Armstrong's Axioms ${ }^{1}$

William W. Armstrong
Dendronic Decisions Ltd
Edmonton

Yatsuka Nakamura
Shinshu University
Nagano

Piotr Rudnicki
University of Alberta
Edmonton

Abstract

Summary. We present a formalization of the seminal paper by W. W. Armstrong [1] on functional dependencies in relational data bases. The paper is formalized in its entirety including examples and applications. The formalization was done with a routine effort albeit some new notions were defined which simplified formulation of some theorems and proofs.

The definitive reference to the theory of relational databases is [15], where saturated sets are called closed sets. Armstrong's "axioms" for functional dependencies are still widely taught at all levels of database design, see for instance [13].

MML Identifier: ARMSTRNG.

The articles [21], [10], [28], [11], [24], [30], [32], [31], [18], [3], [9], [7], [26], [22], [4], [23], [25], [14], [20], [2], [5], [29], [8], [6], [17], [16], [27], [19], and [12] provide the notation and terminology for this paper.

1. Preliminaries

The following proposition is true
(1) Let B be a set. Suppose B is \cap-closed. Let X be a set and S be a finite family of subsets of X. If $X \in B$ and $S \subseteq B$, then $\operatorname{Intersect}(S) \in B$.
Let us observe that there exists a binary relation which is reflexive, antisymmetric, transitive, and non empty.

One can prove the following proposition

[^0](2) Let R be an antisymmetric transitive non empty binary relation and X be a finite subset of field R. If $X \neq \emptyset$, then there exists an element of X which is maximal w.r.t. X, R.
Let X be a set and let R be a binary relation. The functor $\operatorname{Maximals}_{R}(X)$ yields a subset of X and is defined by:
(Def. 1) For every set x holds $x \in \operatorname{Maximals}_{R}(X)$ iff x is maximal w.r.t. X, R. Let x, X be sets. We say that x is \cap-irreducible in X if and only if:
(Def. 2) $\quad x \in X$ and for all sets z, y such that $z \in X$ and $y \in X$ and $x=z \cap y$ holds $x=z$ or $x=y$.
We introduce x is \cap-reducible in X as an antonym of x is \cap-irreducible in X.
Let X be a non empty set. The functor \cap - $\operatorname{Irreducibles}(X)$ yields a subset of X and is defined by:
(Def. 3) For every set x holds $x \in \cap$-Irreducibles (X) iff x is \cap-irreducible in X.
The scheme FinIntersect deals with a non empty finite set \mathcal{A} and a unary predicate \mathcal{P}, and states that:

For every set x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x]$
provided the parameters meet the following requirements:

- For every set x such that x is \cap-irreducible in \mathcal{A} holds $\mathcal{P}[x]$, and
- For all sets x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{A}$ and $\mathcal{P}[x]$ and $\mathcal{P}[y]$ holds $\mathcal{P}[x \cap y]$.
Next we state the proposition
(3) Let X be a non empty finite set and x be an element of X. Then there exists a non empty subset A of X such that $x=\bigcap A$ and for every set s such that $s \in A$ holds s is \cap-irreducible in X.

Let X be a set and let B be a family of subsets of X. We say that B is (B1) if and only if:
(Def. 4) $\quad X \in B$.
Let B be a set. We introduce B is (B2) as a synonym of B is \cap-closed.
Let X be a set. Observe that there exists a family of subsets of X which is (B1) and (B2).

The following proposition is true
(4) Let X be a set and B be a non empty family of subsets of X. Suppose B is \cap-closed. Let x be an element of B. Suppose x is \cap-irreducible in B and $x \neq X$. Let S be a finite family of subsets of X. If $S \subseteq B$ and $x=\operatorname{Intersect}(S)$, then $x \in S$.
Let X, D be non empty sets and let n be a natural number. Observe that every function from X into D^{n} is finite sequence yielding.

Let f be a finite sequence yielding function and let x be a set. Note that $f(x)$ is finite sequence-like.

Let n be a natural number and let p, q be n-tuples of Boolean. The functor $p \wedge q$ yielding a n-tuple of Boolean is defined as follows:
(Def. 5) For every set i such that $i \in \operatorname{Seg} n$ holds $(p \wedge q)(i)=p_{i} \wedge q_{i}$.
Let us notice that the functor $p \wedge q$ is commutative.
One can prove the following propositions:
(5) For every natural number n and for every n-tuple p of Boolean holds (n-BinarySequence $(0)) \wedge p=n$-BinarySequence (0).
(6) For every natural number n and for every n-tuple p of Boolean holds $\neg(n$-BinarySequence $(0)) \wedge p=p$.
(7) For every natural number i holds $(i+1)$-BinarySequence $\left(2^{i}\right)=$ $\langle\underbrace{0, \ldots, 0}_{i}\rangle^{\frown}\langle 1\rangle$.
(8) Let n, i be natural numbers. Suppose $i<n$. Then $\left(n\right.$-BinarySequence $\left.\left(2^{i}\right)\right)$ $(i+1)=1$ and for every natural number j such that $j \in \operatorname{Seg} n$ and $j \neq i+1$ holds $\left(n\right.$-BinarySequence $\left.\left(2^{i}\right)\right)(j)=0$.

2. The Relational Model of Data

We consider DB-relationships as systems
< attributes, domains, a relationship 〉,
where the attributes constitute a finite non empty set, the domains constitute a non-empty many sorted set indexed by the attributes, and the relationship is a subset of Π the domains.

3. Dependency Structures

Let X be a set.
(Def. 6) A binary relation on 2^{X} is said to be a relation on subsets of X.
We introduce dependency set of X as a synonym of a relation on subsets of X.
Let X be a set. Observe that there exists a dependency set of X which is non empty and finite.

Let X be a set. The functor dependencies (X) yields a dependency set of X and is defined by:
(Def. 7) dependencies $(X)=\left[: 2^{X}, 2^{X}:\right]$.
Let X be a set. Observe that dependencies (X) is non empty. A dependency of X is an element of dependencies (X).

Let X be a set and let F be a non empty dependency set of X. We see that the element of F is a dependency of X.

The following three propositions are true:
(9) For all sets X, x holds $x \in \operatorname{dependencies}(X)$ iff there exist subsets a, b of X such that $x=\langle a, b\rangle$.
(10) For all sets X, x and for every dependency set F of X such that $x \in F$ there exist subsets a, b of X such that $x=\langle a, b\rangle$.
(11) For every set X and for every dependency set F of X holds every subset of F is a dependency set of X.
Let R be a DB-relationship and let A, B be subsets of the attributes of R. The predicate $A \rightarrow_{R} B$ is defined by:
(Def. 8) For all elements f, g of the relationship of R such that $f \upharpoonright A=g \upharpoonright A$ holds $f \upharpoonright B=g \upharpoonright B$.
We introduce (A, B) holds in R as a synonym of $A \rightarrow_{R} B$.
In the sequel R denotes a DB-relationship and A, B denote subsets of the attributes of R.

Let us consider R. The functor dependency-structure (R) yields a dependency set of the attributes of R and is defined as follows:
(Def. 9) dependency-structure $(R)=\left\{\langle A, B\rangle: A \rightarrow_{R} B\right\}$.
One can prove the following proposition
(12) For every DB-relationship R and for all subsets A, B of the attributes of R holds $\langle A, B\rangle \in$ dependency-structure (R) iff $A \rightarrow_{R} B$.

4. Full Families of Dependencies

Let X be a set and let P, Q be dependencies of X. The predicate $P \geqslant Q$ is defined by:
(Def. 10) $\quad P_{1} \subseteq Q_{1}$ and $Q_{2} \subseteq P_{\mathbf{2}}$.
Let us note that the predicate $P \geqslant Q$ is reflexive. We introduce $Q \leqslant P$ and also P is at least as informative as Q, as synonyms of $P \geqslant Q$.

The following propositions are true:
(13) For every set X and for all dependencies P, Q of X such that $P \leqslant Q$ and $Q \leqslant P$ holds $P=Q$.
(14) For every set X and for all dependencies P, Q, S of X such that $P \leqslant Q$ and $Q \leqslant S$ holds $P \leqslant S$.
Let X be a set and let A, B be subsets of X. Then $\langle A, B\rangle$ is a dependency of X.

We now state the proposition
(15) For every set X and for all subsets $A, B, A^{\prime}, B^{\prime}$ of X holds $\langle A, B\rangle \geqslant\left\langle A^{\prime}\right.$, $\left.B^{\prime}\right\rangle$ iff $A \subseteq A^{\prime}$ and $B^{\prime} \subseteq B$.
Let X be a set. The functor Dependencies-Order X yielding a binary relation on dependencies (X) is defined as follows:
(Def. 11) Dependencies-Order $X=\{\langle P, Q\rangle ; P$ ranges over dependencies of X, Q ranges over dependencies of $X: P \leqslant Q\}$.
We now state four propositions:
(16) For all sets X, x holds $x \in$ Dependencies-Order X iff there exist dependencies P, Q of X such that $x=\langle P, Q\rangle$ and $P \leqslant Q$.
(17) For every set X holds dom Dependencies-Order $X=\left[2^{X}, 2^{X}\right]$.
(18) For every set X holds rng Dependencies-Order $X=\left[2^{X}, 2^{X}\right]$.
(19) For every set X holds field Dependencies-Order $X=\left\{2^{X}, 2^{X}:\right]$.

Let X be a set. Note that Dependencies-Order X is non empty and Dependencies-Order X is ordering.
Let X be a set and let F be a dependency set of X. We say that F is (F1) if and only if:
(Def. 12) For every subset A of X holds $\langle A, A\rangle \in F$.
We introduce F is (DC2) as a synonym of F is (F1). We introduce F is (F2) and F is (DC1) as synonyms of F is transitive.

The following proposition is true
(20) Let X be a set and F be a dependency set of X. Then F is (F2) if and only if for all subsets A, B, C of X such that $\langle A, B\rangle \in F$ and $\langle B, C\rangle \in F$ holds $\langle A, C\rangle \in F$.
Let X be a set and let F be a dependency set of X. We say that F is (F3) if and only if:
(Def. 13) For all subsets $A, B, A^{\prime}, B^{\prime}$ of X such that $\langle A, B\rangle \in F$ and $\langle A, B\rangle \geqslant\left\langle A^{\prime}\right.$, $\left.B^{\prime}\right\rangle$ holds $\left\langle A^{\prime}, B^{\prime}\right\rangle \in F$.
We say that F is (F4) if and only if:
(Def. 14) For all subsets $A, B, A^{\prime}, B^{\prime}$ of X such that $\langle A, B\rangle \in F$ and $\left\langle A^{\prime}, B^{\prime}\right\rangle \in F$ holds $\left\langle A \cup A^{\prime}, B \cup B^{\prime}\right\rangle \in F$.
The following proposition is true
(21) For every set X holds dependencies(X) is (F1), (F2), (F3), and (F4).

Let X be a set. Observe that there exists a dependency set of X which is (F1), (F2), (F3), (F4), and non empty.

Let X be a set and let F be a dependency set of X. We say that F is full family if and only if:
(Def. 15) $\quad F$ is (F1), (F2), (F3), and (F4).
Let X be a set. One can verify that there exists a dependency set of X which is full family.

Let X be a set. A Full family of X is a full family dependency set of X.
We now state the proposition
(22) For every finite set X holds every dependency set of X is finite.

Let X be a finite set. Observe that there exists a Full family of X which is finite and every dependency set of X is finite.

Let X be a set. Note that every dependency set of X which is full family is also (F1), (F2), (F3), and (F4) and every dependency set of X which is (F1), (F2), (F3), and (F4) is also full family.

Let X be a set and let F be a dependency set of X. We say that F is (DC3) if and only if:
(Def. 16) For all subsets A, B of X such that $B \subseteq A$ holds $\langle A, B\rangle \in F$.
Let X be a set. Observe that every dependency set of X which is (F1) and (F3) is also (DC3) and every dependency set of X which is (DC3) and (F2) is also (F1) and (F3).

Let X be a set. Observe that there exists a dependency set of X which is (DC3), (F2), (F4), and non empty.

We now state two propositions:
(23) For every set X and for every dependency set F of X such that F is (DC3) and (F2) holds F is (F1) and (F3).
(24) For every set X and for every dependency set F of X such that F is (F1) and (F3) holds F is (DC3).
Let X be a set. Observe that every dependency set of X which is (F1) is also non empty.

The following propositions are true:
(25) For every DB-relationship R holds dependency-structure (R) is full family.
(26) Let X be a set and K be a subset of X. Then $\{\langle A, B\rangle ; A$ ranges over subsets of X, B ranges over subsets of $X: K \subseteq A \vee B \subseteq A\}$ is a Full family of X.

5. Maximal Elements of Full Families

Let X be a set and let F be a dependency set of X. The functor $\operatorname{Maximals}(F)$ yielding a dependency set of X is defined as follows:
(Def. 17) Maximals $(F)=\operatorname{Maximal}_{\text {Dependencies-Order } X}(F)$.
We now state the proposition
(27) For every set X and for every dependency set F of X holds $\operatorname{Maximals}(F) \subseteq F$.
Let X be a set, let F be a dependency set of X, and let x, y be sets. The predicate $x \nearrow_{F} y$ is defined as follows:
(Def. 18) $\langle x, y\rangle \in \operatorname{Maximals}(F)$.
One can prove the following two propositions:
(28) Let X be a finite set, P be a dependency of X, and F be a dependency set of X. If $P \in F$, then there exist subsets A, B of X such that $\langle A$, $B\rangle \in \operatorname{Maximals}(F)$ and $\langle A, B\rangle \geqslant P$.
(29) Let X be a set, F be a dependency set of X, and A, B be subsets of X. Then $A \nearrow_{F} B$ if and only if the following conditions are satisfied:
(i) $\langle A, B\rangle \in F$, and
(ii) it is not true that there exist subsets A^{\prime}, B^{\prime} of X such that $\left\langle A^{\prime}, B^{\prime}\right\rangle \in F$ and $\langle A, B\rangle \leqslant\left\langle A^{\prime}, B^{\prime}\right\rangle$ with $A \neq A^{\prime}$ or $B \neq B^{\prime}$.
Let X be a set and let M be a dependency set of X. We say that M is (M1) if and only if:
(Def. 19) For every subset A of X there exist subsets A^{\prime}, B^{\prime} of X such that $\left\langle A^{\prime}\right.$, $\left.B^{\prime}\right\rangle \geqslant\langle A, A\rangle$ and $\left\langle A^{\prime}, B^{\prime}\right\rangle \in M$.
We say that M is (M2) if and only if:
(Def. 20) For all subsets $A, B, A^{\prime}, B^{\prime}$ of X such that $\langle A, B\rangle \in M$ and $\left\langle A^{\prime}, B^{\prime}\right\rangle \in M$ and $\langle A, B\rangle \geqslant\left\langle A^{\prime}, B^{\prime}\right\rangle$ holds $A=A^{\prime}$ and $B=B^{\prime}$.
We say that M is (M3) if and only if:
(Def. 21) For all subsets $A, B, A^{\prime}, B^{\prime}$ of X such that $\langle A, B\rangle \in M$ and $\left\langle A^{\prime}, B^{\prime}\right\rangle \in M$ and $A^{\prime} \subseteq B$ holds $B^{\prime} \subseteq B$.
We now state two propositions:
(30) For every finite non empty set X and for every Full family F of X holds $\operatorname{Maximals}(F)$ is (M1), (M2), and (M3).
(31) Let X be a finite set and M, F be dependency sets of X. Suppose that
(i) $\quad M$ is (M1), (M2), and (M3), and
(ii) $\quad F=\{\langle A, B\rangle ; A$ ranges over subsets of X, B ranges over subsets of X : $\left.\bigvee_{A^{\prime}, B^{\prime} \text { : subset of } X}\left(\left\langle A^{\prime}, B^{\prime}\right\rangle \geqslant\langle A, B\rangle \wedge\left\langle A^{\prime}, B^{\prime}\right\rangle \in M\right)\right\}$.
Then $M=\operatorname{Maximals}(F)$ and F is full family and for every Full family G of X such that $M=\operatorname{Maximals}(G)$ holds $G=F$.

Let X be a non empty finite set and let F be a Full family of X. Note that Maximals (F) is non empty.

Next we state the proposition
(32) Let X be a finite set, F be a dependency set of X, and K be a subset of X. Suppose $F=\{\langle A, B\rangle ; A$ ranges over subsets of X, B ranges over subsets of $X: K \subseteq A \vee B \subseteq A\}$. Then $\{\langle K, X\rangle\} \cup\{\langle A, A\rangle ; A$ ranges over subsets of $X: K \nsubseteq A\}=\operatorname{Maximals}(F)$.

6. Saturated Subsets of Attributes

Let X be a set and let F be a dependency set of X.
The functor saturated-subsets (F) yields a family of subsets of X and is defined as follows:
(Def. 22) saturated-subsets $(F)=$
$\left\{B ; B\right.$ ranges over subsets of $X: \bigvee_{A}$: subset of $\left.X A /{ }_{F} B\right\}$.
We introduce closed-attribute-subset (F) as a synonym of saturated-subsets (F).
Let X be a set and let F be a finite dependency set of X. Observe that saturated-subsets (F) is finite.

Next we state two propositions:
(33) Let X, x be sets and F be a dependency set of X. Then $x \in$ saturated-subsets (F) if and only if there exist subsets B, A of X such that $x=B$ and $A \nearrow_{F} B$.
(34) For every finite non empty set X and for every Full family F of X holds saturated-subsets (F) is (B1) and (B2).
Let X be a set and let B be a set. The functor (B)-enclosed in X yields a dependency set of X and is defined as follows:
(Def. 23) (B)-enclosed in $X=\{\langle a, b\rangle ; a$ ranges over subsets of X, b ranges over subsets of $\left.X: \bigwedge_{c: \text { set }}(c \in B \wedge a \subseteq c \Rightarrow b \subseteq c)\right\}$.
The following three propositions are true:
(35) For every set X and for every family B of subsets of X and for every dependency set F of X holds (B)-enclosed in X is full family.
(36) For every finite non empty set X and for every family B of subsets of X holds $B \subseteq$ saturated-subsets $((B)$-enclosed in $X)$.
(37) Let X be a finite non empty set and B be a family of subsets of X. Suppose B is (B1) and (B2). Then $B=\operatorname{saturated-subsets}((B)$-enclosed in $X)$ and for every Full family G of X such that $B=\operatorname{saturated-subsets}(G)$ holds $G=(B)$-enclosed in X.
Let X be a set and let F be a dependency set of X. The functor (F)-enclosure yielding a family of subsets of X is defined as follows:
(Def. 24) (F)-enclosure $=\left\{b ; b\right.$ ranges over subsets of $X: \bigwedge_{A, B: \text { subset of } X}(\langle A$, $B\rangle \in F \wedge A \subseteq b \Rightarrow B \subseteq b)\}$.
We now state two propositions:
(38) For every finite non empty set X and for every dependency set F of X holds (F)-enclosure is (B1) and (B2).
(39) Let X be a finite non empty set and F be a dependency set of X. Then $F \subseteq((F)$-enclosure)-enclosed in X and for every dependency set G of X such that $F \subseteq G$ and G is full family holds ((F)-enclosure)-enclosed in $X \subseteq G$.
Let X be a finite non empty set and let F be a dependency set of X. The functor dependency-closure (F) yields a Full family of X and is defined by:
(Def. 25) $\quad F \subseteq$ dependency-closure (F) and for every dependency set G of X such that $F \subseteq G$ and G is full family holds dependency-closure $(F) \subseteq G$.

Next we state four propositions:
(40) For every finite non empty set X and for every dependency set F of X holds dependency-closure $(F)=((F)$-enclosure $)$-enclosed in X.
(41) Let X be a set, K be a subset of X, and B be a family of subsets of X. If $B=\{X\} \cup\{A ; A$ ranges over subsets of $X: K \nsubseteq A\}$, then B is (B1) and (B2).
(42) Let X be a finite non empty set, F be a dependency set of X, and K be a subset of X. Suppose $F=\{\langle A, B\rangle ; A$ ranges over subsets of X, B ranges over subsets of $X: K \subseteq A \vee B \subseteq A\}$. Then $\{X\} \cup\{B ; B$ ranges over subsets of $X: K \nsubseteq B\}=$ saturated-subsets (F).
(43) Let X be a finite set, F be a dependency set of X, and K be a subset of X. Suppose $F=\{\langle A, B\rangle ; A$ ranges over subsets of X, B ranges over subsets of $X: K \subseteq A \vee B \subseteq A\}$. Then $\{X\} \cup\{B ; B$ ranges over subsets of $X: K \nsubseteq B\}=$ saturated-subsets (F).
Let X, G be sets and let B be a family of subsets of X. We say that G is generator set of B if and only if:
(Def. 26) $G \subseteq B$ and $B=\{\operatorname{Intersect}(S) ; S$ ranges over families of subsets of X : $S \subseteq G\}$.
We now state four propositions:
(44) For every finite non empty set X holds every family G of subsets of X is generator set of saturated-subsets $((G)$-enclosed in $X)$.
(45) Let X be a finite non empty set and F be a Full family of X. Then there exists a family G of subsets of X such that G is generator set of saturated-subsets (F) and $F=(G)$-enclosed in X.
(46) Let X be a set and B be a non empty finite family of subsets of X. If B is (B1) and (B2), then \cap - $\operatorname{Irreducibles}(B)$ is generator set of B.
(47) Let X, G be sets and B be a non empty finite family of subsets of X. If B is (B1) and (B2) and G is generator set of B, then \cap-Irreducibles $(B) \subseteq$ $G \cup\{X\}$.

7. Justification of the Axioms

One can prove the following proposition
(48) Let X be a non empty finite set and F be a Full family of X. Then there exists a DB-relationship R such that the attributes of $R=X$ and for every element a of X holds (the domains of $R)(a)=\mathbb{Z}$ and $F=$ dependency-structure (R).

8. Structure of the Family of Candidate Keys

Let X be a set and let F be a dependency set of X.
The functor candidate-keys (F) yields a family of subsets of X and is defined by:
(Def. 27) candidate-keys $(F)=\{A ; A$ ranges over subsets of $X:\langle A, X\rangle \in$ $\operatorname{Maximals}(F)\}$.
One can prove the following proposition
(49) Let X be a finite set, F be a dependency set of X, and K be a subset of X. Suppose $F=\{\langle A, B\rangle ; A$ ranges over subsets of X, B ranges over subsets of $X: K \subseteq A \vee B \subseteq A\}$. Then candidate-keys $(F)=\{K\}$.
Let X be a set. We introduce X is (C1) as an antonym of X is empty.
Let X be a set. We say that X is without proper subsets if and only if:
(Def. 28) For all sets x, y such that $x \in X$ and $y \in X$ and $x \subseteq y$ holds $x=y$.
We introduce X is (C2) as a synonym of X is without proper subsets.
We now state four propositions:
(50) For every DB-relationship R holds candidate-keys(dependency-structure(R)) is (C1) and (C2).
(51) Let X be a finite set and C be a family of subsets of X. If C is (C1) and (C2), then there exists a Full family F of X such that $C=$ candidate-keys (F).
(52) Let X be a finite set, C be a family of subsets of X, and B be a set. Suppose C is (C1) and (C2) and $B=\{b ; b$ ranges over subsets of $\left.X: \bigwedge_{K: \text { subset of } X}(K \in C \Rightarrow K \nsubseteq b)\right\}$. Then $C=$ candidate-keys(($B)$-enclosed in $X)$.
(53) Let X be a non empty finite set and C be a family of subsets of X. Suppose C is (C1) and (C2). Then there exists a DBrelationship R such that the attributes of $R=X$ and $C=$ candidate-keys(dependency-structure (R)).

9. Applications

Let X be a set and let F be a dependency set of X. We say that F is (DC4) if and only if:
(Def. 29) For all subsets A, B, C of X such that $\langle A, B\rangle \in F$ and $\langle A, C\rangle \in F$ holds $\langle A, B \cup C\rangle \in F$.
We say that F is (DC5) if and only if:
(Def. 30) For all subsets A, B, C, D of X such that $\langle A, B\rangle \in F$ and $\langle B \cup C$, $D\rangle \in F$ holds $\langle A \cup C, D\rangle \in F$.

We say that F is (DC6) if and only if:
(Def. 31) For all subsets A, B, C of X such that $\langle A, B\rangle \in F$ holds $\langle A \cup C, B\rangle \in F$.
One can prove the following propositions:
(54) Let X be a set and F be a dependency set of X. Then F is (F1), (F2), (F3), and (F4) if and only if F is (F2), (DC3), and (F4).
(55) Let X be a set and F be a dependency set of X. Then F is (F1), (F2), (F3), and (F4) if and only if F is (DC1), (DC3), and (DC4).
(56) Let X be a set and F be a dependency set of X. Then F is (F1), (F2), (F3), and (F4) if and only if F is (DC2), (DC5), and (DC6).
Let X be a set and let F be a dependency set of X.
The functor characteristic (F) is defined as follows:
(Def. 32) characteristic $(F)=\left\{A ; A\right.$ ranges over subsets of $X: \bigvee_{a, b: \text { subset of } X}(\langle a$, $b\rangle \in F \wedge a \subseteq A \wedge b \nsubseteq A)\}$.
Next we state several propositions:
(57) Let X, A be sets and F be a dependency set of X. Suppose $A \in$ characteristic (F). Then A is a subset of X and there exist subsets a, b of X such that $\langle a, b\rangle \in F$ and $a \subseteq A$ and $b \nsubseteq A$.
(58) Let X be a set, A be a subset of X, and F be a dependency set of X. If there exist subsets a, b of X such that $\langle a, b\rangle \in F$ and $a \subseteq A$ and $b \nsubseteq A$, then $A \in \operatorname{characteristic}(F)$.
(59) Let X be a finite non empty set and F be a dependency set of X. Then
(i) for all subsets A, B of X holds $\langle A, B\rangle \in$ dependency-closure (F) iff for every subset a of X such that $A \subseteq a$ and $B \nsubseteq a$ holds $a \in$ characteristic (F), and
(ii) saturated-subsets(dependency-closure $(F))=2^{X} \backslash \operatorname{characteristic}(F)$.
(60) For every finite non empty set X and for all dependency sets F, G of X such that characteristic $(F)=\operatorname{characteristic}(G)$ holds dependency-closure $(F)=$ dependency-closure (G).
(61) For every non empty finite set X and for every dependency set F of X holds characteristic $(F)=\operatorname{characteristic}($ dependency-closure (F)).
Let A be a set, let K be a set, and let F be a dependency set of A. We say that K is prime implicant of F with no complemented variables if and only if the conditions (Def. 33) are satisfied.
(Def. 33)(i) For every subset a of A such that $K \subseteq a$ and $a \neq A$ holds $a \in$ characteristic (F), and
(ii) for every set k such that $k \subset K$ there exists a subset a of A such that $k \subseteq a$ and $a \neq A$ and $a \notin$ characteristic (F).
The following proposition is true
(62) Let X be a finite non empty set, F be a dependency set of X, and K be a subset of X. Then $K \in$ candidate-keys(dependency-closure (F)) if and only if K is prime implicant of F with no complemented variables.

References

[1] W. W. Armstrong. Dependency Structures of Data Base Relationships. Information Processing 74, North Holland, 1974.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[13] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. AddisonWesley, 2000.
[14] Adam Grabowski. Auxiliary and approximating relations. Formalized Mathematics, 6(2):179-188, 1997.
[15] David Maier. The Theory of Relational Databases. Computer Science Press, Rockville, 1983.
[16] Robert Milewski. Binary arithmetics. Binary sequences. Formalized Mathematics, $7(\mathbf{1}): 23-26,1998$.
[17] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[19] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[20] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[23] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[24] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[25] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[26] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[32] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received October 25, 2002

[^0]: ${ }^{1}$ This work has been supported by NSERC Grant OGP9207 and Shinshu Endowment Fund.

