Hermitan Functionals. Canonical Construction of Scalar Product in Quotient Vector Space ${ }^{1}$

Jarosław Kotowicz
University of Białystok

Abstract

Summary. In the article we present antilinear functionals, sesquilinear and hermitan forms. We prove Schwarz and Minkowski inequalities, and Parallelogram Law for non-negative hermitan form. The proof of Schwarz inequality is based on [14]. The incorrect proof of this fact can be found in [11]. The construction of scalar product in quotient vector space from non-negative hermitan functions is the main result of the article.

MML Identifier: HERMITAN.

The notation and terminology used in this paper have been introduced in the following articles: [16], [5], [20], [6], [15], [3], [1], [19], [10], [21], [4], [17], [2], [7], [18], [12], [13], [9], and [8].

1. Auxiliary Facts about Complex Numbers

The following propositions are true:
(1) For every element a of \mathbb{C} such that $a=\bar{a}$ holds $\Im(a)=0$.
(2) For every element a of \mathbb{C} such that $a \neq 0_{\mathbb{C}}$ holds $\left|\frac{\Re(a)}{|a|}+\frac{-\Im(a)}{|a|} i\right|=1$ and $\Re\left(\left(\frac{\Re(a)}{|a|}+\frac{-\Im(a)}{|a|} i\right) \cdot a\right)=|a|$ and $\Im\left(\left(\frac{\Re(a)}{|a|}+\frac{-\Im(a)}{|a|} i\right) \cdot a\right)=0$.
(3) For every element a of \mathbb{C} there exists an element b of \mathbb{C} such that $|b|=1$ and $\Re(b \cdot a)=|a|$ and $\Im(b \cdot a)=0$.
(4) For every element a of \mathbb{C} holds $a \cdot \bar{a}=|a|^{2}+0 i$.

[^0](5) For every element a of the carrier of \mathbb{C}_{F} such that $a=\bar{a}$ holds $\Im(a)=0$.
(6) $\overline{i_{\mathbb{C}_{\mathrm{F}}}}=(i)^{-1}$.
(7) $\quad i_{\mathbb{C}_{F}} \cdot \overline{i_{\mathbb{C}_{F}}}=\mathbf{1}_{\mathbb{C}_{F}}$.
(8) Let a be an element of the carrier of \mathbb{C}_{F}. Suppose $a \neq 0_{\mathbb{C}_{\mathrm{F}}}$. Then $\left\lvert\, \frac{\Re(a)}{|a|}+\right.$ $\left.\frac{-\Im(a)}{|a|} i_{\mathbb{C}_{\mathrm{F}}} \right\rvert\,=1$ and $\Re\left(\left(\frac{\Re(a)}{|a|}+\frac{-\Im(a)}{|a|} i_{\mathbb{C}_{\mathrm{F}}}\right) \cdot a\right)=|a|$ and $\Im\left(\left(\frac{\Re(a)}{|a|}+\frac{-\Im(a)}{|a|} i_{\mathbb{C}_{\mathrm{F}}}\right)\right.$. $a)=0$.
(9) Let a be an element of the carrier of \mathbb{C}_{F}. Then there exists an element b of the carrier of \mathbb{C}_{F} such that $|b|=1$ and $\Re(b \cdot a)=|a|$ and $\Im(b \cdot a)=0$.
(10) For all elements a, b of the carrier of \mathbb{C}_{F} holds $\Re(a-b)=\Re(a)-\Re(b)$ and $\Im(a-b)=\Im(a)-\Im(b)$.
(11) For all elements a, b of the carrier of \mathbb{C}_{F} such that $\Im(a)=0$ holds $\Re(a \cdot b)=\Re(a) \cdot \Re(b)$ and $\Im(a \cdot b)=\Re(a) \cdot \Im(b)$.
(12) For all elements a, b of the carrier of \mathbb{C}_{F} such that $\Im(a)=0$ and $\Im(b)=0$ holds $\Im(a \cdot b)=0$.
(13) For every element a of the carrier of \mathbb{C}_{F} holds $\Re(a)=\Re(\bar{a})$.
(14) For every element a of the carrier of \mathbb{C}_{F} such that $\Im(a)=0$ holds $a=\bar{a}$.
(15) For all real numbers r, s holds $\left(r+0 i_{\mathbb{C}_{F}}\right) \cdot\left(s+0 i_{\mathbb{C}_{F}}\right)=r \cdot s+0 i_{\mathbb{C}_{F}}$.
(16) For every element a of the carrier of \mathbb{C}_{F} holds $a \cdot \bar{a}=|a|^{2}+0 i_{\mathbb{C}_{\mathrm{F}}}$.
(17) For every element a of the carrier of \mathbb{C}_{F} such that $0 \leqslant \Re(a)$ and $\Im(a)=0$ holds $|a|=\Re(a)$.
(18) For every element a of the carrier of \mathbb{C}_{F} holds $\Re(a)+\Re(\bar{a})=2 \cdot \Re(a)$.

2. Antilinear Functionals in Complex Vector Spaces

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a functional in V. We say that f is complex-homogeneous if and only if:
(Def. 1) For every vector v of V and for every scalar a of V holds $f(a \cdot v)=\bar{a} \cdot f(v)$.
Let V be a non empty vector space structure over \mathbb{C}_{F}. Observe that 0Functional V is complex-homogeneous.

Let V be an add-associative right zeroed right complementable vector spacelike non empty vector space structure over \mathbb{C}_{F}. One can verify that every functional in V which is complex-homogeneous is also 0-preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F}. One can check that there exists a functional in V which is additive, complex-homogeneous, and 0 -preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F}. An antilinear functional of V is an additive complex-homogeneous functional in V.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f, g be complexhomogeneous functionals in V. Observe that $f+g$ is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a complexhomogeneous functional in V. One can verify that $-f$ is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F}, let a be a scalar of V, and let f be a complex-homogeneous functional in V. One can verify that $a \cdot f$ is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f, g be complex-homogeneous functionals in V. One can check that $f-g$ is complexhomogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a functional in V. The functor \bar{f} yields a functional in V and is defined by:
(Def. 2) For every vector v of V holds $\bar{f}(v)=\overline{f(v)}$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be an additive functional in V. Note that \bar{f} is additive.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a homogeneous functional in V. Note that \bar{f} is complex-homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a complexhomogeneous functional in V. Note that \bar{f} is homogeneous.

Let V be a non trivial vector space over \mathbb{C}_{F} and let f be a non constant functional in V. One can check that \bar{f} is non constant.

Let V be a non trivial vector space over \mathbb{C}_{F}. One can check that there exists a functional in V which is additive, complex-homogeneous, non constant, and non trivial.

The following propositions are true:
(19) For every non empty vector space structure V over \mathbb{C}_{F} and for every functional f in V holds $\overline{\bar{f}}=f$.
(20) For every non empty vector space structure V over \mathbb{C}_{F} holds $\overline{\text { 0Functional } V}=0$ Functional V.
(21) For every non empty vector space structure V over \mathbb{C}_{F} and for all functionals f, g in V holds $\overline{f+g}=\bar{f}+\bar{g}$.
(22) For every non empty vector space structure V over \mathbb{C}_{F} and for every functional f in V holds $\overline{-f}=-\bar{f}$.
(23) Let V be a non empty vector space structure over $\mathbb{C}_{\mathrm{F}}, f$ be a functional in V, and a be a scalar of V. Then $\overline{a \cdot f}=\bar{a} \cdot \bar{f}$.
(24) For every non empty vector space structure V over \mathbb{C}_{F} and for all functionals f, g in V holds $\overline{f-g}=\bar{f}-\bar{g}$.
(25) Let V be a non empty vector space structure over $\mathbb{C}_{\mathrm{F}}, f$ be a functional in V, and v be a vector of V. Then $f(v)=0_{\mathbb{C}_{\mathrm{F}}}$ if and only if $\bar{f}(v)=0_{\mathbb{C}_{\mathrm{F}}}$.
(26) For every non empty vector space structure V over \mathbb{C}_{F} and for every functional f in V holds $\operatorname{ker} f=\operatorname{ker} \bar{f}$.
(27) Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over \mathbb{C}_{F} and f be an antilinear functional of V. Then $\operatorname{ker} f$ is linearly closed.
(28) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, W$ be a subspace of V, and f be an antilinear functional of V. If the carrier of $W \subseteq \operatorname{ker} \bar{f}$, then ${ }^{f} / W$ is complex-homogeneous.
Let V be a vector space over \mathbb{C}_{F} and let f be an antilinear functional of V. The functor QcFunctional f yields an antilinear functional of $V / \operatorname{Ker} \bar{f}$ and is defined as follows:
(Def. 3) QcFunctional $f={ }^{f} / \operatorname{Ker} \bar{f}$.
We now state the proposition
(29) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be an antilinear functional of V, A be a vector of $V / \operatorname{Ker} \bar{f}$, and v be a vector of V. If $A=v+\operatorname{Ker} \bar{f}$, then $($ QcFunctional $f)(A)=f(v)$.
Let V be a non trivial vector space over \mathbb{C}_{F} and let f be a non constant antilinear functional of V. One can check that QcFunctional f is non constant.

Let V be a vector space over \mathbb{C}_{F} and let f be an antilinear functional of V. Observe that QcFunctional f is non degenerated.

3. Sesquilinear Forms in Complex Vector Spaces

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a form of V, W. We say that f is complex-homogeneous wrt. second argument if and only if:
(Def. 4) For every vector v of V holds $f(v, \cdot)$ is complex-homogeneous.
We now state the proposition
(30) Let V, W be non empty vector space structures over $\mathbb{C}_{\mathrm{F}}, v$ be a vector of V, w be a vector of W, a be an element of the carrier of \mathbb{C}_{F}, and f be a form of V, W. Suppose f is complex-homogeneous wrt. second argument. Then $f(\langle v, a \cdot w\rangle)=\bar{a} \cdot f(\langle v, w\rangle)$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a form of V, V. We say that f is hermitan if and only if:
(Def. 5) For all vectors v, u of V holds $f(\langle v, u\rangle)=\overline{f(\langle u, v\rangle)}$.
We say that f is diagonal real valued if and only if:
(Def. 6) For every vector v of V holds $\Im(f(\langle v, v\rangle))=0$.
We say that f is diagonal plus-real valued if and only if:
(Def. 7) For every vector v of V holds $0 \leqslant \Re(f(\langle v, v\rangle))$.
Let V, W be non empty vector space structures over \mathbb{C}_{F}. Observe that NulForm (V, W) is complex-homogeneous wrt. second argument.

Let V be a non empty vector space structure over \mathbb{C}_{F}. Observe that $\operatorname{NulForm}(V, V)$ is hermitan and $\operatorname{NulForm}(V, V)$ is diagonal plus-real valued.

Let V be a non empty vector space structure over \mathbb{C}_{F}. Observe that every form of V, V which is hermitan is also diagonal real valued.

Let V be a non empty vector space structure over \mathbb{C}_{F}. One can check that there exists a form of V, V which is diagonal plus-real valued, hermitan, diagonal real valued, additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, and complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F}. One can check that there exists a form of V, W which is additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, and complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F}. A sesquilinear form of V, W is an additive wrt. first argument homogeneous wrt. first argument additive wrt. second argument complex-homogeneous wrt. second argument form of V, W.

Let V be a non empty vector space structure over \mathbb{C}_{F}. One can check that every form of V, V which is hermitan and additive wrt. second argument is also additive wrt. first argument.

Let V be a non empty vector space structure over \mathbb{C}_{F}. Observe that every form of V, V which is hermitan and additive wrt. first argument is also additive wrt. second argument.

Let V be a non empty vector space structure over \mathbb{C}_{F}. Observe that every form of V, V which is hermitan and homogeneous wrt. first argument is also complex-homogeneous wrt. second argument.

Let V be a non empty vector space structure over \mathbb{C}_{F}. Note that every form of V, V which is hermitan and complex-homogeneous wrt. second argument is also homogeneous wrt. first argument.

Let V be a non empty vector space structure over \mathbb{C}_{F}. A hermitan form of V is a hermitan additive wrt. first argument homogeneous wrt. first argument form of V, V.

Let V, W be non empty vector space structures over \mathbb{C}_{F}, let f be a functional in V, and let g be a complex-homogeneous functional in W. Note that $f \otimes g$ is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F}, let f be a complexhomogeneous wrt. second argument form of V, W, and let v be a vector of V. One can verify that $f(v, \cdot)$ is complex-homogeneous.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f, g be complex-homogeneous wrt. second argument forms of V, W. One can verify that $f+g$ is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F}, let f be a complex-
homogeneous wrt. second argument form of V, W, and let a be a scalar of V. Observe that $a \cdot f$ is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a complex-homogeneous wrt. second argument form of V, W. One can check that $-f$ is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f, g be complex-homogeneous wrt. second argument forms of V, W. Observe that $f-g$ is complex-homogeneous wrt. second argument.

Let V, W be non trivial vector spaces over \mathbb{C}_{F}. Observe that there exists a form of V, W which is additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, complex-homogeneous wrt. second argument, non constant, and non trivial.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a form of V, W. The functor \bar{f} yielding a form of V, W is defined by:
(Def. 8) For every vector v of V and for every vector w of W holds $\bar{f}(\langle v, w\rangle)=$ $\overline{f(\langle v, w\rangle)}$.
Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be an additive wrt. second argument form of V, W. Note that \bar{f} is additive wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be an additive wrt. first argument form of V, W. Note that \bar{f} is additive wrt. first argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a homogeneous wrt. second argument form of V, W. One can check that \bar{f} is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures over \mathbb{C}_{F} and let f be a complex-homogeneous wrt. second argument form of V, W. Note that \bar{f} is homogeneous wrt. second argument.

Let V, W be non trivial vector spaces over \mathbb{C}_{F} and let f be a non constant form of V, W. One can verify that \bar{f} is non constant.

The following proposition is true
(31) Let V be a non empty vector space structure over \mathbb{C}_{F}, f be a functional in V, and v be a vector of V. Then $f \otimes \bar{f}(\langle v, v\rangle)=|f(v)|^{2}+0 i_{\mathbb{C}_{\mathrm{F}}}$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a functional in V. One can verify that $f \otimes \bar{f}$ is diagonal plus-real valued, hermitan, and diagonal real valued.

Let V be a non trivial vector space over \mathbb{C}_{F}. Note that there exists a form of V, V which is diagonal plus-real valued, hermitan, diagonal real valued, additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second argument, complex-homogeneous wrt. second argument, non constant, and non trivial.

We now state a number of propositions:
(32) For all non empty vector space structures V, W over \mathbb{C}_{F} and for every form f of V, W holds $\overline{\bar{f}}=f$.
(33) For all non empty vector space structures V, W over \mathbb{C}_{F} holds $\overline{\operatorname{NulForm}(V, W)}=\operatorname{NulForm}(V, W)$.
(34) For all non empty vector space structures V, W over \mathbb{C}_{F} and for all forms f, g of V, W holds $\overline{f+g}=\bar{f}+\bar{g}$.
(35) For all non empty vector space structures V, W over \mathbb{C}_{F} and for every form f of V, W holds $\overline{-f}=-\bar{f}$.
(36) Let V, W be non empty vector space structures over $\mathbb{C}_{\mathrm{F}}, f$ be a form of V, W, and a be an element of \mathbb{C}_{F}. Then $\overline{a \cdot f}=\bar{a} \cdot \bar{f}$.
(37) For all non empty vector space structures V, W over \mathbb{C}_{F} and for all forms f, g of V, W holds $\overline{f-g}=\bar{f}-\bar{g}$.
(38) Let V, W be vector spaces over $\mathbb{C}_{\mathrm{F}}, v$ be a vector of V, w, t be vectors of W, and f be an additive wrt. second argument complex-homogeneous wrt. second argument form of V, W. Then $f(\langle v, w-t\rangle)=f(\langle v, w\rangle)-f(\langle v$, $t\rangle)$.
(39) Let V, W be vector spaces over $\mathbb{C}_{\mathrm{F}}, v, u$ be vectors of V, w, t be vectors of W, and f be a sesquilinear form of V, W. Then $f(\langle v-u, w-t\rangle)=f(\langle v$, $w\rangle)-f(\langle v, t\rangle)-(f(\langle u, w\rangle)-f(\langle u, t\rangle))$.
(40) Let V, W be add-associative right zeroed right complementable vector space-like non empty vector space structures over $\mathbb{C}_{\mathrm{F}}, v, u$ be vectors of V, w, t be vectors of W, a, b be elements of the carrier of \mathbb{C}_{F}, and f be a sesquilinear form of V, W. Then $f(\langle v+a \cdot u, w+b \cdot t\rangle)=f(\langle v$, $w\rangle)+\bar{b} \cdot f(\langle v, t\rangle)+(a \cdot f(\langle u, w\rangle)+a \cdot(\bar{b} \cdot f(\langle u, t\rangle)))$.
(41) Let V, W be vector spaces over $\mathbb{C}_{\mathrm{F}}, v, u$ be vectors of V, w, t be vectors of W, a, b be elements of the carrier of \mathbb{C}_{F}, and f be a sesquilinear form of V, W. Then $f(\langle v-a \cdot u, w-b \cdot t\rangle)=f(\langle v, w\rangle)-\bar{b} \cdot f(\langle v, t\rangle)-(a \cdot f(\langle u$, $w\rangle)-a \cdot(\bar{b} \cdot f(\langle u, t\rangle)))$.
(42) Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over $\mathbb{C}_{\mathrm{F}}, f$ be a complexhomogeneous wrt. second argument form of V, V, and v be a vector of V. Then $f\left(\left\langle v, 0_{V}\right\rangle\right)=0_{\mathbb{C}_{F}}$.
(43) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, v, w$ be vectors of V, and f be a hermitan form of V. Then $f(\langle v, w\rangle)+f(\langle v, w\rangle)+f(\langle v, w\rangle)+f(\langle v, w\rangle)=$ $\left((f(\langle v+w, v+w\rangle)-f(\langle v-w, v-w\rangle))+i_{\mathbb{C}_{\mathrm{F}}} \cdot f\left(\left\langle v+i_{\mathbb{C}_{\mathrm{F}}} \cdot w, v+i_{\mathbb{C}_{\mathrm{F}}}\right.\right.\right.$. $w\rangle))-i_{\mathbb{C}_{\mathrm{F}}} \cdot f\left(\left\langle v-i_{\mathbb{C}_{F}} \cdot w, v-i_{\mathbb{C}_{\mathrm{F}}} \cdot w\right\rangle\right)$.
Let V be a non empty vector space structure over \mathbb{C}_{F}, let f be a form of V, V, and let v be a vector of V. The functor $\|v\|_{f}^{2}$ yields a real number and is defined as follows:
(Def. 9) $\|v\|_{f}^{2}=\Re(f(\langle v, v\rangle))$.
The following propositions are true:
(44) Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plusreal valued diagonal real valued form of V, V, and v be a vector of V. Then $|f(\langle v, v\rangle)|=\Re(f(\langle v, v\rangle))$ and $\|v\|_{f}^{2}=|f(\langle v, v\rangle)|$.
(45) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, v, w$ be vectors of V, f be a sesquilinear form of V, V, r be a real number, and a be an element of the carrier of \mathbb{C}_{F}. Suppose $|a|=1$ and $\Re(a \cdot f(\langle w, v\rangle))=|f(\langle w, v\rangle)|$ and $\Im(a \cdot f(\langle w$, $v\rangle))=0$. Then $f\left(\left\langle v-\left(r+0 i_{\mathbb{C}_{F}}\right) \cdot a \cdot w, v-\left(r+0 i_{\mathbb{C}_{F}}\right) \cdot a \cdot w\right\rangle\right)=(f(\langle v$, $\left.v\rangle)-\left(r+0 i_{\mathbb{C}_{F}}\right) \cdot(a \cdot f(\langle w, v\rangle))-\left(r+0 i_{\mathbb{C}_{F}}\right) \cdot(\bar{a} \cdot f(\langle v, w\rangle))\right)+\left(r^{2}+0 i_{\mathbb{C}_{F}}\right) \cdot f(\langle w$, $w\rangle$).
(46) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, v, w$ be vectors of V, f be a diagonal plus-real valued hermitan form of V, r be a real number, and a be an element of the carrier of \mathbb{C}_{F}. Suppose $|a|=1$ and $\Re(a \cdot f(\langle w, v\rangle))=$ $|f(\langle w, v\rangle)|$ and $\Im(a \cdot f(\langle w, v\rangle))=0$. Then $\Re\left(f\left(\left\langle v-\left(r+0 i_{\mathbb{C}_{\mathrm{F}}}\right) \cdot a \cdot w\right.\right.\right.$, $\left.\left.\left.v-\left(r+0 i_{\mathbb{C}_{\mathrm{F}}}\right) \cdot a \cdot w\right\rangle\right)\right)=\left(\|v\|_{f}^{2}-2 \cdot|f(\langle w, v\rangle)| \cdot r\right)+\|w\|_{f}^{2} \cdot r^{2}$ and $0 \leqslant\left(\|v\|_{f}^{2}-2 \cdot|f(\langle w, v\rangle)| \cdot r\right)+\|w\|_{f}^{2} \cdot r^{2}$.
(47) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, v, w$ be vectors of V, and f be a diagonal plus-real valued hermitan form of V. If $\|w\|_{f}^{2}=0$, then $\mid f(\langle w$, $v\rangle) \mid=0$.
(48) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, v, w$ be vectors of V, and f be a diagonal plus-real valued hermitan form of V. Then $|f(\langle v, w\rangle)|^{2} \leqslant\|v\|_{f}^{2} \cdot\|w\|_{f}^{2}$.
(49) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plus-real valued hermitan form of V, and v, w be vectors of V. Then $|f(\langle v, w\rangle)|^{2} \leqslant \mid f(\langle v$, $v\rangle)|\cdot| f(\langle w, w\rangle) \mid$.
(50) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plus-real valued hermitan form of V, and v, w be vectors of V. Then $\|v+w\|_{f}^{2} \leqslant$ $\left(\sqrt{\|v\|_{f}^{2}}+\sqrt{\|w\|_{f}^{2}}\right)^{2}$.
(51) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plus-real valued hermitan form of V, and v, w be vectors of V. Then $|f(\langle v+w, v+w\rangle)| \leqslant$ $(\sqrt{|f(\langle v, v\rangle)|}+\sqrt{|f(\langle w, w\rangle)|})^{2}$.
(52) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a hermitan form of V, and v, w be elements of the carrier of V. Then $\|v+w\|_{f}^{2}+\|v-w\|_{f}^{2}=2 \cdot\|v\|_{f}^{2}+2 \cdot\|w\|_{f}^{2}$.
(53) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plus-real valued hermitan form of V, and v, w be elements of the carrier of V. Then $\mid f(\langle v+w$, $v+w\rangle)|+|f(\langle v-w, v-w\rangle)|=2 \cdot| f(\langle v, v\rangle)|+2 \cdot| f(\langle w, w\rangle) \mid$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a form of V, V. The functor $\|\cdot\|_{f}$ yields a RFunctional of V and is defined as follows:
(Def. 10) For every element v of the carrier of V holds $\left(\|\cdot\|_{f}\right)(v)=\sqrt{\|v\|_{f}^{2}}$.
Let V be a vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued hermitan form of V. Then $\|\cdot\|_{f}$ is a Semi-Norm of V.

4. Kernel of Hermitan Forms and Hermitan Forms in Quotient Vector Spaces

Let V be an add-associative right zeroed right complementable vector space-like non empty vector space structure over \mathbb{C}_{F} and let f be a complexhomogeneous wrt. second argument form of V, V. Note that diagker f is non empty.

We now state several propositions:
(54) Let V be a vector space over \mathbb{C}_{F} and f be a diagonal plus-real valued hermitan form of V. Then diagker f is linearly closed.
(55) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds diagker $f=$ leftker f.
(56) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds diagker $f=$ rightker f.
(57) For every non empty vector space structure V over \mathbb{C}_{F} and for every form f of V, V holds diagker $f=\operatorname{diagker} \bar{f}$.
(58) For all non empty vector space structures V, W over \mathbb{C}_{F} and for every form f of V, W holds leftker $f=$ leftker \bar{f} and rightker $f=\operatorname{rightker} \bar{f}$.
(59) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds LKer $f=\operatorname{RKer} \bar{f}$.
(60) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plus-real valued diagonal real valued form of V, V, and v be a vector of V. If $\Re(f(\langle v, v\rangle))=0$, then $f(\langle v, v\rangle)=0_{\mathbb{C}_{\mathrm{F}}}$.
(61) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plus-real valued hermitan form of V, and v be a vector of V. Suppose $\Re(f(\langle v, v\rangle))=0$ and f is non degenerated on left and non degenerated on right. Then $v=0_{V}$.
Let V be a non empty vector space structure over \mathbb{C}_{F}, let W be a vector space over \mathbb{C}_{F}, and let f be an additive wrt. second argument complex-homogeneous wrt. second argument form of V, W. The functor RQForm* (f) yielding an additive wrt. second argument complex-homogeneous wrt. second argument form of $V,{ }^{W} /_{\text {RKer }} \bar{f}$ is defined as follows:
(Def. 11) RQForm ${ }^{*}(f)=\overline{\operatorname{RQForm}(\bar{f})}$.
We now state the proposition
(62) Let V be a non empty vector space structure over \mathbb{C}_{F}, W be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be an additive wrt. second argument complex-
homogeneous wrt. second argument form of V, W, v be a vector of V, and w be a vector of W. Then $\left(\operatorname{RQForm}^{*}(f)\right)(\langle v, w+\operatorname{RKer} \bar{f}\rangle)=f(\langle v$, $w\rangle$).
Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. Note that LQForm (f) is additive wrt. second argument and complexhomogeneous wrt. second argument and $\operatorname{RQForm}^{*}(f)$ is additive wrt. first argument and homogeneous wrt. first argument.

Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. The functor QForm ${ }^{*} f$ yields a sesquilinear form of $V / \operatorname{LKer},{ }^{W} /$ RKer \bar{f} and is defined by the condition (Def. 12).
(Def. 12) Let A be a vector of $V / \operatorname{LKer}_{f}, B$ be a vector of $W / R \operatorname{RKer} \bar{f}, v$ be a vector of V, and w be a vector of W. If $A=v+\operatorname{LKer} f$ and $B=w+\operatorname{RKer} \bar{f}$, then $\left(\right.$ QForm $\left.{ }^{*} f\right)(\langle A, B\rangle)=f(\langle v, w\rangle)$.
Let V, W be non trivial vector spaces over \mathbb{C}_{F} and let f be a non constant sesquilinear form of V, W. Observe that QForm* f is non constant.

Let V be a right zeroed non empty vector space structure over \mathbb{C}_{F}, let W be a vector space over \mathbb{C}_{F}, and let f be an additive wrt. second argument complex-homogeneous wrt. second argument form of V, W. One can verify that RQForm* (f) is non degenerated on right.

One can prove the following propositions:
(63) Let V be a non empty vector space structure over \mathbb{C}_{F}, W be a vector space over \mathbb{C}_{F}, and f be an additive wrt. second argument complexhomogeneous wrt. second argument form of V, W. Then leftker $f=$ leftker($\left.\operatorname{RQForm}^{*}(f)\right)$.
(64) For all vector spaces V, W over \mathbb{C}_{F} and for every sesquilinear form f of V, W holds RKer $\bar{f}=\operatorname{RKer} \overline{\operatorname{LQForm}(f)}$.
(65) For all vector spaces V, W over \mathbb{C}_{F} and for every sesquilinear form f of V, W holds LKer $f=\operatorname{LKer}\left(\operatorname{RQForm}^{*}(f)\right)$.
(66) For all vector spaces V, W over \mathbb{C}_{F} and for every sesquilinear form f of V, W holds QForm* $f=\operatorname{RQForm}^{*}(\operatorname{LQForm}(f))$ and QForm* $f=$ LQForm($\left.\operatorname{RQForm}^{*}(f)\right)$.
(67) Let V, W be vector spaces over \mathbb{C}_{F} and f be a sesquilinear form of V, W. Then leftker $\left(\right.$ QForm $\left.^{*} f\right)=\operatorname{leftker}(\operatorname{RQForm} *(\operatorname{LQForm}(f)))$ and rightker $\left(\right.$ QForm $\left.{ }^{*} f\right)=\operatorname{rightker}\left(\operatorname{RQForm}^{*}(\operatorname{LQForm}(f))\right)$ and $\operatorname{leftker}\left(\right.$ QForm $\left.^{*} f\right)=\operatorname{leftker}\left(\operatorname{LQForm}\left(\operatorname{RQForm}^{*}(f)\right)\right)$ and rightker $\left(\right.$ QForm $\left.^{*} f\right)=$ rightker $\left(\operatorname{LQForm}\left(\operatorname{RQForm}^{*}(f)\right)\right)$.
Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. Note that RQForm* $(\operatorname{LQForm}(f))$ is non degenerated on left and non degenerated on right and LQForm($\left.\operatorname{RQForm}^{*}(f)\right)$ is non degenerated on left and non degenerated on right.

Let V, W be vector spaces over \mathbb{C}_{F} and let f be a sesquilinear form of V, W. Note that QForm* f is non degenerated on left and non degenerated on right.

5. Scalar Product in Quotient Vector Space Generated by Non-Negative Hermitan Form

Let V be a non empty vector space structure over \mathbb{C}_{F} and let f be a form of V, V. We say that f is positive diagonal valued if and only if:
(Def. 13) For every vector v of V such that $v \neq 0_{V}$ holds $0<\Re(f(\langle v, v\rangle))$.
Let V be a right zeroed non empty vector space structure over \mathbb{C}_{F}. Note that every form of V, V which is positive diagonal valued and additive wrt. first argument is also diagonal plus-real valued.

Let V be a right zeroed non empty vector space structure over \mathbb{C}_{F}. One can verify that every form of V, V which is positive diagonal valued and additive wrt. second argument is also diagonal plus-real valued.

Let V be a vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued hermitan form of V. The functor $\langle\cdot \mid \cdot\rangle_{f}$ yields a diagonal plus-real valued hermitan form of $V /$ LKer f and is defined as follows:
(Def. 14) $\langle\cdot \mid \cdot\rangle_{f}=$ QForm $^{*} f$.
Next we state three propositions:
(68) Let V be a vector space over $\mathbb{C}_{\mathrm{F}}, f$ be a diagonal plus-real valued hermitan form of V, A, B be vectors of $V / \operatorname{LKer} f$, and v, w be vectors of V. If $A=v+\operatorname{LKer} f$ and $B=w+\operatorname{LKer} f$, then $\left(\langle\cdot \mid \cdot\rangle_{f}\right)(\langle A, B\rangle)=f(\langle v, w\rangle)$.
(69) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds leftker $\left(\langle\cdot \mid \cdot\rangle_{f}\right)=\operatorname{leftker}($ QForm* $f)$.
(70) For every vector space V over \mathbb{C}_{F} and for every diagonal plus-real valued hermitan form f of V holds rightker $\left(\langle\cdot \mid \cdot\rangle_{f}\right)=\operatorname{rightker}\left(\right.$ QForm $\left.^{*} f\right)$.
Let V be a vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued hermitan form of V. Observe that $\langle\cdot \mid \cdot\rangle_{f}$ is non degenerated on left, non degenerated on right, and positive diagonal valued.

Let V be a non trivial vector space over \mathbb{C}_{F} and let f be a diagonal plus-real valued non constant hermitan form of V. Note that $\langle\cdot \mid \cdot\rangle_{f}$ is non constant.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[8] Jarosław Kotowicz. Bilinear functionals in vector spaces. Formalized Mathematics, 11(1):69-86, 2003.
[9] Jarosław Kotowicz. Quotient vector spaces and functionals. Formalized Mathematics, 11(1):59-68, 2003.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[11] Krzysztof Maurin. Analiza, II, volume 70 of Biblioteka Matematyczna. PWN - Warszawa, 1991.
[12] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[13] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363-371, 2001.
[14] Walter Rudin. Real and Complex Analysis. Mc Graw-Hill, Inc., 1974.
[15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[18] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 12, 2002

[^0]: ${ }^{1}$ This work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and SPUB-M grant of KBN.

