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Summary.We present a formalization of the seminal paper byW.W. Arm-
strong [1] on functional dependencies in relational data bases. The paper is forma-

lized in its entirety including examples and applications. The formalization was

done with a routine effort albeit some new notions were defined which simplified

formulation of some theorems and proofs.

The definitive reference to the theory of relational databases is [15], where

saturated sets are called closed sets. Armstrong’s “axioms” for functional depen-

dencies are still widely taught at all levels of database design, see for instance [13].

MML Identifier: ARMSTRNG.

The articles [21], [10], [28], [11], [24], [30], [32], [31], [18], [3], [9], [7], [26], [22],

[4], [23], [25], [14], [20], [2], [5], [29], [8], [6], [17], [16], [27], [19], and [12] provide

the notation and terminology for this paper.

1. Preliminaries

The following proposition is true

(1) Let B be a set. Suppose B is ∩-closed. Let X be a set and S be a finite

family of subsets of X. If X ∈ B and S ⊆ B, then Intersect(S) ∈ B.

Let us observe that there exists a binary relation which is reflexive, antisym-

metric, transitive, and non empty.

One can prove the following proposition
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(2) Let R be an antisymmetric transitive non empty binary relation and X

be a finite subset of fieldR. If X 6= ∅, then there exists an element of X

which is maximal w.r.t. X, R.

Let X be a set and let R be a binary relation. The functor MaximalsR(X)

yields a subset of X and is defined by:

(Def. 1) For every set x holds x ∈ MaximalsR(X) iff x is maximal w.r.t. X, R.

Let x, X be sets. We say that x is ∩-irreducible in X if and only if:

(Def. 2) x ∈ X and for all sets z, y such that z ∈ X and y ∈ X and x = z ∩ y

holds x = z or x = y.

We introduce x is ∩-reducible in X as an antonym of x is ∩-irreducible in X.

Let X be a non empty set. The functor ∩-Irreducibles(X) yields a subset of

X and is defined by:

(Def. 3) For every set x holds x ∈ ∩-Irreducibles(X) iff x is ∩-irreducible in X.

The scheme FinIntersect deals with a non empty finite set A and a unary

predicate P, and states that:

For every set x such that x ∈ A holds P[x]

provided the parameters meet the following requirements:

• For every set x such that x is ∩-irreducible in A holds P[x], and

• For all sets x, y such that x ∈ A and y ∈ A and P[x] and P[y]

holds P[x ∩ y].

Next we state the proposition

(3) Let X be a non empty finite set and x be an element of X. Then there

exists a non empty subset A of X such that x =
⋂

A and for every set s

such that s ∈ A holds s is ∩-irreducible in X.

Let X be a set and let B be a family of subsets of X. We say that B is (B1)

if and only if:

(Def. 4) X ∈ B.

Let B be a set. We introduce B is (B2) as a synonym of B is ∩-closed.

Let X be a set. Observe that there exists a family of subsets of X which is

(B1) and (B2).

The following proposition is true

(4) Let X be a set and B be a non empty family of subsets of X. Suppose

B is ∩-closed. Let x be an element of B. Suppose x is ∩-irreducible in

B and x 6= X. Let S be a finite family of subsets of X. If S ⊆ B and

x = Intersect(S), then x ∈ S.

Let X, D be non empty sets and let n be a natural number. Observe that

every function from X into Dn is finite sequence yielding.

Let f be a finite sequence yielding function and let x be a set. Note that

f(x) is finite sequence-like.



armstrong’s axioms 41

Let n be a natural number and let p, q be n-tuples of Boolean. The functor

p ∧ q yielding a n-tuple of Boolean is defined as follows:

(Def. 5) For every set i such that i ∈ Seg n holds (p ∧ q)(i) = pi ∧ qi.

Let us notice that the functor p ∧ q is commutative.

One can prove the following propositions:

(5) For every natural number n and for every n-tuple p of Boolean holds

(n -BinarySequence(0)) ∧ p = n -BinarySequence(0).

(6) For every natural number n and for every n-tuple p of Boolean holds

¬(n -BinarySequence(0)) ∧ p = p.

(7) For every natural number i holds (i + 1) -BinarySequence(2i) =

〈0, . . . , 0
︸ ︷︷ ︸

i

〉 a 〈1〉.

(8) Let n, i be natural numbers. Suppose i < n. Then (n -BinarySequence(2i))

(i+1) = 1 and for every natural number j such that j ∈ Seg n and j 6= i+1

holds (n -BinarySequence(2i))(j) = 0.

2. The Relational Model of Data

We consider DB-relationships as systems

〈 attributes, domains, a relationship 〉,

where the attributes constitute a finite non empty set, the domains constitute

a non-empty many sorted set indexed by the attributes, and the relationship is

a subset of
∏
the domains.

3. Dependency Structures

Let X be a set.

(Def. 6) A binary relation on 2X is said to be a relation on subsets of X.

We introduce dependency set of X as a synonym of a relation on subsets of X.

Let X be a set. Observe that there exists a dependency set of X which is

non empty and finite.

Let X be a set. The functor dependencies(X) yields a dependency set of X

and is defined by:

(Def. 7) dependencies(X) = [: 2X , 2X :].

Let X be a set. Observe that dependencies(X) is non empty. A dependency

of X is an element of dependencies(X).

Let X be a set and let F be a non empty dependency set of X. We see that

the element of F is a dependency of X.

The following three propositions are true:
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(9) For all sets X, x holds x ∈ dependencies(X) iff there exist subsets a, b

of X such that x = 〈〈a, b〉〉.

(10) For all sets X, x and for every dependency set F of X such that x ∈ F

there exist subsets a, b of X such that x = 〈〈a, b〉〉.

(11) For every set X and for every dependency set F of X holds every subset

of F is a dependency set of X.

Let R be a DB-relationship and let A, B be subsets of the attributes of R.

The predicate A→R B is defined by:

(Def. 8) For all elements f , g of the relationship of R such that f↾A = g↾A holds

f↾B = g↾B.

We introduce (A,B) holds in R as a synonym of A→R B.

In the sequel R denotes a DB-relationship and A, B denote subsets of the

attributes of R.

Let us considerR. The functor dependency-structure(R) yields a dependency

set of the attributes of R and is defined as follows:

(Def. 9) dependency-structure(R) = {〈〈A, B〉〉 : A→R B}.

One can prove the following proposition

(12) For every DB-relationship R and for all subsets A, B of the attributes

of R holds 〈〈A, B〉〉 ∈ dependency-structure(R) iff A→R B.

4. Full Families of Dependencies

Let X be a set and let P , Q be dependencies of X. The predicate P  Q is

defined by:

(Def. 10) P1 ⊆ Q1 and Q2 ⊆ P2.

Let us note that the predicate P  Q is reflexive. We introduce Q ¬ P and also

P is at least as informative as Q, as synonyms of P  Q.

The following propositions are true:

(13) For every set X and for all dependencies P , Q of X such that P ¬ Q

and Q ¬ P holds P = Q.

(14) For every set X and for all dependencies P , Q, S of X such that P ¬ Q

and Q ¬ S holds P ¬ S.

Let X be a set and let A, B be subsets of X. Then 〈〈A, B〉〉 is a dependency

of X.

We now state the proposition

(15) For every set X and for all subsets A, B, A′, B′ of X holds 〈〈A, B〉〉  〈〈A′,

B′〉〉 iff A ⊆ A′ and B′ ⊆ B.

Let X be a set. The functor Dependencies-OrderX yielding a binary relation

on dependencies(X) is defined as follows:
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(Def. 11) Dependencies-OrderX = {〈〈P, Q〉〉;P ranges over dependencies of X, Q

ranges over dependencies of X: P ¬ Q}.

We now state four propositions:

(16) For all sets X, x holds x ∈ Dependencies-OrderX iff there exist depen-

dencies P , Q of X such that x = 〈〈P, Q〉〉 and P ¬ Q.

(17) For every set X holds domDependencies-OrderX = [: 2X , 2X :].

(18) For every set X holds rngDependencies-OrderX = [: 2X , 2X :].

(19) For every set X holds fieldDependencies-OrderX = [: 2X , 2X :].

Let X be a set. Note that Dependencies-OrderX is non empty and

Dependencies-OrderX is ordering.

Let X be a set and let F be a dependency set of X. We say that F is (F1)

if and only if:

(Def. 12) For every subset A of X holds 〈〈A, A〉〉 ∈ F.

We introduce F is (DC2) as a synonym of F is (F1). We introduce F is (F2)

and F is (DC1) as synonyms of F is transitive.

The following proposition is true

(20) Let X be a set and F be a dependency set of X. Then F is (F2) if and

only if for all subsets A, B, C of X such that 〈〈A, B〉〉 ∈ F and 〈〈B, C〉〉 ∈ F

holds 〈〈A, C〉〉 ∈ F.

Let X be a set and let F be a dependency set of X. We say that F is (F3)

if and only if:

(Def. 13) For all subsetsA, B, A′, B′ ofX such that 〈〈A, B〉〉 ∈ F and 〈〈A, B〉〉  〈〈A′,

B′〉〉 holds 〈〈A′, B′〉〉 ∈ F.

We say that F is (F4) if and only if:

(Def. 14) For all subsets A, B, A′, B′ of X such that 〈〈A, B〉〉 ∈ F and 〈〈A′, B′〉〉 ∈ F

holds 〈〈A ∪A′, B ∪B′〉〉 ∈ F.

The following proposition is true

(21) For every set X holds dependencies(X) is (F1), (F2), (F3), and (F4).

Let X be a set. Observe that there exists a dependency set of X which is

(F1), (F2), (F3), (F4), and non empty.

Let X be a set and let F be a dependency set of X. We say that F is full

family if and only if:

(Def. 15) F is (F1), (F2), (F3), and (F4).

Let X be a set. One can verify that there exists a dependency set of X which

is full family.

Let X be a set. A Full family of X is a full family dependency set of X.

We now state the proposition

(22) For every finite set X holds every dependency set of X is finite.
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Let X be a finite set. Observe that there exists a Full family of X which is

finite and every dependency set of X is finite.

Let X be a set. Note that every dependency set of X which is full family is

also (F1), (F2), (F3), and (F4) and every dependency set of X which is (F1),

(F2), (F3), and (F4) is also full family.

Let X be a set and let F be a dependency set of X. We say that F is (DC3)

if and only if:

(Def. 16) For all subsets A, B of X such that B ⊆ A holds 〈〈A, B〉〉 ∈ F.

Let X be a set. Observe that every dependency set of X which is (F1) and

(F3) is also (DC3) and every dependency set of X which is (DC3) and (F2) is

also (F1) and (F3).

Let X be a set. Observe that there exists a dependency set of X which is

(DC3), (F2), (F4), and non empty.

We now state two propositions:

(23) For every set X and for every dependency set F of X such that F is

(DC3) and (F2) holds F is (F1) and (F3).

(24) For every set X and for every dependency set F of X such that F is

(F1) and (F3) holds F is (DC3).

Let X be a set. Observe that every dependency set of X which is (F1) is

also non empty.

The following propositions are true:

(25) For every DB-relationship R holds dependency-structure(R) is full fa-

mily.

(26) Let X be a set and K be a subset of X. Then {〈〈A, B〉〉; A ranges over

subsets of X, B ranges over subsets of X: K ⊆ A ∨ B ⊆ A} is a Full

family of X.

5. Maximal Elements of Full Families

LetX be a set and let F be a dependency set ofX. The functor Maximals(F )

yielding a dependency set of X is defined as follows:

(Def. 17) Maximals(F ) = MaximalsDependencies-OrderX(F ).

We now state the proposition

(27) For every set X and for every dependency set F of X holds

Maximals(F ) ⊆ F.

Let X be a set, let F be a dependency set of X, and let x, y be sets. The

predicate xրF y is defined as follows:

(Def. 18) 〈〈x, y〉〉 ∈ Maximals(F ).

One can prove the following two propositions:
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(28) Let X be a finite set, P be a dependency of X, and F be a dependency

set of X. If P ∈ F, then there exist subsets A, B of X such that 〈〈A,

B〉〉 ∈ Maximals(F ) and 〈〈A, B〉〉  P.

(29) Let X be a set, F be a dependency set of X, and A, B be subsets of X.

Then AրF B if and only if the following conditions are satisfied:

(i) 〈〈A, B〉〉 ∈ F, and

(ii) it is not true that there exist subsets A′, B′ of X such that 〈〈A′, B′〉〉 ∈ F

and 〈〈A, B〉〉 ¬ 〈〈A′, B′〉〉 with A 6= A′ or B 6= B′.

Let X be a set and let M be a dependency set of X. We say that M is (M1)

if and only if:

(Def. 19) For every subset A of X there exist subsets A′, B′ of X such that 〈〈A′,

B′〉〉  〈〈A, A〉〉 and 〈〈A′, B′〉〉 ∈M.

We say that M is (M2) if and only if:

(Def. 20) For all subsetsA,B,A′,B′ ofX such that 〈〈A, B〉〉 ∈M and 〈〈A′, B′〉〉 ∈M

and 〈〈A, B〉〉  〈〈A′, B′〉〉 holds A = A′ and B = B′.

We say that M is (M3) if and only if:

(Def. 21) For all subsetsA,B,A′,B′ ofX such that 〈〈A, B〉〉 ∈M and 〈〈A′, B′〉〉 ∈M

and A′ ⊆ B holds B′ ⊆ B.

We now state two propositions:

(30) For every finite non empty set X and for every Full family F of X holds

Maximals(F ) is (M1), (M2), and (M3).

(31) Let X be a finite set and M , F be dependency sets of X. Suppose that

(i) M is (M1), (M2), and (M3), and

(ii) F = {〈〈A, B〉〉;A ranges over subsets of X, B ranges over subsets of X:
∨

A′,B′ : subset of X (〈〈A′, B′〉〉  〈〈A, B〉〉 ∧ 〈〈A′, B′〉〉 ∈M)}.

Then M = Maximals(F ) and F is full family and for every Full family G

of X such that M = Maximals(G) holds G = F.

Let X be a non empty finite set and let F be a Full family of X. Note that

Maximals(F ) is non empty.

Next we state the proposition

(32) Let X be a finite set, F be a dependency set of X, and K be a subset

of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B ranges over

subsets of X: K ⊆ A ∨ B ⊆ A}. Then {〈〈K, X〉〉}∪{〈〈A, A〉〉; A ranges over

subsets of X: K 6⊆ A} = Maximals(F ).

6. Saturated Subsets of Attributes

Let X be a set and let F be a dependency set of X.

The functor saturated-subsets(F ) yields a family of subsets of X and is

defined as follows:
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(Def. 22) saturated-subsets(F ) =

{B; B ranges over subsets of X:
∨

A : subset of X AրF B}.

We introduce closed-attribute-subset(F ) as a synonym of saturated-subsets(F ).

Let X be a set and let F be a finite dependency set of X. Observe that

saturated-subsets(F ) is finite.

Next we state two propositions:

(33) Let X, x be sets and F be a dependency set of X. Then x ∈

saturated-subsets(F ) if and only if there exist subsets B, A of X such

that x = B and AրF B.

(34) For every finite non empty set X and for every Full family F of X holds

saturated-subsets(F ) is (B1) and (B2).

Let X be a set and let B be a set. The functor (B)-enclosed in X yields a

dependency set of X and is defined as follows:

(Def. 23) (B)-enclosed in X = {〈〈a, b〉〉; a ranges over subsets of X, b ranges over

subsets of X:
∧

c : set (c ∈ B ∧ a ⊆ c ⇒ b ⊆ c)}.

The following three propositions are true:

(35) For every set X and for every family B of subsets of X and for every

dependency set F of X holds (B)-enclosed in X is full family.

(36) For every finite non empty set X and for every family B of subsets of X

holds B ⊆ saturated-subsets((B)-enclosed in X).

(37) Let X be a finite non empty set and B be a family of subsets of X. Sup-

pose B is (B1) and (B2). Then B = saturated-subsets((B)-enclosed in X)

and for every Full family G of X such that B = saturated-subsets(G)

holds G = (B)-enclosed in X.

LetX be a set and let F be a dependency set ofX. The functor (F )-enclosure

yielding a family of subsets of X is defined as follows:

(Def. 24) (F )-enclosure = {b; b ranges over subsets of X:
∧

A,B : subset of X (〈〈A,

B〉〉 ∈ F ∧ A ⊆ b ⇒ B ⊆ b)}.

We now state two propositions:

(38) For every finite non empty set X and for every dependency set F of X

holds (F )-enclosure is (B1) and (B2).

(39) Let X be a finite non empty set and F be a dependency set of

X. Then F ⊆ ((F )-enclosure)-enclosed in X and for every depen-

dency set G of X such that F ⊆ G and G is full family holds

((F )-enclosure)-enclosed in X ⊆ G.

Let X be a finite non empty set and let F be a dependency set of X. The

functor dependency-closure(F ) yields a Full family of X and is defined by:

(Def. 25) F ⊆ dependency-closure(F ) and for every dependency set G of X such

that F ⊆ G and G is full family holds dependency-closure(F ) ⊆ G.
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Next we state four propositions:

(40) For every finite non empty set X and for every dependency set F of X

holds dependency-closure(F ) = ((F )-enclosure)-enclosed in X.

(41) Let X be a set, K be a subset of X, and B be a family of subsets of X.

If B = {X} ∪ {A; A ranges over subsets of X: K 6⊆ A}, then B is (B1)

and (B2).

(42) Let X be a finite non empty set, F be a dependency set of X, and K

be a subset of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B

ranges over subsets of X: K ⊆ A ∨ B ⊆ A}. Then {X} ∪ {B; B ranges

over subsets of X: K 6⊆ B} = saturated-subsets(F ).

(43) Let X be a finite set, F be a dependency set of X, and K be a subset

of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B ranges over

subsets of X: K ⊆ A ∨ B ⊆ A}. Then {X} ∪ {B;B ranges over subsets

of X: K 6⊆ B} = saturated-subsets(F ).

Let X, G be sets and let B be a family of subsets of X. We say that G is

generator set of B if and only if:

(Def. 26) G ⊆ B and B = {Intersect(S);S ranges over families of subsets of X:

S ⊆ G}.

We now state four propositions:

(44) For every finite non empty set X holds every family G of subsets of X

is generator set of saturated-subsets((G)-enclosed in X).

(45) Let X be a finite non empty set and F be a Full family of X. Then

there exists a family G of subsets of X such that G is generator set of

saturated-subsets(F ) and F = (G)-enclosed in X.

(46) Let X be a set and B be a non empty finite family of subsets of X. If B

is (B1) and (B2), then ∩-Irreducibles(B) is generator set of B.

(47) Let X, G be sets and B be a non empty finite family of subsets of X. If

B is (B1) and (B2) and G is generator set of B, then ∩-Irreducibles(B) ⊆

G ∪ {X}.

7. Justification of the Axioms

One can prove the following proposition

(48) Let X be a non empty finite set and F be a Full family of X. Then

there exists a DB-relationship R such that the attributes of R = X and

for every element a of X holds (the domains of R)(a) = Z and F =

dependency-structure(R).
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8. Structure of the Family of Candidate Keys

Let X be a set and let F be a dependency set of X.

The functor candidate-keys(F ) yields a family of subsets of X and is defined

by:

(Def. 27) candidate-keys(F ) = {A; A ranges over subsets of X: 〈〈A, X〉〉 ∈

Maximals(F )}.

One can prove the following proposition

(49) Let X be a finite set, F be a dependency set of X, and K be a subset

of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B ranges over

subsets of X: K ⊆ A ∨ B ⊆ A}. Then candidate-keys(F ) = {K}.

Let X be a set. We introduce X is (C1) as an antonym of X is empty.

Let X be a set. We say that X is without proper subsets if and only if:

(Def. 28) For all sets x, y such that x ∈ X and y ∈ X and x ⊆ y holds x = y.

We introduce X is (C2) as a synonym of X is without proper subsets.

We now state four propositions:

(50) For every DB-relationship R holds

candidate-keys(dependency-structure(R)) is (C1) and (C2).

(51) Let X be a finite set and C be a family of subsets of X. If C is

(C1) and (C2), then there exists a Full family F of X such that C =

candidate-keys(F ).

(52) Let X be a finite set, C be a family of subsets of X, and B be

a set. Suppose C is (C1) and (C2) and B = {b; b ranges over sub-

sets of X:
∧

K : subset of X (K ∈ C ⇒ K 6⊆ b)}. Then C =

candidate-keys((B)-enclosed in X).

(53) Let X be a non empty finite set and C be a family of sub-

sets of X. Suppose C is (C1) and (C2). Then there exists a DB-

relationship R such that the attributes of R = X and C =

candidate-keys(dependency-structure(R)).

9. Applications

Let X be a set and let F be a dependency set of X. We say that F is (DC4)

if and only if:

(Def. 29) For all subsets A, B, C of X such that 〈〈A, B〉〉 ∈ F and 〈〈A, C〉〉 ∈ F

holds 〈〈A, B ∪ C〉〉 ∈ F.

We say that F is (DC5) if and only if:

(Def. 30) For all subsets A, B, C, D of X such that 〈〈A, B〉〉 ∈ F and 〈〈B ∪ C,

D〉〉 ∈ F holds 〈〈A ∪ C, D〉〉 ∈ F.
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We say that F is (DC6) if and only if:

(Def. 31) For all subsets A, B, C of X such that 〈〈A, B〉〉 ∈ F holds 〈〈A∪C, B〉〉 ∈ F.

One can prove the following propositions:

(54) Let X be a set and F be a dependency set of X. Then F is (F1), (F2),

(F3), and (F4) if and only if F is (F2), (DC3), and (F4).

(55) Let X be a set and F be a dependency set of X. Then F is (F1), (F2),

(F3), and (F4) if and only if F is (DC1), (DC3), and (DC4).

(56) Let X be a set and F be a dependency set of X. Then F is (F1), (F2),

(F3), and (F4) if and only if F is (DC2), (DC5), and (DC6).

Let X be a set and let F be a dependency set of X.

The functor characteristic(F ) is defined as follows:

(Def. 32) characteristic(F ) = {A;A ranges over subsets of X:
∨

a,b : subset of X (〈〈a,

b〉〉 ∈ F ∧ a ⊆ A ∧ b 6⊆ A)}.

Next we state several propositions:

(57) Let X, A be sets and F be a dependency set of X. Suppose A ∈

characteristic(F ). Then A is a subset of X and there exist subsets a, b

of X such that 〈〈a, b〉〉 ∈ F and a ⊆ A and b 6⊆ A.

(58) Let X be a set, A be a subset of X, and F be a dependency set of X. If

there exist subsets a, b of X such that 〈〈a, b〉〉 ∈ F and a ⊆ A and b 6⊆ A,

then A ∈ characteristic(F ).

(59) Let X be a finite non empty set and F be a dependency set of X. Then

(i) for all subsets A, B of X holds 〈〈A, B〉〉 ∈ dependency-closure(F )

iff for every subset a of X such that A ⊆ a and B 6⊆ a holds a ∈

characteristic(F ), and

(ii) saturated-subsets(dependency-closure(F )) = 2X \ characteristic(F ).

(60) For every finite non empty set X and for all dependency sets

F , G of X such that characteristic(F ) = characteristic(G) holds

dependency-closure(F ) = dependency-closure(G).

(61) For every non empty finite set X and for every dependency set F of X

holds characteristic(F ) = characteristic(dependency-closure(F )).

Let A be a set, let K be a set, and let F be a dependency set of A. We say

that K is prime implicant of F with no complemented variables if and only if

the conditions (Def. 33) are satisfied.

(Def. 33)(i) For every subset a of A such that K ⊆ a and a 6= A holds a ∈

characteristic(F ), and

(ii) for every set k such that k ⊂ K there exists a subset a of A such that

k ⊆ a and a 6= A and a /∈ characteristic(F ).

The following proposition is true
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(62) Let X be a finite non empty set, F be a dependency set of X, and K be

a subset of X. Then K ∈ candidate-keys(dependency-closure(F )) if and

only if K is prime implicant of F with no complemented variables.
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