(f(〈〈v, v〉〉)).

The following propositions are true:

(44) Let V be an add-associative right zeroed right complementable vector

space-like non empty vector space structure over CF, f be a diagonal plus-

real valued diagonal real valued form of V , V , and v be a vector of V . Then

|f(〈〈v, v〉〉)| = ℜ(f(〈〈v, v〉〉)) and ||v||2f = |f(〈〈v, v〉〉)|.

(45) Let V be a vector space over CF, v, w be vectors of V , f be a sesquilinear

form of V , V , r be a real number, and a be an element of the carrier of

CF. Suppose |a| = 1 and ℜ(a · f(〈〈w, v〉〉)) = |f(〈〈w, v〉〉)| and ℑ(a · f(〈〈w,

v〉〉)) = 0. Then f(〈〈v − (r + 0iCF) · a · w, v − (r + 0iCF) · a · w〉〉) = (f(〈〈v,

v〉〉)−(r+0iCF)·(a·f(〈〈w, v〉〉))−(r+0iCF)·(a ·f(〈〈v, w〉〉)))+(r2+0iCF)·f(〈〈w,

w〉〉).

(46) Let V be a vector space over CF, v, w be vectors of V , f be a diagonal

plus-real valued hermitan form of V , r be a real number, and a be an

element of the carrier of CF. Suppose |a| = 1 and ℜ(a · f(〈〈w, v〉〉)) =

|f(〈〈w, v〉〉)| and ℑ(a · f(〈〈w, v〉〉)) = 0. Then ℜ(f(〈〈v − (r + 0iCF) · a · w,

v − (r + 0iCF) · a · w〉〉)) = (||v||2f − 2 · |f(〈〈w, v〉〉)| · r) + ||w||2f · r
2 and

0 ¬ (||v||2f − 2 · |f(〈〈w, v〉〉)| · r) + ||w||2f · r
2.

(47) Let V be a vector space over CF, v, w be vectors of V , and f be a

diagonal plus-real valued hermitan form of V . If ||w||2f = 0, then |f(〈〈w,

v〉〉)| = 0.

(48) Let V be a vector space over CF, v, w be vectors of V , and f be a diagonal

plus-real valued hermitan form of V . Then |f(〈〈v, w〉〉)|2 ¬ ||v||2f · ||w||
2
f .

(49) Let V be a vector space over CF, f be a diagonal plus-real valued her-

mitan form of V , and v, w be vectors of V . Then |f(〈〈v, w〉〉)|2 ¬ |f(〈〈v,

v〉〉)| · |f(〈〈w, w〉〉)|.

(50) Let V be a vector space over CF, f be a diagonal plus-real valued

hermitan form of V , and v, w be vectors of V . Then ||v + w||2f ¬

(
√

||v||2f +
√

||w||2f )2.

(51) Let V be a vector space over CF, f be a diagonal plus-real valued her-

mitan form of V , and v, w be vectors of V . Then |f(〈〈v + w, v + w〉〉)| ¬

(
√

|f(〈〈v, v〉〉)|+
√

|f(〈〈w, w〉〉)|)2.

(52) Let V be a vector space over CF, f be a hermitan form of V , and v, w be

elements of the carrier of V . Then ||v+w||2f +||v−w||2f = 2·||v||2f +2·||w||2f .

(53) Let V be a vector space over CF, f be a diagonal plus-real valued hermi-

tan form of V , and v, w be elements of the carrier of V . Then |f(〈〈v + w,

v + w〉〉)|+ |f(〈〈v − w, v − w〉〉)| = 2 · |f(〈〈v, v〉〉)|+ 2 · |f(〈〈w, w〉〉)|.

Let V be a non empty vector space structure over CF and let f be a form

of V , V . The functor || · ||f yields a RFunctional of V and is defined as follows:
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(Def. 10) For every element v of the carrier of V holds (|| · ||f )(v) =
√

||v||2f .

Let V be a vector space over CF and let f be a diagonal plus-real valued

hermitan form of V . Then || · ||f is a Semi-Norm of V .

4. Kernel of Hermitan Forms and Hermitan Forms in Quotient

Vector Spaces

Let V be an add-associative right zeroed right complementable vector

space-like non empty vector space structure over CF and let f be a complex-

homogeneous wrt. second argument form of V , V . Note that diagker f is non

empty.

We now state several propositions:

(54) Let V be a vector space over CF and f be a diagonal plus-real valued

hermitan form of V . Then diagker f is linearly closed.

(55) For every vector space V over CF and for every diagonal plus-real valued

hermitan form f of V holds diagker f = leftker f.

(56) For every vector space V over CF and for every diagonal plus-real valued

hermitan form f of V holds diagker f = rightker f.

(57) For every non empty vector space structure V over CF and for every

form f of V , V holds diagker f = diagker f .

(58) For all non empty vector space structures V , W over CF and for every

form f of V , W holds leftker f = leftker f and rightker f = rightker f .

(59) For every vector space V over CF and for every diagonal plus-real valued

hermitan form f of V holds LKer f = RKer f .

(60) Let V be a vector space over CF, f be a diagonal plus-real valued diagonal

real valued form of V , V , and v be a vector of V . If ℜ(f(〈〈v, v〉〉)) = 0, then

f(〈〈v, v〉〉) = 0CF
.

(61) Let V be a vector space over CF, f be a diagonal plus-real valued her-

mitan form of V , and v be a vector of V . Suppose ℜ(f(〈〈v, v〉〉)) = 0 and f

is non degenerated on left and non degenerated on right. Then v = 0V .

Let V be a non empty vector space structure over CF, letW be a vector space

over CF, and let f be an additive wrt. second argument complex-homogeneous

wrt. second argument form of V , W . The functor RQForm∗(f) yielding an ad-

ditive wrt. second argument complex-homogeneous wrt. second argument form

of V , W /
RKer f is defined as follows:

(Def. 11) RQForm∗(f) = RQForm(f ) .

We now state the proposition

(62) Let V be a non empty vector space structure over CF, W be a vec-

tor space over CF, f be an additive wrt. second argument complex-
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homogeneous wrt. second argument form of V , W , v be a vector of V ,

and w be a vector of W . Then (RQForm∗(f))(〈〈v, w + RKer f 〉〉) = f(〈〈v,

w〉〉).

Let V , W be vector spaces over CF and let f be a sesquilinear form of

V , W . Note that LQForm(f) is additive wrt. second argument and complex-

homogeneous wrt. second argument and RQForm∗(f) is additive wrt. first ar-

gument and homogeneous wrt. first argument.

Let V , W be vector spaces over CF and let f be a sesquilinear form of V ,

W . The functor QForm∗ f yields a sesquilinear form of V /LKer f ,
W /
RKer f and

is defined by the condition (Def. 12).

(Def. 12) Let A be a vector of V /LKer f , B be a vector of
W /
RKer f , v be a vector

of V , and w be a vector of W . If A = v + LKer f and B = w + RKer f ,

then (QForm∗ f)(〈〈A, B〉〉) = f(〈〈v, w〉〉).

Let V , W be non trivial vector spaces over CF and let f be a non constant

sesquilinear form of V , W . Observe that QForm∗ f is non constant.

Let V be a right zeroed non empty vector space structure over CF, let W

be a vector space over CF, and let f be an additive wrt. second argument

complex-homogeneous wrt. second argument form of V , W . One can verify that

RQForm∗(f) is non degenerated on right.

One can prove the following propositions:

(63) Let V be a non empty vector space structure over CF, W be a vec-

tor space over CF, and f be an additive wrt. second argument complex-

homogeneous wrt. second argument form of V , W . Then leftker f =

leftker(RQForm∗(f)).

(64) For all vector spaces V , W over CF and for every sesquilinear form f of

V , W holds RKer f = RKer LQForm(f) .

(65) For all vector spaces V , W over CF and for every sesquilinear form f of

V , W holds LKer f = LKer(RQForm∗(f)).

(66) For all vector spaces V , W over CF and for every sesquilinear form

f of V , W holds QForm∗ f = RQForm∗(LQForm(f)) and QForm∗ f =

LQForm(RQForm∗(f)).

(67) Let V , W be vector spaces over CF and f be a sesquilinear form of

V , W . Then leftker(QForm∗ f) = leftker(RQForm∗(LQForm(f))) and

rightker(QForm∗ f) = rightker(RQForm∗(LQForm(f))) and

leftker(QForm∗ f) = leftker(LQForm(RQForm∗(f))) and

rightker(QForm∗ f) = rightker(LQForm(RQForm∗(f))).

Let V , W be vector spaces over CF and let f be a sesquilinear form of

V , W . Note that RQForm∗(LQForm(f)) is non degenerated on left and non

degenerated on right and LQForm(RQForm∗(f)) is non degenerated on left and

non degenerated on right.
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Let V ,W be vector spaces over CF and let f be a sesquilinear form of V ,W .

Note that QForm∗ f is non degenerated on left and non degenerated on right.

5. Scalar Product in Quotient Vector Space Generated by

Non-Negative Hermitan Form

Let V be a non empty vector space structure over CF and let f be a form

of V , V . We say that f is positive diagonal valued if and only if:

(Def. 13) For every vector v of V such that v 6= 0V holds 0 < ℜ(f(〈〈v, v〉〉)).

Let V be a right zeroed non empty vector space structure over CF. Note

that every form of V , V which is positive diagonal valued and additive wrt. first

argument is also diagonal plus-real valued.

Let V be a right zeroed non empty vector space structure over CF. One can

verify that every form of V , V which is positive diagonal valued and additive

wrt. second argument is also diagonal plus-real valued.

Let V be a vector space over CF and let f be a diagonal plus-real valued her-

mitan form of V . The functor 〈·|·〉f yields a diagonal plus-real valued hermitan

form of V /LKer f and is defined as follows:

(Def. 14) 〈·|·〉f = QForm∗ f.

Next we state three propositions:

(68) Let V be a vector space over CF, f be a diagonal plus-real valued her-

mitan form of V , A, B be vectors of V /LKer f , and v, w be vectors of V . If

A = v + LKer f and B = w + LKer f, then (〈·|·〉f )(〈〈A, B〉〉) = f(〈〈v, w〉〉).

(69) For every vector space V over CF and for every diagonal plus-real valued

hermitan form f of V holds leftker(〈·|·〉f ) = leftker(QForm∗ f).

(70) For every vector space V over CF and for every diagonal plus-real valued

hermitan form f of V holds rightker(〈·|·〉f ) = rightker(QForm∗ f).

Let V be a vector space over CF and let f be a diagonal plus-real valued her-

mitan form of V . Observe that 〈·|·〉f is non degenerated on left, non degenerated

on right, and positive diagonal valued.

Let V be a non trivial vector space over CF and let f be a diagonal plus-real

valued non constant hermitan form of V . Note that 〈·|·〉f is non constant.
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