$\begin{array}{c} \mbox{Hermitan Functionals.}\\ \mbox{Canonical Construction of Scalar Product in}\\ \mbox{Quotient Vector Space}^1 \end{array}$

Jarosław Kotowicz University of Białystok

Summary. In the article we present antilinear functionals, sesquilinear and hermitan forms. We prove Schwarz and Minkowski inequalities, and Parallelogram Law for non-negative hermitan form. The proof of Schwarz inequality is based on [14]. The incorrect proof of this fact can be found in [11]. The construction of scalar product in quotient vector space from non-negative hermitan functions is the main result of the article.

MML Identifier: HERMITAN.

The notation and terminology used in this paper have been introduced in the following articles: [16], [5], [20], [6], [15], [3], [1], [19], [10], [21], [4], [17], [2], [7], [18], [12], [13], [9], and [8].

1. Auxiliary Facts about Complex Numbers

The following propositions are true:

- (1) For every element a of \mathbb{C} such that $a = \overline{a}$ holds $\Im(a) = 0$.
- (2) For every element a of \mathbb{C} such that $a \neq 0_{\mathbb{C}}$ holds $|\frac{\Re(a)}{|a|} + \frac{-\Im(a)}{|a|}i| = 1$ and $\Re((\frac{\Re(a)}{|a|} + \frac{-\Im(a)}{|a|}i) \cdot a) = |a|$ and $\Im((\frac{\Re(a)}{|a|} + \frac{-\Im(a)}{|a|}i) \cdot a) = 0.$
- (3) For every element a of \mathbb{C} there exists an element b of \mathbb{C} such that |b| = 1and $\Re(b \cdot a) = |a|$ and $\Im(b \cdot a) = 0$.
- (4) For every element a of \mathbb{C} holds $a \cdot \overline{a} = |a|^2 + 0i$.

C 2003 University of Białystok ISSN 1426-2630

¹This work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and SPUB-M grant of KBN.

- (5) For every element a of the carrier of \mathbb{C}_{F} such that $a = \overline{a}$ holds $\Im(a) = 0$.
- (6) $\overline{i_{\mathbb{C}_{\mathrm{F}}}} = (i)^{-1}.$
- (7) $i_{\mathbb{C}_{\mathrm{F}}} \cdot \overline{i_{\mathbb{C}_{\mathrm{F}}}} = \mathbf{1}_{\mathbb{C}_{\mathrm{F}}}.$
- (8) Let *a* be an element of the carrier of \mathbb{C}_{F} . Suppose $a \neq 0_{\mathbb{C}_{\mathrm{F}}}$. Then $|\frac{\Re(a)}{|a|} + \frac{-\Im(a)}{|a|}i_{\mathbb{C}_{\mathrm{F}}}| = 1$ and $\Re((\frac{\Re(a)}{|a|} + \frac{-\Im(a)}{|a|}i_{\mathbb{C}_{\mathrm{F}}}) \cdot a) = |a|$ and $\Im((\frac{\Re(a)}{|a|} + \frac{-\Im(a)}{|a|}i_{\mathbb{C}_{\mathrm{F}}}) \cdot a) = 0$.
- (9) Let *a* be an element of the carrier of \mathbb{C}_{F} . Then there exists an element *b* of the carrier of \mathbb{C}_{F} such that |b| = 1 and $\Re(b \cdot a) = |a|$ and $\Im(b \cdot a) = 0$.
- (10) For all elements a, b of the carrier of \mathbb{C}_{F} holds $\Re(a-b) = \Re(a) \Re(b)$ and $\Im(a-b) = \Im(a) - \Im(b)$.
- (11) For all elements a, b of the carrier of \mathbb{C}_{F} such that $\mathfrak{S}(a) = 0$ holds $\Re(a \cdot b) = \Re(a) \cdot \Re(b)$ and $\Im(a \cdot b) = \Re(a) \cdot \Im(b)$.
- (12) For all elements a, b of the carrier of \mathbb{C}_{F} such that $\Im(a) = 0$ and $\Im(b) = 0$ holds $\Im(a \cdot b) = 0$.
- (13) For every element a of the carrier of \mathbb{C}_{F} holds $\Re(a) = \Re(\overline{a})$.
- (14) For every element a of the carrier of \mathbb{C}_{F} such that $\Im(a) = 0$ holds $a = \overline{a}$.
- (15) For all real numbers r, s holds $(r + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot (s + 0i_{\mathbb{C}_{\mathrm{F}}}) = r \cdot s + 0i_{\mathbb{C}_{\mathrm{F}}}$.
- (16) For every element a of the carrier of \mathbb{C}_{F} holds $a \cdot \overline{a} = |a|^2 + 0i_{\mathbb{C}_{\mathrm{F}}}$.
- (17) For every element a of the carrier of \mathbb{C}_{F} such that $0 \leq \Re(a)$ and $\Im(a) = 0$ holds $|a| = \Re(a)$.
- (18) For every element a of the carrier of \mathbb{C}_{F} holds $\Re(a) + \Re(\overline{a}) = 2 \cdot \Re(a)$.

2. Antilinear Functionals in Complex Vector Spaces

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a functional in V. We say that f is complex-homogeneous if and only if:

(Def. 1) For every vector v of V and for every scalar a of V holds $f(a \cdot v) = \overline{a} \cdot f(v)$.

Let V be a non empty vector space structure over $\mathbb{C}_{\mathbf{F}}$. Observe that OFunctional V is complex-homogeneous.

Let V be an add-associative right zeroed right complementable vector spacelike non empty vector space structure over $\mathbb{C}_{\mathbf{F}}$. One can verify that every functional in V which is complex-homogeneous is also 0-preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F} . One can check that there exists a functional in V which is additive, complex-homogeneous, and 0-preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F} . An antilinear functional of V is an additive complex-homogeneous functional in V.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f, g be complexhomogeneous functionals in V. Observe that f + g is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a complexhomogeneous functional in V. One can verify that -f is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} , let a be a scalar of V, and let f be a complex-homogeneous functional in V. One can verify that $a \cdot f$ is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f, g be complex-homogeneous functionals in V. One can check that f - g is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a functional in V. The functor \overline{f} yields a functional in V and is defined by:

(Def. 2) For every vector v of V holds $\overline{f}(v) = \overline{f(v)}$.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be an additive functional in V. Note that \overline{f} is additive.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a homogeneous functional in V. Note that \overline{f} is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a complexhomogeneous functional in V. Note that \overline{f} is homogeneous.

Let V be a non trivial vector space over \mathbb{C}_{F} and let f be a non constant functional in V. One can check that \overline{f} is non constant.

Let V be a non trivial vector space over \mathbb{C}_{F} . One can check that there exists a functional in V which is additive, complex-homogeneous, non constant, and non trivial.

The following propositions are true:

- (19) For every non empty vector space structure V over \mathbb{C}_{F} and for every functional f in V holds $\overline{\overline{f}} = f$.
- (20) For every non empty vector space structure V over \mathbb{C}_{F} holds $\overline{0\mathrm{Functional }V} = 0\mathrm{Functional }V.$
- (21) For every non empty vector space structure V over \mathbb{C}_{F} and for all functionals f, g in V holds $\overline{f+g} = \overline{f} + \overline{g}$.
- (22) For every non empty vector space structure V over \mathbb{C}_{F} and for every functional f in V holds $\overline{-f} = -\overline{f}$.
- (23) Let V be a non empty vector space structure over \mathbb{C}_{F} , f be a functional in V, and a be a scalar of V. Then $\overline{a \cdot f} = \overline{a} \cdot \overline{f}$.
- (24) For every non empty vector space structure V over \mathbb{C}_{F} and for all functionals f, g in V holds $\overline{f-g} = \overline{f} \overline{g}$.
- (25) Let V be a non empty vector space structure over \mathbb{C}_{F} , f be a functional in V, and v be a vector of V. Then $f(v) = 0_{\mathbb{C}_{\mathrm{F}}}$ if and only if $\overline{f}(v) = 0_{\mathbb{C}_{\mathrm{F}}}$.
- (26) For every non empty vector space structure V over \mathbb{C}_{F} and for every functional f in V holds ker $f = \ker \overline{f}$.

- (27) Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over \mathbb{C}_{F} and f be an antilinear functional of V. Then ker f is linearly closed.
- (28) Let V be a vector space over \mathbb{C}_{F} , W be a subspace of V, and f be an antilinear functional of V. If the carrier of $W \subseteq \ker \overline{f}$, then f/W is complex-homogeneous.

Let V be a vector space over \mathbb{C}_{F} and let f be an antilinear functional of V. The functor QcFunctional f yields an antilinear functional of $^{V}/_{\mathrm{Ker}\,\overline{f}}$ and is defined as follows:

(Def. 3) QcFunctional $f = f/_{\text{Ker}} \overline{f}$.

We now state the proposition

(29) Let V be a vector space over \mathbb{C}_{F} , f be an antilinear functional of V, A be a vector of $V/_{\mathrm{Ker}\,\overline{f}}$, and v be a vector of V. If $A = v + \mathrm{Ker}\,\overline{f}$, then (QcFunctional f)(A) = f(v).

Let V be a non trivial vector space over \mathbb{C}_{F} and let f be a non constant antilinear functional of V. One can check that QcFunctional f is non constant.

Let V be a vector space over \mathbb{C}_{F} and let f be an antilinear functional of V. Observe that QcFunctional f is non degenerated.

3. Sesquilinear Forms in Complex Vector Spaces

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a form of V, W. We say that f is complex-homogeneous wrt. second argument if and only if:

(Def. 4) For every vector v of V holds $f(v, \cdot)$ is complex-homogeneous.

We now state the proposition

(30) Let V, W be non empty vector space structures over $\mathbb{C}_{\mathrm{F}}, v$ be a vector of V, w be a vector of W, a be an element of the carrier of \mathbb{C}_{F} , and f be a form of V, W. Suppose f is complex-homogeneous wrt. second argument. Then $f(\langle v, a \cdot w \rangle) = \overline{a} \cdot f(\langle v, w \rangle)$.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a form of V, V. We say that f is hermitan if and only if:

(Def. 5) For all vectors v, u of V holds $f(\langle v, u \rangle) = \overline{f(\langle u, v \rangle)}$. We say that f is diagonal real valued if and only if:

We say that j is diagonal real valued if and only if.

(Def. 6) For every vector v of V holds $\Im(f(\langle v, v \rangle)) = 0$.

We say that f is diagonal plus-real valued if and only if:

(Def. 7) For every vector v of V holds $0 \leq \Re(f(\langle v, v \rangle))$.

Let V, W be non empty vector space structures over \mathbb{C}_{F} . Observe that NulForm(V, W) is complex-homogeneous wrt. second argument.

Let V be a non empty vector space structure over \mathbb{C}_{F} . Observe that NulForm(V, V) is hermitan and NulForm(V, V) is diagonal plus-real valued.

Let V be a non empty vector space structure over \mathbb{C}_{F} . Observe that every form of V, V which is hermitan is also diagonal real valued.

Let V be a non empty vector space structure over $\mathbb{C}_{\mathbf{F}}$. One can check that there exists a form of V, V which is diagonal plus-real valued, hermitan, diagonal real valued, additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, and complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} . One can check that there exists a form of V, W which is additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, and complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} . A sesquilinear form of V, W is an additive wrt. first argument homogeneous wrt. first argument additive wrt. second argument complex-homogeneous wrt. second argument form of V, W.

Let V be a non empty vector space structure over $\mathbb{C}_{\mathbf{F}}$. One can check that every form of V, V which is hermitan and additive wrt. second argument is also additive wrt. first argument.

Let V be a non empty vector space structure over \mathbb{C}_{F} . Observe that every form of V, V which is hermitan and additive wrt. first argument is also additive wrt. second argument.

Let V be a non empty vector space structure over \mathbb{C}_{F} . Observe that every form of V, V which is hermitan and homogeneous wrt. first argument is also complex-homogeneous wrt. second argument.

Let V be a non empty vector space structure over \mathbb{C}_{F} . Note that every form of V, V which is hermitan and complex-homogeneous wrt. second argument is also homogeneous wrt. first argument.

Let V be a non empty vector space structure over \mathbb{C}_{F} . A hermitan form of V is a hermitan additive wrt. first argument homogeneous wrt. first argument form of V, V.

Let V, W be non empty vector space structures over \mathbb{C}_{F} , let f be a functional in V, and let g be a complex-homogeneous functional in W. Note that $f \otimes g$ is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} , let f be a complexhomogeneous wrt. second argument form of V, W, and let v be a vector of V. One can verify that $f(v, \cdot)$ is complex-homogeneous.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f, g be complex-homogeneous wrt. second argument forms of V, W. One can verify that f + g is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} , let f be a complex-

homogeneous wrt. second argument form of V, W, and let a be a scalar of V. Observe that $a \cdot f$ is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a complex-homogeneous wrt. second argument form of V, W. One can check that -f is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f, g be complex-homogeneous wrt. second argument forms of V, W. Observe that f-g is complex-homogeneous wrt. second argument.

Let V, W be non trivial vector spaces over $\mathbb{C}_{\mathbf{F}}$. Observe that there exists a form of V, W which is additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, complex-homogeneous wrt. second argument, non constant, and non trivial.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a form of V, W. The functor \overline{f} yielding a form of V, W is defined by:

(Def. 8) For every vector v of V and for every vector w of W holds $\overline{f}(\langle v, w \rangle) = \overline{f(\langle v, w \rangle)}$.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be an additive wrt. second argument form of V, W. Note that \overline{f} is additive wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be an additive wrt. first argument form of V, W. Note that \overline{f} is additive wrt. first argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a homogeneous wrt. second argument form of V, W. One can check that \overline{f} is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a complex-homogeneous wrt. second argument form of V, W. Note that \overline{f} is homogeneous wrt. second argument.

Let V, W be non trivial vector spaces over \mathbb{C}_{F} and let f be a non constant form of V, W. One can verify that \overline{f} is non constant.

The following proposition is true

(31) Let V be a non empty vector space structure over \mathbb{C}_{F} , f be a functional in V, and v be a vector of V. Then $f \otimes \overline{f}(\langle v, v \rangle) = |f(v)|^2 + 0i_{\mathbb{C}_{\mathrm{F}}}$.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a functional in V. One can verify that $f \otimes \overline{f}$ is diagonal plus-real valued, hermitan, and diagonal real valued.

Let V be a non trivial vector space over $\mathbb{C}_{\mathbf{F}}$. Note that there exists a form of V, V which is diagonal plus-real valued, hermitan, diagonal real valued, additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, complex-homogeneous wrt. second argument, non constant, and non trivial.

We now state a number of propositions:

- (32) For all non empty vector space structures V, W over \mathbb{C}_{F} and for every form f of V, W holds $\overline{\overline{f}} = f$.
- (33) For all non empty vector space structures V, W over \mathbb{C}_{F} holds $\overline{\mathrm{NulForm}(V, W)} = \mathrm{NulForm}(V, W).$
- (34) For all non empty vector space structures V, W over \mathbb{C}_{F} and for all forms f, g of V, W holds $\overline{f+g} = \overline{f} + \overline{g}$.
- (35) For all non empty vector space structures V, W over \mathbb{C}_{F} and for every form f of V, W holds $\overline{-f} = -\overline{f}$.
- (36) Let V, W be non empty vector space structures over \mathbb{C}_{F} , f be a form of V, W, and a be an element of \mathbb{C}_{F} . Then $\overline{a \cdot f} = \overline{a} \cdot \overline{f}$.
- (37) For all non empty vector space structures V, W over \mathbb{C}_{F} and for all forms f, g of V, W holds $\overline{f-g} = \overline{f} \overline{g}$.
- (38) Let V, W be vector spaces over $\mathbb{C}_{\mathrm{F}}, v$ be a vector of V, w, t be vectors of W, and f be an additive wrt. second argument complex-homogeneous wrt. second argument form of V, W. Then $f(\langle v, w t \rangle) = f(\langle v, w \rangle) f(\langle v, t \rangle)$.
- (39) Let V, W be vector spaces over \mathbb{C}_{F} , v, u be vectors of V, w, t be vectors of W, and f be a sesquilinear form of V, W. Then $f(\langle v-u, w-t \rangle) = f(\langle v, w \rangle) f(\langle v, t \rangle) (f(\langle u, w \rangle) f(\langle u, t \rangle)).$
- (40) Let V, W be add-associative right zeroed right complementable vector space-like non empty vector space structures over \mathbb{C}_{F} , v, u be vectors of V, w, t be vectors of W, a, b be elements of the carrier of \mathbb{C}_{F} , and f be a sesquilinear form of V, W. Then $f(\langle v + a \cdot u, w + b \cdot t \rangle) = f(\langle v, w \rangle) + \overline{b} \cdot f(\langle v, t \rangle) + (a \cdot f(\langle u, w \rangle) + a \cdot (\overline{b} \cdot f(\langle u, t \rangle)))).$
- (41) Let V, W be vector spaces over \mathbb{C}_{F} , v, u be vectors of V, w, t be vectors of W, a, b be elements of the carrier of \mathbb{C}_{F} , and f be a sesquilinear form of V, W. Then $f(\langle v - a \cdot u, w - b \cdot t \rangle) = f(\langle v, w \rangle) - \overline{b} \cdot f(\langle v, t \rangle) - (a \cdot f(\langle u, w \rangle)) - a \cdot (\overline{b} \cdot f(\langle u, t \rangle))).$
- (42) Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over \mathbb{C}_{F} , f be a complex-homogeneous wrt. second argument form of V, V, and v be a vector of V. Then $f(\langle v, 0_V \rangle) = 0_{\mathbb{C}_{\mathrm{F}}}$.
- (43) Let V be a vector space over \mathbb{C}_{F} , v, w be vectors of V, and f be a hermitan form of V. Then $f(\langle v, w \rangle) + f(\langle v, w \rangle) + f(\langle v, w \rangle) + f(\langle v, w \rangle) = ((f(\langle v + w, v + w \rangle) f(\langle v w, v w \rangle)) + i_{\mathbb{C}_{\mathrm{F}}} \cdot f(\langle v + i_{\mathbb{C}_{\mathrm{F}}} \cdot w, v + i_{\mathbb{C}_{\mathrm{F}}} \cdot w)) i_{\mathbb{C}_{\mathrm{F}}} \cdot f(\langle v i_{\mathbb{C}_{\mathrm{F}}} \cdot w, v i_{\mathbb{C}_{\mathrm{F}}} \cdot w)).$

Let V be a non empty vector space structure over \mathbb{C}_{F} , let f be a form of V, V, and let v be a vector of V. The functor $||v||_{f}^{2}$ yields a real number and is defined as follows:

(Def. 9) $||v||_f^2 = \Re(f(\langle v, v \rangle)).$

The following propositions are true:

- (44) Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over \mathbb{C}_{F} , f be a diagonal plusreal valued diagonal real valued form of V, V, and v be a vector of V. Then $|f(\langle v, v \rangle)| = \Re(f(\langle v, v \rangle))$ and $||v||_f^2 = |f(\langle v, v \rangle)|$.
- (45) Let V be a vector space over \mathbb{C}_{F} , v, w be vectors of V, f be a sesquilinear form of V, V, r be a real number, and a be an element of the carrier of \mathbb{C}_{F} . Suppose |a| = 1 and $\Re(a \cdot f(\langle w, v \rangle)) = |f(\langle w, v \rangle)|$ and $\Im(a \cdot f(\langle w, v \rangle)) = 0$. Then $f(\langle v - (r + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot a \cdot w, v - (r + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot a \cdot w \rangle) = (f(\langle v, v \rangle)) - (r + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot (a \cdot f(\langle w, v \rangle)) - (r + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot (\overline{a} \cdot f(\langle v, w \rangle))) + (r^2 + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot f(\langle w, w \rangle)).$
- (46) Let V be a vector space over \mathbb{C}_{F} , v, w be vectors of V, f be a diagonal plus-real valued hermitan form of V, r be a real number, and a be an element of the carrier of \mathbb{C}_{F} . Suppose |a| = 1 and $\Re(a \cdot f(\langle w, v \rangle)) =$ $|f(\langle w, v \rangle)|$ and $\Im(a \cdot f(\langle w, v \rangle)) = 0$. Then $\Re(f(\langle v - (r + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot a \cdot w, v - (r + 0i_{\mathbb{C}_{\mathrm{F}}}) \cdot a \cdot w \rangle)) = (||v||_{f}^{2} - 2 \cdot |f(\langle w, v \rangle)| \cdot r) + ||w||_{f}^{2} \cdot r^{2}$ and $0 \leq (||v||_{f}^{2} - 2 \cdot |f(\langle w, v \rangle)| \cdot r) + ||w||_{f}^{2} \cdot r^{2}$.
- (47) Let V be a vector space over \mathbb{C}_{F} , v, w be vectors of V, and f be a diagonal plus-real valued hermitan form of V. If $||w||_f^2 = 0$, then $|f(\langle w, v \rangle)| = 0$.
- (48) Let V be a vector space over \mathbb{C}_{F} , v, w be vectors of V, and f be a diagonal plus-real valued hermitan form of V. Then $|f(\langle v, w \rangle)|^2 \leq ||v||_f^2 \cdot ||w||_f^2$.
- (49) Let V be a vector space over \mathbb{C}_{F} , f be a diagonal plus-real valued hermitan form of V, and v, w be vectors of V. Then $|f(\langle v, w \rangle)|^2 \leq |f(\langle v, v \rangle)| \cdot |f(\langle w, w \rangle)|$.
- (50) Let V be a vector space over \mathbb{C}_{F} , f be a diagonal plus-real valued hermitan form of V, and v, w be vectors of V. Then $||v + w||_f^2 \leq (\sqrt{||v||_f^2} + \sqrt{||w||_f^2})^2$.
- (51) Let V be a vector space over \mathbb{C}_{F} , f be a diagonal plus-real valued hermitan form of V, and v, w be vectors of V. Then $|f(\langle v + w, v + w \rangle)| \leq (\sqrt{|f(\langle v, v \rangle)|} + \sqrt{|f(\langle w, w \rangle)|})^2$.
- (52) Let V be a vector space over \mathbb{C}_{F} , f be a hermitan form of V, and v, w be elements of the carrier of V. Then $||v+w||_{f}^{2}+||v-w||_{f}^{2}=2\cdot||v||_{f}^{2}+2\cdot||w||_{f}^{2}$.
- (53) Let V be a vector space over \mathbb{C}_{F} , f be a diagonal plus-real valued hermitan form of V, and v, w be elements of the carrier of V. Then $|f(\langle v + w, v + w \rangle)| + |f(\langle v w, v w \rangle)| = 2 \cdot |f(\langle v, v \rangle)| + 2 \cdot |f(\langle w, w \rangle)|.$

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a form of V, V. The functor $|| \cdot ||_f$ yields a RFunctional of V and is defined as follows:

(Def. 10) For every element v of the carrier of V holds $(||\cdot||_f)(v) = \sqrt{||v||_f^2}$.

Let V be a vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued hermitan form of V. Then $|| \cdot ||_f$ is a Semi-Norm of V.

4. Kernel of Hermitan Forms and Hermitan Forms in Quotient Vector Spaces

Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over \mathbb{C}_{F} and let f be a complex-homogeneous wrt. second argument form of V, V. Note that diagker f is non empty.

We now state several propositions:

- (54) Let V be a vector space over \mathbb{C}_{F} and f be a diagonal plus-real valued hermitan form of V. Then diagker f is linearly closed.
- (55) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds diagker $f = \operatorname{leftker} f$.
- (56) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds diagker $f = \mathrm{rightker } f$.
- (57) For every non empty vector space structure V over \mathbb{C}_{F} and for every form f of V, V holds diagker $f = \text{diagker } \overline{f}$.
- (58) For all non empty vector space structures V, W over \mathbb{C}_{F} and for every form f of V, W holds leftker $f = \text{leftker } \overline{f}$ and rightker $f = \text{rightker } \overline{f}$.
- (59) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds LKer $f = \mathrm{RKer} \overline{f}$.
- (60) Let V be a vector space over \mathbb{C}_{F} , f be a diagonal plus-real valued diagonal real valued form of V, V, and v be a vector of V. If $\Re(f(\langle v, v \rangle)) = 0$, then $f(\langle v, v \rangle) = 0_{\mathbb{C}_{\mathrm{F}}}$.
- (61) Let V be a vector space over \mathbb{C}_{F} , f be a diagonal plus-real valued hermitan form of V, and v be a vector of V. Suppose $\Re(f(\langle v, v \rangle)) = 0$ and f is non degenerated on left and non degenerated on right. Then $v = 0_V$.

Let V be a non empty vector space structure over \mathbb{C}_{F} , let W be a vector space over \mathbb{C}_{F} , and let f be an additive wrt. second argument complex-homogeneous wrt. second argument form of V, W. The functor RQForm^{*}(f) yielding an additive wrt. second argument complex-homogeneous wrt. second argument form of V, $^{W}/_{\mathrm{RKer}\,\overline{f}}$ is defined as follows:

- (Def. 11) $\operatorname{RQForm}^*(f) = \operatorname{RQForm}(\overline{f})$. We now state the proposition
 - (62) Let V be a non empty vector space structure over \mathbb{C}_{F} , W be a vector space over \mathbb{C}_{F} , f be an additive wrt. second argument complex-

homogeneous wrt. second argument form of V, W, v be a vector of V, and w be a vector of W. Then $(\operatorname{RQForm}^*(f))(\langle v, w + \operatorname{RKer} \overline{f} \rangle) = f(\langle v, w \rangle).$

Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. Note that LQForm(f) is additive wrt. second argument and complexhomogeneous wrt. second argument and RQForm^{*}(f) is additive wrt. first argument and homogeneous wrt. first argument.

Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. The functor QForm^{*} f yields a sesquilinear form of $V/_{\mathrm{LKer} f}, W/_{\mathrm{RKer} \overline{f}}$ and is defined by the condition (Def. 12).

(Def. 12) Let A be a vector of $V/_{\text{LKer }f}$, B be a vector of $W/_{\text{RKer }\overline{f}}$, v be a vector of V, and w be a vector of W. If A = v + LKer f and $B = w + \text{RKer }\overline{f}$, then (QForm* f)($\langle A, B \rangle$) = $f(\langle v, w \rangle)$.

Let V, W be non trivial vector spaces over \mathbb{C}_{F} and let f be a non constant sesquilinear form of V, W. Observe that QForm^{*} f is non constant.

Let V be a right zeroed non empty vector space structure over \mathbb{C}_{F} , let W be a vector space over \mathbb{C}_{F} , and let f be an additive wrt. second argument complex-homogeneous wrt. second argument form of V, W. One can verify that RQForm^{*}(f) is non degenerated on right.

One can prove the following propositions:

- (63) Let V be a non empty vector space structure over \mathbb{C}_{F} , W be a vector space over \mathbb{C}_{F} , and f be an additive wrt. second argument complexhomogeneous wrt. second argument form of V, W. Then leftker $f = \mathrm{leftker}(\mathrm{RQForm}^*(f)).$
- (64) For all vector spaces V, W over \mathbb{C}_{F} and for every sesquilinear form f of V, W holds RKer $\overline{f} = \mathrm{RKer} \overline{\mathrm{LQForm}(f)}$.
- (65) For all vector spaces V, W over \mathbb{C}_{F} and for every sesquilinear form f of V, W holds LKer $f = \mathrm{LKer}(\mathrm{RQForm}^*(f))$.
- (66) For all vector spaces V, W over \mathbb{C}_{F} and for every sesquilinear form f of V, W holds QForm^{*} $f = \mathrm{RQForm}^*(\mathrm{LQForm}(f))$ and QForm^{*} $f = \mathrm{LQForm}(\mathrm{RQForm}^*(f))$.
- (67) Let V, W be vector spaces over \mathbb{C}_{F} and f be a sesquilinear form of V, W. Then leftker(QForm^{*} f) = leftker(RQForm^{*}(LQForm^{*}(LQForm(f))) and rightker(QForm^{*} f) = rightker(RQForm^{*}(LQForm(f))) and leftker(QForm^{*} f) = leftker(LQForm(RQForm^{*}(f))) and rightker(QForm^{*} f) = rightker(LQForm(RQForm^{*}(f))).

Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. Note that RQForm^{*}(LQForm(f)) is non degenerated on left and non degenerated on right and LQForm(RQForm^{*}(f)) is non degenerated on left and non degenerated on right.

Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. Note that QForm^{*} f is non degenerated on left and non degenerated on right.

5. Scalar Product in Quotient Vector Space Generated by Non-Negative Hermitan Form

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a form of V, V. We say that f is positive diagonal valued if and only if:

(Def. 13) For every vector v of V such that $v \neq 0_V$ holds $0 < \Re(f(\langle v, v \rangle))$.

Let V be a right zeroed non empty vector space structure over \mathbb{C}_{F} . Note that every form of V, V which is positive diagonal valued and additive wrt. first argument is also diagonal plus-real valued.

Let V be a right zeroed non empty vector space structure over \mathbb{C}_{F} . One can verify that every form of V, V which is positive diagonal valued and additive wrt. second argument is also diagonal plus-real valued.

Let V be a vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued hermitan form of V. The functor $\langle \cdot | \cdot \rangle_f$ yields a diagonal plus-real valued hermitan form of $^{V}/_{\mathrm{LKer}\,f}$ and is defined as follows:

(Def. 14) $\langle \cdot | \cdot \rangle_f = \text{QForm}^* f.$

Next we state three propositions:

- (68) Let V be a vector space over \mathbb{C}_{F} , f be a diagonal plus-real valued hermitan form of V, A, B be vectors of $^{V}/_{\mathrm{LKer}\,f}$, and v, w be vectors of V. If $A = v + \mathrm{LKer}\,f$ and $B = w + \mathrm{LKer}\,f$, then $(\langle \cdot | \cdot \rangle_{f})(\langle A, B \rangle) = f(\langle v, w \rangle)$.
- (69) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds leftker $(\langle \cdot | \cdot \rangle_f) = \mathrm{leftker}(\mathrm{QForm}^* f)$.
- (70) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds rightker $(\langle \cdot | \cdot \rangle_f)$ = rightker(QForm^{*} f).

Let V be a vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued hermitan form of V. Observe that $\langle \cdot | \cdot \rangle_f$ is non degenerated on left, non degenerated on right, and positive diagonal valued.

Let V be a non trivial vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued non constant hermitan form of V. Note that $\langle \cdot | \cdot \rangle_f$ is non constant.

References

- [1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
 [5] C. B. B. B. K. B. B. B. B.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.

- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, [7]1(3):471-475, 1990.
- [8] Jarosław Kotowicz. Bilinear functionals in vector spaces. Formalized Mathematics, 11(1):69-86, 2003.
- Jarosław Kotowicz. Quotient vector spaces and functionals. Formalized Mathematics, [9] 11(1):59-68, 2003.
- [10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [11] Krzysztof Maurin. Analiza, II, volume 70 of Biblioteka Matematyczna. PWN Warszawa, 1991.
- [12] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
- [13] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363-371, 2001.
- [14]Walter Rudin. Real and Complex Analysis. Mc Graw-Hill, Inc., 1974.
- [15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [18] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
- [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
 [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received November 12, 2002