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Summary. The information that all members of a set enjoy a property
expressed by an adjective can be processed in a systematic way. The purpose of
the work is to find out how to do that. If it works, ‘membered’ will become a rese-
rved word and the work with it will be automated. I have chosen membered rather
than inhabited because of the compatibility with the Automath terminology. The
phrase τ inhabits θ could be translated to τ is θ in Mizar.

MML Identifier: MEMBERED.

The articles [6], [8], [4], [5], [3], [7], [1], and [2] provide the notation and termi-
nology for this paper.

In this paper x, X, F denote sets.
Let X be a set. We say that X is complex-membered if and only if:

(Def. 1) If x ∈ X, then x is complex.

We say that X is real-membered if and only if:

(Def. 2) If x ∈ X, then x is real.

We say that X is rational-membered if and only if:

(Def. 3) If x ∈ X, then x is rational.

We say that X is integer-membered if and only if:

(Def. 4) If x ∈ X, then x is integer.

We say that X is natural-membered if and only if:

(Def. 5) If x ∈ X, then x is natural.

One can check the following observations:

∗ every set which is natural-membered is also integer-membered,

∗ every set which is integer-membered is also rational-membered,
1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-

00102.
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∗ every set which is rational-membered is also real-membered, and

∗ every set which is real-membered is also complex-membered.

Let us observe that there exists a set which is non empty and natural-
membered.

One can verify the following observations:

∗ every subset of C is complex-membered,

∗ every subset of R is real-membered,

∗ every subset of Q is rational-membered,

∗ every subset of Z is integer-membered, and

∗ every subset of N is natural-membered.

One can verify the following observations:

∗ C is complex-membered,

∗ R is real-membered,

∗ Q is rational-membered,

∗ Z is integer-membered, and

∗ N is natural-membered.

Next we state several propositions:

(1) If X is complex-membered, then X ⊆ C.

(2) If X is real-membered, then X ⊆ R.

(3) If X is rational-membered, then X ⊆ Q.

(4) If X is integer-membered, then X ⊆ Z.

(5) If X is natural-membered, then X ⊆ N.

Let X be a complex-membered set. One can check that every element of X

is complex.
Let X be a real-membered set. One can verify that every element of X is

real.
Let X be a rational-membered set. Note that every element of X is rational.
Let X be an integer-membered set. One can verify that every element of X

is integer.
Let X be a natural-membered set. Observe that every element of X is na-

tural.
For simplicity, we follow the rules: c, c1, c2, c3 are complex numbers, r, r1,

r2, r3 are real numbers, w, w1, w2, w3 are rational numbers, i, i1, i2, i3 are
integer numbers, and n, n1, n2, n3 are natural numbers.

We now state a number of propositions:

(6) For every non empty complex-membered set X there exists c such that
c ∈ X.

(7) For every non empty real-membered set X there exists r such that r ∈ X.
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(8) For every non empty rational-membered set X there exists w such that
w ∈ X.

(9) For every non empty integer-membered set X there exists i such that
i ∈ X.

(10) For every non empty natural-membered set X there exists n such that
n ∈ X.

(11) For every complex-membered set X such that for every c holds c ∈ X

holds X = C.

(12) For every real-membered set X such that for every r holds r ∈ X holds
X = R.

(13) For every rational-membered set X such that for every w holds w ∈ X

holds X = Q.

(14) For every integer-membered set X such that for every i holds i ∈ X

holds X = Z.

(15) For every natural-membered set X such that for every n holds n ∈ X

holds X = N.

(16) For every complex-membered set Y such that X ⊆ Y holds X is complex-
membered.

(17) For every real-membered set Y such that X ⊆ Y holds X is real-
membered.

(18) For every rational-membered set Y such that X ⊆ Y holds X is rational-
membered.

(19) For every integer-membered set Y such that X ⊆ Y holds X is integer-
membered.

(20) For every natural-membered set Y such that X ⊆ Y holds X is natural-
membered.

One can verify that ∅ is natural-membered.
One can verify that every set which is empty is also natural-membered.
Let us consider c. One can verify that {c} is complex-membered.
Let us consider r. One can verify that {r} is real-membered.
Let us consider w. One can check that {w} is rational-membered.
Let us consider i. One can verify that {i} is integer-membered.
Let us consider n. Observe that {n} is natural-membered.
Let us consider c1, c2. Note that {c1, c2} is complex-membered.
Let us consider r1, r2. One can check that {r1, r2} is real-membered.
Let us consider w1, w2. Observe that {w1, w2} is rational-membered.
Let us consider i1, i2. One can verify that {i1, i2} is integer-membered.
Let us consider n1, n2. Observe that {n1, n2} is natural-membered.
Let us consider c1, c2, c3. One can verify that {c1, c2, c3} is complex-membered.
Let us consider r1, r2, r3. One can verify that {r1, r2, r3} is real-membered.
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Let us consider w1, w2, w3. Observe that {w1, w2, w3} is rational-membered.
Let us consider i1, i2, i3. One can verify that {i1, i2, i3} is integer-membered.
Let us consider n1, n2, n3. One can check that {n1, n2, n3} is natural-

membered.
Let X be a complex-membered set. Note that every subset of X is complex-

membered.
Let X be a real-membered set. One can verify that every subset of X is

real-membered.
Let X be a rational-membered set. One can check that every subset of X is

rational-membered.
Let X be an integer-membered set. Observe that every subset of X is integer-

membered.
Let X be a natural-membered set. One can verify that every subset of X is

natural-membered.
Let X, Y be complex-membered sets. Note that X∪Y is complex-membered.
Let X, Y be real-membered sets. Observe that X ∪ Y is real-membered.
Let X, Y be rational-membered sets. Note that X∪Y is rational-membered.
Let X, Y be integer-membered sets. Note that X ∪ Y is integer-membered.
Let X, Y be natural-membered sets. Observe that X∪Y is natural-membered.
Let X be a complex-membered set and let Y be a set. Note that X ∩ Y is

complex-membered and Y ∩X is complex-membered.
Let X be a real-membered set and let Y be a set. Note that X ∩ Y is

real-membered and Y ∩X is real-membered.
Let X be a rational-membered set and let Y be a set. Observe that X ∩ Y

is rational-membered and Y ∩X is rational-membered.
Let X be an integer-membered set and let Y be a set. Note that X ∩ Y is

integer-membered and Y ∩X is integer-membered.
Let X be a natural-membered set and let Y be a set. Observe that X ∩ Y

is natural-membered and Y ∩X is natural-membered.
Let X be a complex-membered set and let Y be a set. Note that X \ Y is

complex-membered.
Let X be a real-membered set and let Y be a set. Note that X \ Y is real-

membered.
Let X be a rational-membered set and let Y be a set. Observe that X \ Y

is rational-membered.
Let X be an integer-membered set and let Y be a set. Observe that X \ Y

is integer-membered.
Let X be a natural-membered set and let Y be a set. Observe that X \ Y is

natural-membered.
Let X, Y be complex-membered sets. Note that X−. Y is complex-membered.
Let X, Y be real-membered sets. One can check that X−. Y is real-membered.
Let X, Y be rational-membered sets. Note that X−. Y is rational-membered.
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Let X, Y be integer-membered sets. One can check that X−. Y is integer-
membered.

Let X, Y be natural-membered sets. One can verify that X−. Y is natural-
membered.

Let X, Y be complex-membered sets. Let us observe that X ⊆ Y if and only
if:

(Def. 6) If c ∈ X, then c ∈ Y.

Let X, Y be real-membered sets. Let us observe that X ⊆ Y if and only if:

(Def. 7) If r ∈ X, then r ∈ Y.

Let X, Y be rational-membered sets. Let us observe that X ⊆ Y if and only
if:

(Def. 8) If w ∈ X, then w ∈ Y.

Let X, Y be integer-membered sets. Let us observe that X ⊆ Y if and only
if:

(Def. 9) If i ∈ X, then i ∈ Y.

Let X, Y be natural-membered sets. Let us observe that X ⊆ Y if and only
if:

(Def. 10) If n ∈ X, then n ∈ Y.

Let X, Y be complex-membered sets. Let us observe that X = Y if and only
if:

(Def. 11) c ∈ X iff c ∈ Y.

Let X, Y be real-membered sets. Let us observe that X = Y if and only if:

(Def. 12) r ∈ X iff r ∈ Y.

Let X, Y be rational-membered sets. Let us observe that X = Y if and only
if:

(Def. 13) w ∈ X iff w ∈ Y.

Let X, Y be integer-membered sets. Let us observe that X = Y if and only
if:

(Def. 14) i ∈ X iff i ∈ Y.

Let X, Y be natural-membered sets. Let us observe that X = Y if and only
if:

(Def. 15) n ∈ X iff n ∈ Y.

Let X, Y be complex-membered sets. Let us observe that X meets Y if and
only if:

(Def. 16) There exists c such that c ∈ X and c ∈ Y.

Let X, Y be real-membered sets. Let us observe that X meets Y if and only
if:

(Def. 17) There exists r such that r ∈ X and r ∈ Y.
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Let X, Y be rational-membered sets. Let us observe that X meets Y if and
only if:

(Def. 18) There exists w such that w ∈ X and w ∈ Y.

Let X, Y be integer-membered sets. Let us observe that X meets Y if and
only if:

(Def. 19) There exists i such that i ∈ X and i ∈ Y.

Let X, Y be natural-membered sets. Let us observe that X meets Y if and
only if:

(Def. 20) There exists n such that n ∈ X and n ∈ Y.

One can prove the following propositions:

(21) If for every X such that X ∈ F holds X is complex-membered, then
⋃

F

is complex-membered.

(22) If for every X such that X ∈ F holds X is real-membered, then
⋃

F is
real-membered.

(23) If for every X such that X ∈ F holds X is rational-membered, then
⋃

F

is rational-membered.

(24) If for every X such that X ∈ F holds X is integer-membered, then
⋃

F

is integer-membered.

(25) If for every X such that X ∈ F holds X is natural-membered, then
⋃

F

is natural-membered.

(26) For every X such that X ∈ F and X is complex-membered holds
⋂

F

is complex-membered.

(27) For every X such that X ∈ F and X is real-membered holds
⋂

F is
real-membered.

(28) For every X such that X ∈ F and X is rational-membered holds
⋂

F is
rational-membered.

(29) For every X such that X ∈ F and X is integer-membered holds
⋂

F is
integer-membered.

(30) For every X such that X ∈ F and X is natural-membered holds
⋂

F is
natural-membered.

In this article we present several logical schemes. The scheme CM Separation
concerns a unary predicate P, and states that:

There exists a complex-membered set X such that for every c

holds c ∈ X iff P[c]
for all values of the parameters.

The scheme RM Separation concerns a unary predicate P, and states that:
There exists a real-membered set X such that for every r holds
r ∈ X iff P[r]

for all values of the parameters.
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The scheme WM Separation concerns a unary predicate P, and states that:
There exists a rational-membered set X such that for every w

holds w ∈ X iff P[w]
for all values of the parameters.

The scheme IM Separation concerns a unary predicate P, and states that:
There exists an integer-membered set X such that for every i

holds i ∈ X iff P[i]
for all values of the parameters.

The scheme NM Separation concerns a unary predicate P, and states that:
There exists a natural-membered set X such that for every n

holds n ∈ X iff P[n]
for all values of the parameters.
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Summary. Convexity of a function in a real linear space is defined as
convexity of its epigraph according to “Convex analysis” [24]. The epigraph of
a function is a subset of the product of the function’s domain space and the
space of real numbers. Therefore, the product of two real linear spaces should
be defined. The values of the functions under consideration are extended real
numbers. We define the sum of a finite sequence of extended real numbers and
get some properties of the sum. The relation between notions “function is convex”
and “function is convex on set” (see definition 13 in [21]) is established. We obtain
another version of the criterion for a set to be convex (see theorem 6 in [15] to
compare) that may be more suitable in some cases. Finally, we prove Jensen’s
inequality (both strict and not strict) as criteria for functions to be convex.

MML Identifier: CONVFUN1.

The terminology and notation used here are introduced in the following articles:
[27], [30], [25], [8], [18], [9], [3], [29], [14], [4], [31], [11], [6], [7], [19], [26], [22],
[16], [5], [10], [21], [17], [2], [12], [28], [13], [1], [20], and [23].

1. Product of Two Real Linear Spaces

Let X, Y be non empty RLS structures. The functor AddInProdRLS(X, Y )
yielding a binary operation on [: the carrier of X, the carrier of Y :] is defined by
the condition (Def. 1).

(Def. 1) Let z1, z2 be elements of [: the carrier of X, the carrier of Y :], x1, x2

be vectors of X, and y1, y2 be vectors of Y . Suppose z1 = 〈〈x1, y1〉〉 and
z2 = 〈〈x2, y2〉〉. Then (AddInProdRLS(X, Y ))(z1, z2) = 〈〈(the addition of
X)(〈〈x1, x2〉〉), (the addition of Y )(〈〈y1, y2〉〉)〉〉.
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Let X, Y be non empty RLS structures. The functor MultInProdRLS(X, Y )
yields a function from [:R, [: the carrier of X, the carrier of Y :] :] into [: the carrier
of X, the carrier of Y :] and is defined by the condition (Def. 2).

(Def. 2) Let a be a real number, z be an element of [: the carrier of X, the carrier
of Y :], x be a vector of X, and y be a vector of Y . Suppose z = 〈〈x, y〉〉.
Then (MultInProdRLS(X, Y ))(〈〈a, z〉〉) = 〈〈(the external multiplication of
X)(〈〈a, x〉〉), (the external multiplication of Y )(〈〈a, y〉〉)〉〉.

Let X, Y be non empty RLS structures. The functor ProdRLS(X, Y ) yields
an RLS structure and is defined by:

(Def. 3) ProdRLS(X, Y ) = 〈[: the carrier of X, the carrier of Y :], 〈〈0X ,

0Y 〉〉, AddInProdRLS(X,Y ), MultInProdRLS(X, Y )〉.
Let X, Y be non empty RLS structures. Note that ProdRLS(X,Y ) is non

empty.
Next we state two propositions:

(1) Let X, Y be non empty RLS structures, x be a vector of X, y be a vector
of Y , u be a vector of ProdRLS(X,Y ), and p be a real number. If u = 〈〈x,

y〉〉, then p · u = 〈〈p · x, p · y〉〉.
(2) Let X, Y be non empty RLS structures, x1, x2 be vectors of X, y1, y2

be vectors of Y , and u1, u2 be vectors of ProdRLS(X, Y ). If u1 = 〈〈x1, y1〉〉
and u2 = 〈〈x2, y2〉〉, then u1 + u2 = 〈〈x1 + x2, y1 + y2〉〉.

Let X, Y be Abelian non empty RLS structures. One can verify that
ProdRLS(X, Y ) is Abelian.

Let X, Y be add-associative non empty RLS structures. Observe that
ProdRLS(X, Y ) is add-associative.

Let X, Y be right zeroed non empty RLS structures. Observe that
ProdRLS(X, Y ) is right zeroed.

Let X, Y be right complementable non empty RLS structures. One can
check that ProdRLS(X,Y ) is right complementable.

Let X, Y be real linear space-like non empty RLS structures. Observe that
ProdRLS(X, Y ) is real linear space-like.

Next we state the proposition

(3) Let X, Y be real linear spaces, n be a natural number, x be a finite
sequence of elements of the carrier of X, y be a finite sequence of elements
of the carrier of Y , and z be a finite sequence of elements of the carrier of
ProdRLS(X,Y ). Suppose len x = n and len y = n and len z = n and for
every natural number i such that i ∈ Seg n holds z(i) = 〈〈x(i), y(i)〉〉. Then∑

z = 〈〈∑x,
∑

y〉〉.
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2. Real Linear Space of Real Numbers

The non empty RLS structure RRLS is defined as follows:

(Def. 4) RRLS = 〈R, 0,+R, ·R〉.
Let us note that RRLS is Abelian, add-associative, right zeroed, right com-

plementable, and real linear space-like.

3. Sum of Finite Sequence of Extended Real Numbers

Let F be a finite sequence of elements of R. The functor
∑

F yields an
extended real number and is defined by the condition (Def. 5).

(Def. 5) There exists a function f from N into R such that
∑

F = f(len F )
and f(0) = 0R and for every natural number i such that i < len F holds
f(i + 1) = f(i) + F (i + 1).

We now state several propositions:

(4)
∑

(εR) = 0R.

(5) For every extended real number a holds
∑〈a〉 = a.

(6) For all extended real numbers a, b holds
∑〈a, b〉 = a + b.

(7) For all finite sequences F , G of elements of R such that −∞ /∈ rng F

and −∞ /∈ rng G holds
∑

(F a G) =
∑

F +
∑

G.

(8) Let F , G be finite sequences of elements of R and s be a permutation of
dom F. If G = F · s and −∞ /∈ rng F, then

∑
F =

∑
G.

4. Definition of Convex Function

Let X be a non empty RLS structure and let f be a function from the carrier
of X into R. The functor epigraph f yielding a subset of ProdRLS(X,RRLS) is
defined as follows:

(Def. 6) epigraph f = {〈〈x, y〉〉; x ranges over elements of X, y ranges over elements
of R: f(x) ¬ R(y)}.

Let X be a non empty RLS structure and let f be a function from the carrier
of X into R. We say that f is convex if and only if:

(Def. 7) epigraph f is convex.

The following two propositions are true:

(9) Let X be a non empty RLS structure and f be a function from the carrier
of X into R. Suppose that for every vector x of X holds f(x) 6= −∞.

Then f is convex if and only if for all vectors x1, x2 of X and for every
real number p such that 0 < p and p < 1 holds f(p · x1 + (1 − p) · x2) ¬
R(p) · f(x1) + R(1− p) · f(x2).
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(10) Let X be a real linear space and f be a function from the carrier of X

into R. Suppose that for every vector x of X holds f(x) 6= −∞. Then
f is convex if and only if for all vectors x1, x2 of X and for every real
number p such that 0 ¬ p and p ¬ 1 holds f(p · x1 + (1 − p) · x2) ¬
R(p) · f(x1) + R(1− p) · f(x2).

5. Relation between Notions “function is convex”
and “function is convex on set”

We now state the proposition

(11) Let f be a partial function from R to R, g be a function from the carrier
of RRLS into R, and X be a subset of RRLS. Suppose X ⊆ dom f and for
every real number x holds if x ∈ X, then g(x) = f(x) and if x /∈ X, then
g(x) = +∞. Then g is convex if and only if the following conditions are
satisfied:

(i) f is convex on X, and
(ii) X is convex.

6. Theorem 6 from [15] in Other Words

One can prove the following proposition

(12) Let X be a real linear space and M be a subset of X. Then M is convex
if and only if for every non empty natural number n and for every finite
sequence p of elements of R and for all finite sequences y, z of elements
of the carrier of X such that len p = n and len y = n and len z = n and∑

p = 1 and for every natural number i such that i ∈ Seg n holds p(i) > 0
and z(i) = p(i) · yi and yi ∈M holds

∑
z ∈M.

7. Jensen’s Inequality

One can prove the following two propositions:

(13) Let X be a real linear space and f be a function from the carrier of X

into R. Suppose that for every vector x of X holds f(x) 6= −∞. Then f

is convex if and only if for every non empty natural number n and for
every finite sequence p of elements of R and for every finite sequence F

of elements of R and for all finite sequences y, z of elements of the carrier
of X such that len p = n and len F = n and len y = n and len z = n and∑

p = 1 and for every natural number i such that i ∈ Seg n holds p(i) > 0
and z(i) = p(i) · yi and F (i) = R(p(i)) · f(yi) holds f(

∑
z) ¬∑

F.
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(14) Let X be a real linear space and f be a function from the carrier of X

into R. Suppose that for every vector x of X holds f(x) 6= −∞. Then f

is convex if and only if for every non empty natural number n and for
every finite sequence p of elements of R and for every finite sequence F

of elements of R and for all finite sequences y, z of elements of the carrier
of X such that len p = n and len F = n and len y = n and len z = n and∑

p = 1 and for every natural number i such that i ∈ Seg n holds p(i) ­ 0
and z(i) = p(i) · yi and F (i) = R(p(i)) · f(yi) holds f(

∑
z) ¬∑

F.
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Summary. The aim of this paper is to develop a formal theory of Mizar
types. The presented theory is an approach to the structure of Mizar types as a
sup-semilattice with widening (subtyping) relation as the order. It is an abstrac-
tion from the existing implementation of the Mizar verifier and formalization of
the ideas from [9].

MML Identifier: ABCMIZ 0.

The articles [20], [14], [24], [26], [23], [25], [3], [21], [1], [11], [12], [16], [10], [13],
[18], [15], [4], [2], [19], [22], [5], [6], [7], [8], and [17] provide the terminology and
notation for this paper.

1. Semilattice of Widening

Let us mention that every non empty relational structure which is trivial
and reflexive is also complete.

Let T be a relational structure. A type of T is an element of T .
Let T be a relational structure. We say that T is Noetherian if and only if:

(Def. 1) The internal relation of T is reversely well founded.

Let us observe that every non empty relational structure which is trivial is
also Noetherian.

Let T be a non empty relational structure. Let us observe that T is Noethe-
rian if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let A be a non empty subset of T . Then there exists an element a of T

such that a ∈ A and for every element b of T such that b ∈ A holds a 6< b.

Let T be a poset. We say that T is Mizar-widening-like if and only if:

(Def. 3) T is a sup-semilattice and Noetherian.
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Let us mention that every poset which is Mizar-widening-like is also Noethe-
rian and upper-bounded and has l.u.b.’s.

Let us note that every sup-semilattice which is Noetherian is also Mizar-
widening-like.

Let us observe that there exists a complete sup-semilattice which is Mizar-
widening-like.

Let T be a Noetherian relational structure. One can check that the internal
relation of T is reversely well founded.

Next we state the proposition

(1) For every Noetherian sup-semilattice T and for every ideal I of T holds
sup I exists in T and sup I ∈ I.

2. Adjectives

We consider adjective structures as systems
〈 a set of adjectives, an operation non 〉,

where the set of adjectives is a set and the operation non is a unary operation
on the set of adjectives.

Let A be an adjective structure. We say that A is void if and only if:

(Def. 4) The set of adjectives of A is empty.

An adjective of A is an element of the set of adjectives of A.
The following proposition is true

(2) Let A1, A2 be adjective structures. Suppose the set of adjectives of A1 =
the set of adjectives of A2. If A1 is void, then A2 is void.

Let A be an adjective structure and let a be an element of the set of adjectives
of A. The functor non a yields an adjective of A and is defined as follows:

(Def. 5) non a = (the operation non of A)(a).
One can prove the following proposition

(3) Let A1, A2 be adjective structures. Suppose the adjective structure of
A1 = the adjective structure of A2. Let a1 be an adjective of A1 and a2

be an adjective of A2. If a1 = a2, then non a1 = non a2.

Let A be an adjective structure. We say that A is involutive if and only if:

(Def. 6) For every adjective a of A holds non non a = a.

We say that A is without fixpoints if and only if:

(Def. 7) It is not true that there exists an adjective a of A such that non a = a.

We now state three propositions:

(4) Let a1, a2 be sets. Suppose a1 6= a2. Let A be an adjective structure.
Suppose the set of adjectives of A = {a1, a2} and (the operation non of
A)(a1) = a2 and (the operation non of A)(a2) = a1. Then A is non void,
involutive, and without fixpoints.
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(5) Let A1, A2 be adjective structures. Suppose the adjective structure of
A1 = the adjective structure of A2. If A1 is involutive, then A2 is involu-
tive.

(6) Let A1, A2 be adjective structures. Suppose the adjective structure of
A1 = the adjective structure of A2. If A1 is without fixpoints, then A2 is
without fixpoints.

Let us observe that there exists a strict adjective structure which is non void,
involutive, and without fixpoints.

Let A be a non void adjective structure. Observe that the set of adjectives
of A is non empty.

We consider TA-structures as extensions of relational structure and adjective
structure as systems
〈 a carrier, a set of adjectives, an internal relation, an operation non, an

adjective map 〉,
where the carrier and the set of adjectives are sets, the internal relation is a
binary relation on the carrier, the operation non is a unary operation on the set
of adjectives, and the adjective map is a function from the carrier into Fin the
set of adjectives.

Let X be a non empty set, let A be a set, let r be a binary relation on X,
let n be a unary operation on A, and let a be a function from X into Fin A.

Observe that 〈X, A, r, n, a〉 is non empty.
Let X be a set, let A be a non empty set, let r be a binary relation on X,

let n be a unary operation on A, and let a be a function from X into Fin A.

One can check that 〈X, A, r, n, a〉 is non void.
One can check that there exists a TA-structure which is trivial, reflexive,

non empty, non void, involutive, without fixpoints, and strict.
Let T be a TA-structure and let t be an element of T . The functor adjs t

yields a subset of the set of adjectives of T and is defined as follows:

(Def. 8) adjs t = (the adjective map of T )(t).

One can prove the following proposition

(7) Let T1, T2 be TA-structures. Suppose the TA-structure of T1 = the TA-
structure of T2. Let t1 be a type of T1 and t2 be a type of T2. If t1 = t2,

then adjs t1 = adjs t2.

Let T be a TA-structure. We say that T is consistent if and only if:

(Def. 9) For every type t of T and for every adjective a of T such that a ∈ adjs t

holds non a /∈ adjs t.

Next we state the proposition

(8) Let T1, T2 be TA-structures. Suppose the TA-structure of T1 = the TA-
structure of T2. If T1 is consistent, then T2 is consistent.
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Let T be a non empty TA-structure. We say that T has structured adjectives
if and only if:

(Def. 10) The adjective map of T is a join-preserving map from T into
(2the set of adjectives of T
⊆ )op.

We now state the proposition

(9) Let T1, T2 be non empty TA-structures. Suppose the TA-structure of
T1 = the TA-structure of T2. If T1 has structured adjectives, then T2 has
structured adjectives.

Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.’s. Let
us observe that T has structured adjectives if and only if:

(Def. 11) For all types t1, t2 of T holds adjs(t1 t t2) = adjs t1 ∩ adjs t2.

One can prove the following proposition

(10) Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.’s.
Suppose T has structured adjectives. Let t1, t2 be types of T . If t1 ¬ t2,

then adjs t2 ⊆ adjs t1.

Let T be a TA-structure and let a be an element of the set of adjectives of
T . The functor types a yields a subset of T and is defined as follows:

(Def. 12) For every set x holds x ∈ types a iff there exists a type t of T such that
x = t and a ∈ adjs t.

Let T be a non empty TA-structure and let A be a subset of the set of
adjectives of T . The functor types A yielding a subset of T is defined as follows:

(Def. 13) For every type t of T holds t ∈ types A iff for every adjective a of T such
that a ∈ A holds t ∈ types a.

One can prove the following propositions:

(11) Let T1, T2 be TA-structures. Suppose the TA-structure of T1 = the TA-
structure of T2. Let a1 be an adjective of T1 and a2 be an adjective of T2.
If a1 = a2, then types a1 = types a2.

(12) For every non empty TA-structure T and for every adjective a of T holds
types a = {t; t ranges over types of T : a ∈ adjs t}.

(13) Let T be a TA-structure, t be a type of T , and a be an adjective of T .
Then a ∈ adjs t if and only if t ∈ types a.

(14) Let T be a non empty TA-structure, t be a type of T , and A be a subset
of the set of adjectives of T . Then A ⊆ adjs t if and only if t ∈ types A.

(15) For every non void TA-structure T and for every type t of T holds
adjs t = {a; a ranges over adjectives of T : t ∈ types a}.

(16) Let T be a non empty TA-structure and t be a type of T . Then
types(∅the set of adjectives of T ) = the carrier of T .

Let T be a TA-structure. We say that T has typed adjectives if and only if:

(Def. 14) For every adjective a of T holds types a ∪ types non a is non empty.
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We now state the proposition

(17) Let T1, T2 be TA-structures. Suppose the TA-structure of T1 = the TA-
structure of T2. If T1 has typed adjectives, then T2 has typed adjectives.

Let us mention that there exists a complete upper-bounded non empty trivial
reflexive transitive antisymmetric strict TA-structure which is non void, Mizar-
widening-like, involutive, without fixpoints, and consistent and has structured
adjectives and typed adjectives.

Next we state the proposition

(18) For every consistent TA-structure T and for every adjective a of T holds
types a misses types non a.

Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.’s with
structured adjectives and let a be an adjective of T . Note that types a is lower
and directed.

Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.’s with
structured adjectives and let A be a subset of the set of adjectives of T . One
can verify that types A is lower and directed.

We now state the proposition

(19) Let T be reflexive antisymmetric transitive TA-structure with l.u.b.’s
with structured adjectives and a be an adjective of T . Then types a is
empty or types a is an ideal of T .

3. Applicability of Adjectives

Let T be a TA-structure, let t be an element of T , and let a be an adjective
of T . We say that a is applicable to t if and only if:

(Def. 15) There exists a type t′ of T such that t′ ∈ types a and t′ ¬ t.

Let T be a TA-structure, let t be a type of T , and let A be a subset of the
set of adjectives of T . We say that A is applicable to t if and only if:

(Def. 16) There exists a type t′ of T such that A ⊆ adjs t′ and t′ ¬ t.

We now state the proposition

(20) Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.’s
with structured adjectives, a be an adjective of T , and t be a type of T .
If a is applicable to t, then types a ∩ ↓t is an ideal of T .

Let T be a non empty reflexive transitive TA-structure, let t be an element
of T , and let a be an adjective of T . The functor a ∗ t yielding a type of T is
defined by:

(Def. 17) a ∗ t = sup(types a ∩ ↓t).
The following propositions are true:
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(21) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and a be an
adjective of T . If a is applicable to t, then a ∗ t ¬ t.

(22) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and a be an
adjective of T . If a is applicable to t, then a ∈ adjs(a ∗ t).

(23) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and a be an
adjective of T . If a is applicable to t, then a ∗ t ∈ types a.

(24) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , a be an adjective
of T , and t′ be a type of T . If t′ ¬ t and a ∈ adjs t′, then a is applicable
to t and t′ ¬ a ∗ t.

(25) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and a be an
adjective of T . If a ∈ adjs t, then a is applicable to t and a ∗ t = t.

(26) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and a, b be
adjectives of T . Suppose a is applicable to t and b is applicable to a ∗ t.

Then b is applicable to t and a is applicable to b∗t and a∗(b∗t) = b∗(a∗t).
(27) Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.’s

with structured adjectives, A be a subset of the set of adjectives of T , and
t be a type of T . If A is applicable to t, then types A∩ ↓t is an ideal of T .

Let T be a non empty reflexive transitive TA-structure, let t be a type of T ,
and let A be a subset of the set of adjectives of T . The functor A ∗ t yielding a
type of T is defined as follows:

(Def. 18) A ∗ t = sup(types A ∩ ↓t).
Next we state the proposition

(28) Let T be a non empty reflexive transitive antisymmetric TA-structure
and t be a type of T . Then ∅the set of adjectives of T ∗ t = t.

Let T be a non empty non void reflexive transitive TA-structure, let t be a
type of T , and let p be a finite sequence of elements of the set of adjectives of
T . The functor apply(p, t) yielding a finite sequence of elements of the carrier
of T is defined by the conditions (Def. 19).

(Def. 19)(i) len apply(p, t) = len p + 1,

(ii) (apply(p, t))(1) = t, and
(iii) for every natural number i and for every adjective a of T and for every

type t of T such that i ∈ dom p and a = p(i) and t = (apply(p, t))(i) holds
(apply(p, t))(i + 1) = a ∗ t.
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Let T be a non empty non void reflexive transitive TA-structure, let t be a
type of T , and let p be a finite sequence of elements of the set of adjectives of
T . Note that apply(p, t) is non empty.

One can prove the following two propositions:

(29) Let T be a non empty non void reflexive transitive TA-structure and t

be a type of T . Then apply(ε(the set of adjectives of T ), t) = 〈t〉.
(30) Let T be a non empty non void reflexive transitive TA-structure, t be a

type of T , and a be an adjective of T . Then apply(〈a〉, t) = 〈t, a ∗ t〉.
Let T be a non empty non void reflexive transitive TA-structure, let t be a

type of T , and let v be a finite sequence of elements of the set of adjectives of
T . The functor v ∗ t yielding a type of T is defined by:

(Def. 20) v ∗ t = (apply(v, t))(len v + 1).
The following propositions are true:

(31) Let T be a non empty non void reflexive transitive TA-structure and t

be a type of T . Then ε(the set of adjectives of T ) ∗ t = t.

(32) Let T be a non empty non void reflexive transitive TA-structure, t be a
type of T , and a be an adjective of T . Then 〈a〉 ∗ t = a ∗ t.

(33) For all finite sequences p, q and for every natural number i such that
i ­ 1 and i < len p holds (p $a q)(i) = p(i).

(34) Let p be a non empty finite sequence, q be a finite sequence, and i be a
natural number. If i < len q, then (p $a q)(len p + i) = q(i + 1).

(35) Let T be a non empty non void reflexive transitive TA-structure, t be a
type of T , and v1, v2 be finite sequences of elements of the set of adjectives
of T . Then apply(v1

a v2, t) = (apply(v1, t)) $a apply(v2, v1 ∗ t).
(36) Let T be a non empty non void reflexive transitive TA-structure, t be a

type of T , v1, v2 be finite sequences of elements of the set of adjectives of
T , and i be a natural number. If i ∈ dom v1, then (apply(v1

a v2, t))(i) =
(apply(v1, t))(i).

(37) Let T be a non empty non void reflexive transitive TA-structure, t be a
type of T , and v1, v2 be finite sequences of elements of the set of adjectives
of T . Then (apply(v1

a v2, t))(len v1 + 1) = v1 ∗ t.

(38) Let T be a non empty non void reflexive transitive TA-structure, t be a
type of T , and v1, v2 be finite sequences of elements of the set of adjectives
of T . Then v2 ∗ (v1 ∗ t) = (v1

a v2) ∗ t.

Let T be a non empty non void reflexive transitive TA-structure, let t be a
type of T , and let v be a finite sequence of elements of the set of adjectives of T .
We say that v is applicable to t if and only if the condition (Def. 21) is satisfied.

(Def. 21) Let i be a natural number, a be an adjective of T , and s be a type of T .
If i ∈ dom v and a = v(i) and s = (apply(v, t))(i), then a is applicable to
s.
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Next we state a number of propositions:

(39) Let T be a non empty non void reflexive transitive TA-structure and t

be a type of T . Then ε(the set of adjectives of T ) is applicable to t.

(40) Let T be a non empty non void reflexive transitive TA-structure, t be
a type of T , and a be an adjective of T . Then a is applicable to t if and
only if 〈a〉 is applicable to t.

(41) Let T be a non empty non void reflexive transitive TA-structure, t be a
type of T , and v1, v2 be finite sequences of elements of the set of adjectives
of T . Suppose v1

a v2 is applicable to t. Then v1 is applicable to t and v2

is applicable to v1 ∗ t.

(42) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and v

be a finite sequence of elements of the set of adjectives of T . Suppose v is
applicable to t. Let i1, i2 be natural numbers. Suppose 1 ¬ i1 and i1 ¬ i2
and i2 ¬ len v + 1. Let t1, t2 be types of T . If t1 = (apply(v, t))(i1) and
t2 = (apply(v, t))(i2), then t2 ¬ t1.

(43) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and v

be a finite sequence of elements of the set of adjectives of T . Suppose v is
applicable to t. Let s be a type of T . If s ∈ rng apply(v, t), then v ∗ t ¬ s

and s ¬ t.

(44) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and
v be a finite sequence of elements of the set of adjectives of T . If v is
applicable to t, then v ∗ t ¬ t.

(45) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and
v be a finite sequence of elements of the set of adjectives of T . If v is
applicable to t, then rng v ⊆ adjs(v ∗ t).

(46) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and v

be a finite sequence of elements of the set of adjectives of T . Suppose v is
applicable to t. Let A be a subset of the set of adjectives of T . If A = rng v,

then A is applicable to t.

(47) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and v1,
v2 be finite sequences of elements of the set of adjectives of T . Suppose
v1 is applicable to t and rng v2 ⊆ rng v1. Let s be a type of T . If s ∈
rng apply(v2, t), then v1 ∗ t ¬ s.

(48) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
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structure with l.u.b.’s with structured adjectives, t be a type of T , and v1,
v2 be finite sequences of elements of the set of adjectives of T . If v1

a v2 is
applicable to t, then v2

a v1 is applicable to t.

(49) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and v1,
v2 be finite sequences of elements of the set of adjectives of T . If v1

a v2 is
applicable to t, then (v1

a v2) ∗ t = (v2
a v1) ∗ t.

(50) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and A be a subset
of the set of adjectives of T . If A is applicable to t, then A ∗ t ¬ t.

(51) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and A be a subset
of the set of adjectives of T . If A is applicable to t, then A ⊆ adjs(A ∗ t).

(52) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and A be a subset
of the set of adjectives of T . If A is applicable to t, then A ∗ t ∈ types A.

(53) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , A be a subset of
the set of adjectives of T , and t′ be a type of T . If t′ ¬ t and A ⊆ adjs t′,
then A is applicable to t and t′ ¬ A ∗ t.

(54) Let T be a Noetherian reflexive transitive antisymmetric TA-structure
with l.u.b.’s with structured adjectives, t be a type of T , and A be a subset
of the set of adjectives of T . If A ⊆ adjs t, then A is applicable to t and
A ∗ t = t.

(55) Let T be a TA-structure, t be a type of T , and A, B be subsets of the set
of adjectives of T . If A is applicable to t and B ⊆ A, then B is applicable
to t.

(56) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , a be
an adjective of T , and A, B be subsets of the set of adjectives of T . If
B = A ∪ {a} and B is applicable to t, then a ∗ (A ∗ t) = B ∗ t.

(57) Let T be a Noetherian reflexive transitive antisymmetric non void TA-
structure with l.u.b.’s with structured adjectives, t be a type of T , and v

be a finite sequence of elements of the set of adjectives of T . Suppose v is
applicable to t. Let A be a subset of the set of adjectives of T . If A = rng v,

then v ∗ t = A ∗ t.
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4. Subject Function

Let T be a non empty non void TA-structure. The functor sub T yields a
function from the set of adjectives of T into the carrier of T and is defined as
follows:

(Def. 22) For every adjective a of T holds (sub T )(a) = sup(types a∪ types non a).
We introduce TAS-structures which are extensions of TA-structure and are

systems
〈 a carrier, a set of adjectives, an internal relation, an operation non, an

adjective map, a subject map 〉,
where the carrier and the set of adjectives are sets, the internal relation is a
binary relation on the carrier, the operation non is a unary operation on the set
of adjectives, the adjective map is a function from the carrier into Fin the set of
adjectives, and the subject map is a function from the set of adjectives into the
carrier.

Let us observe that there exists a TAS-structure which is non void, reflexive,
trivial, non empty, and strict.

Let T be a non empty non void TAS-structure and let a be an adjective of
T . The functor sub a yields a type of T and is defined as follows:

(Def. 23) sub a = (the subject map of T )(a).
Let T be a non empty non void TAS-structure. We say that T is absorbing

non if and only if:

(Def. 24) (The subject map of T ) · (the operation non of T ) = the subject map of
T .

We say that T is subjected if and only if:

(Def. 25) For every adjective a of T holds types a ∪ types non a ¬ sub a and if
types a 6= ∅ and types non a 6= ∅, then sub a = sup(types a ∪ types non a).

Let T be a non empty non void TAS-structure. Let us observe that T is
absorbing non if and only if:

(Def. 26) For every adjective a of T holds sub non a = sub a.

Let T be a non empty non void TAS-structure, let t be an element of T , and
let a be an adjective of T . We say that a is properly applicable to t if and only
if:

(Def. 27) t ¬ sub a and a is applicable to t.

Let T be a non empty non void reflexive transitive TAS-structure, let t be a
type of T , and let v be a finite sequence of elements of the set of adjectives of T .
We say that v is properly applicable to t if and only if the condition (Def. 28)
is satisfied.

(Def. 28) Let i be a natural number, a be an adjective of T , and s be a type of
T . If i ∈ dom v and a = v(i) and s = (apply(v, t))(i), then a is properly
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applicable to s.

One can prove the following propositions:

(58) Let T be a non empty non void reflexive transitive TAS-structure, t be
a type of T , and v be a finite sequence of elements of the set of adjectives
of T . If v is properly applicable to t, then v is applicable to t.

(59) Let T be a non empty non void reflexive transitive TAS-structure and t

be a type of T . Then ε(the set of adjectives of T ) is properly applicable to t.

(60) Let T be a non empty non void reflexive transitive TAS-structure, t be
a type of T , and a be an adjective of T . Then a is properly applicable to
t if and only if 〈a〉 is properly applicable to t.

(61) Let T be a non empty non void reflexive transitive TAS-structure, t

be a type of T , and v1, v2 be finite sequences of elements of the set of
adjectives of T . Suppose v1

a v2 is properly applicable to t. Then v1 is
properly applicable to t and v2 is properly applicable to v1 ∗ t.

(62) Let T be a non empty non void reflexive transitive TAS-structure, t be a
type of T , and v1, v2 be finite sequences of elements of the set of adjectives
of T . Suppose v1 is properly applicable to t and v2 is properly applicable
to v1 ∗ t. Then v1

a v2 is properly applicable to t.

Let T be a non empty non void reflexive transitive TAS-structure, let t be
a type of T , and let A be a subset of the set of adjectives of T . We say that A

is properly applicable to t if and only if the condition (Def. 29) is satisfied.

(Def. 29) There exists a finite sequence s of elements of the set of adjectives of T

such that rng s = A and s is properly applicable to t.

Next we state two propositions:

(63) Let T be a non empty non void reflexive transitive TAS-structure, t be a
type of T , and A be a subset of the set of adjectives of T . If A is properly
applicable to t, then A is finite.

(64) Let T be a non empty non void reflexive transitive TAS-structure and t

be a type of T . Then ∅the set of adjectives of T is properly applicable to t.

The scheme MinimalFiniteSet concerns a unary predicate P, and states that:
There exists a finite set A such that P[A] and for every set B

such that B ⊆ A and P[B] holds B = A

provided the following requirement is met:
• There exists a finite set A such that P[A].

One can prove the following proposition

(65) Let T be a non empty non void reflexive transitive TAS-structure, t be
a type of T , and A be a subset of the set of adjectives of T . Suppose
A is properly applicable to t. Then there exists a subset B of the set of
adjectives of T such that

(i) B ⊆ A,
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(ii) B is properly applicable to t,
(iii) A ∗ t = B ∗ t, and
(iv) for every subset C of the set of adjectives of T such that C ⊆ B and C

is properly applicable to t and A ∗ t = C ∗ t holds C = B.

Let T be a non empty non void reflexive transitive TAS-structure. We say
that T is commutative if and only if the condition (Def. 30) is satisfied.

(Def. 30) Let t1, t2 be types of T and a be an adjective of T . Suppose a is properly
applicable to t1 and a ∗ t1 ¬ t2. Then there exists a finite subset A of the
set of adjectives of T such that A is properly applicable to t1 t t2 and
A ∗ (t1 t t2) = t2.

Let us observe that there exists a complete upper-bounded non empty
non void trivial reflexive transitive antisymmetric strict TAS-structure which
is Mizar-widening-like, involutive, without fixpoints, consistent, absorbing non,
subjected, and commutative and has structured adjectives and typed adjectives.

Next we state the proposition

(66) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-
structure with l.u.b.’s with structured adjectives, t be a type of T , and A

be a subset of the set of adjectives of T . Suppose A is properly applicable
to t. Then there exists an one-to-one finite sequence s of elements of the
set of adjectives of T such that rng s = A and s is properly applicable to t.

5. Reduction of Adjectives

Let T be a non empty non void reflexive transitive TAS-structure. The func-
tor ◦→T yields a binary relation on T and is defined by the condition (Def. 31).

(Def. 31) Let t1, t2 be types of T . Then 〈〈t1, t2〉〉 ∈ ◦→T if and only if there exists
an adjective a of T such that a /∈ adjs t2 and a is properly applicable to t2
and a ∗ t2 = t1.

Next we state the proposition

(67) Let T be an antisymmetric non void reflexive transitive Noetherian TAS-
structure with l.u.b.’s with structured adjectives. Then ◦→T ⊆ the internal
relation of T .

The scheme RedInd deals with a non empty set A, a binary relation B on
A, and a binary predicate P, and states that:

For all elements x, y of A such that B reduces x to y holds P[x, y]
provided the parameters have the following properties:
• For all elements x, y of A such that 〈〈x, y〉〉 ∈ B holds P[x, y],
• For every element x of A holds P[x, x], and
• For all elements x, y, z of A such that P[x, y] and P[y, z] holds
P[x, z].
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We now state a number of propositions:

(68) Let T be an antisymmetric non void reflexive transitive Noetherian TAS-
structure with l.u.b.’s with structured adjectives and t1, t2 be types of T .
If ◦→T reduces t1 to t2, then t1 ¬ t2.

(69) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-
structure with l.u.b.’s with structured adjectives. Then ◦→T is irreflexive.

(70) Let T be an antisymmetric non void reflexive transitive Noetherian TAS-
structure with l.u.b.’s with structured adjectives. Then ◦→T is strongly-
normalizing.

(71) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-
structure with l.u.b.’s with structured adjectives, t be a type of T , and
A be a finite subset of the set of adjectives of T . Suppose that for every
subset C of the set of adjectives of T such that C ⊆ A and C is properly
applicable to t and A ∗ t = C ∗ t holds C = A. Let s be an one-to-one
finite sequence of elements of the set of adjectives of T . Suppose rng s = A

and s is properly applicable to t. Let i be a natural number. If 1 ¬ i and
i ¬ len s, then 〈〈(apply(s, t))(i + 1), (apply(s, t))(i)〉〉 ∈ ◦→T .

(72) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-
structure with l.u.b.’s with structured adjectives, t be a type of T , and
A be a finite subset of the set of adjectives of T . Suppose that for every
subset C of the set of adjectives of T such that C ⊆ A and C is properly
applicable to t and A∗ t = C ∗ t holds C = A. Let s be an one-to-one finite
sequence of elements of the set of adjectives of T . Suppose rng s = A and s

is properly applicable to t. Then Rev(apply(s, t)) is a reduction sequence
w.r.t. ◦→T .

(73) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-
structure with l.u.b.’s with structured adjectives, t be a type of T , and A

be a finite subset of the set of adjectives of T . If A is properly applicable
to t, then ◦→T reduces A ∗ t to t.

(74) Let X be a non empty set, R be a binary relation on X, and r be a
reduction sequence w.r.t. R. If r(1) ∈ X, then r is a finite sequence of
elements of X.

(75) Let X be a non empty set, R be a binary relation on X, x be an element
of X, and y be a set. If R reduces x to y, then y ∈ X.

(76) Let X be a non empty set and R be a binary relation on X. Suppose R

is weakly-normalizing and has unique normal form property. Let x be an
element of X. Then nfR(x) ∈ X.

(77) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-
structure with l.u.b.’s with structured adjectives and t1, t2 be types of T .
Suppose ◦→T reduces t1 to t2. Then there exists a finite subset A of the set
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of adjectives of T such that A is properly applicable to t2 and t1 = A ∗ t2.

(78) Let T be an antisymmetric commutative non void reflexive transitive
Noetherian TAS-structure with l.u.b.’s with structured adjectives. Then
◦→T has Church-Rosser property and unique normal form property.

6. Radix Types

Let T be an antisymmetric commutative non empty non void reflexive trans-
itive Noetherian TAS-structure with structured adjectives and l.u.b.’s and let t

be a type of T . The functor radix t yielding a type of T is defined by:

(Def. 32) radix t = nf◦→T (t).
We now state several propositions:

(79) Let T be an antisymmetric commutative non empty non void reflexive
transitive Noetherian TAS-structure with structured adjectives and l.u.b.’s
and t be a type of T . Then ◦→T reduces t to radix t.

(80) Let T be an antisymmetric commutative non empty non void reflexive
transitive Noetherian TAS-structure with structured adjectives and l.u.b.’s
and t be a type of T . Then t ¬ radix t.

(81) Let T be an antisymmetric commutative non empty non void refle-
xive transitive Noetherian TAS-structure with structured adjectives and
l.u.b.’s, t be a type of T , and X be a set. Suppose X = {t′; t′ ranges over
types of T :

∨
A : finite subset of the set of adjectives of T (A is properly applicable

to t′ ∧ A ∗ t′ = t)}. Then sup X exists in T and radix t =
⊔

T X.

(82) Let T be an antisymmetric commutative non empty non void refle-
xive transitive Noetherian TAS-structure with structured adjectives and
l.u.b.’s, t1, t2 be types of T , and a be an adjective of T . If a is properly
applicable to t1 and a ∗ t1 ¬ radix t2, then t1 ¬ radix t2.

(83) Let T be an antisymmetric commutative non empty non void reflexive
transitive Noetherian TAS-structure with structured adjectives and l.u.b.’s
and t1, t2 be types of T . If t1 ¬ t2, then radix t1 ¬ radix t2.

(84) Let T be an antisymmetric commutative non empty non void refle-
xive transitive Noetherian TAS-structure with structured adjectives and
l.u.b.’s, t be a type of T , and a be an adjective of T . If a is properly
applicable to t, then radix(a ∗ t) = radix t.
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Summary. In this paper, we define the line of n-dimensional Euclidean
space and we introduce basic properties of affine space on this space. Next, we
define the inner product of elements of this space. At the end, we introduce
orthogonality of lines of this space.

MML Identifier: EUCLID 4.

The papers [13], [4], [15], [2], [12], [8], [5], [11], [10], [3], [6], [1], [14], [7], and [9]
provide the terminology and notation for this paper.

We adopt the following rules: a, b, l1 are real numbers, n is a natural number,
and x, x1, x2, y1, y2 are elements of Rn.

Next we state several propositions:

(1) 0 · x + x = x and x + 〈0, . . . , 0︸ ︷︷ ︸
n

〉 = x.

(2) a · 〈0, . . . , 0︸ ︷︷ ︸
n

〉 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(3) 1 · x = x and 0 · x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(4) (a · b) · x = a · (b · x).
(5) If a · x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉, then a = 0 or x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(6) a · (x1 + x2) = a · x1 + a · x2.

(7) (a + b) · x = a · x + b · x.

(8) If a · x1 = a · x2, then a = 0 or x1 = x2.

Let us consider n and let x1, x2 be elements of Rn. The functor Line(x1, x2)
yields a subset of Rn and is defined by:
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(Def. 1) Line(x1, x2) = {(1− l1) · x1 + l1 · x2}.
Let us consider n and let x1, x2 be elements of Rn. Observe that Line(x1, x2)

is non empty.
The following proposition is true

(9) Line(x1, x2) = Line(x2, x1).
Let us consider n and let x1, x2 be elements of Rn. Let us observe that the

functor Line(x1, x2) is commutative.
One can prove the following propositions:

(10) x1 ∈ Line(x1, x2) and x2 ∈ Line(x1, x2).
(11) If y1 ∈ Line(x1, x2) and y2 ∈ Line(x1, x2), then Line(y1, y2) ⊆

Line(x1, x2).
(12) If y1 ∈ Line(x1, x2) and y2 ∈ Line(x1, x2) and y1 6= y2, then

Line(x1, x2) ⊆ Line(y1, y2).
Let us consider n and let A be a subset of Rn. We say that A is line if and

only if:

(Def. 2) There exist x1, x2 such that x1 6= x2 and A = Line(x1, x2).
We introduce A is a line as a synonym of A is line.

Next we state three propositions:

(13) Let A, C be subsets of Rn and given x1, x2. Suppose A is a line and C

is a line and x1 ∈ A and x2 ∈ A and x1 ∈ C and x2 ∈ C. Then x1 = x2 or
A = C.

(14) For every subset A of Rn such that A is a line there exist x1, x2 such
that x1 ∈ A and x2 ∈ A and x1 6= x2.

(15) For every subset A of Rn such that A is a line there exists x2 such that
x1 6= x2 and x2 ∈ A.

Let us consider n and let x be an element of Rn. The functor Rn2Fin(x)
yielding a finite sequence of elements of R is defined by:

(Def. 3) Rn2Fin(x) = x.

Let us consider n and let x be an element of Rn. The functor |x| yields a
real number and is defined as follows:

(Def. 4) |x| = |Rn2Fin(x)|.
Let us consider n and let x1, x2 be elements of Rn. The functor |(x1, x2)|

yielding a real number is defined by:

(Def. 5) |(x1, x2)| = |(Rn2Fin(x1), Rn2Fin(x2))|.
Let us observe that the functor |(x1, x2)| is commutative.

We now state a number of propositions:

(16) For all elements x1, x2 of Rn holds |(x1, x2)| = 1
4 ·(|x1+x2|2−|x1−x2|2).

(17) For every element x of Rn holds |(x, x)| ­ 0.

(18) For every element x of Rn holds |x|2 = |(x, x)|.



lines in n-dimensional euclidean spaces 373

(19) For every element x of Rn holds 0 ¬ |x|.
(20) For every element x of Rn holds |x| =

√
|(x, x)|.

(21) For every element x of Rn holds |(x, x)| = 0 iff |x| = 0.

(22) For every element x of Rn holds |(x, x)| = 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(23) For every element x of Rn holds |(x, 〈0, . . . , 0︸ ︷︷ ︸
n

〉)| = 0.

(24) For every element x of Rn holds |(〈0, . . . , 0︸ ︷︷ ︸
n

〉, x)| = 0.

(25) For all elements x1, x2, x3 of Rn holds |(x1 + x2, x3)| = |(x1, x3)| +
|(x2, x3)|.

(26) For all elements x1, x2 of Rn and for every real number a holds |(a ·
x1, x2)| = a · |(x1, x2)|.

(27) For all elements x1, x2 of Rn and for every real number a holds |(x1, a ·
x2)| = a · |(x1, x2)|.

(28) For all elements x1, x2 of Rn holds |(−x1, x2)| = −|(x1, x2)|.
(29) For all elements x1, x2 of Rn holds |(x1,−x2)| = −|(x1, x2)|.
(30) For all elements x1, x2 of Rn holds |(−x1,−x2)| = |(x1, x2)|.
(31) For all elements x1, x2, x3 of Rn holds |(x1 − x2, x3)| = |(x1, x3)| −
|(x2, x3)|.

(32) For all real numbers a, b and for all elements x1, x2, x3 of Rn holds
|(a · x1 + b · x2, x3)| = a · |(x1, x3)|+ b · |(x2, x3)|.

(33) For all elements x1, y1, y2 of Rn holds |(x1, y1 + y2)| = |(x1, y1)| +
|(x1, y2)|.

(34) For all elements x1, y1, y2 of Rn holds |(x1, y1 − y2)| = |(x1, y1)| −
|(x1, y2)|.

(35) For all elements x1, x2, y1, y2 ofRn holds |(x1+x2, y1+y2)| = |(x1, y1)|+
|(x1, y2)|+ |(x2, y1)|+ |(x2, y2)|.

(36) For all elements x1, x2, y1, y2 ofRn holds |(x1−x2, y1−y2)| = (|(x1, y1)|−
|(x1, y2)| − |(x2, y1)|) + |(x2, y2)|.

(37) For all elements x, y of Rn holds |(x + y, x + y)| = |(x, x)|+ 2 · |(x, y)|+
|(y, y)|.

(38) For all elements x, y of Rn holds |(x−y, x−y)| = (|(x, x)|−2 · |(x, y)|)+
|(y, y)|.

(39) For all elements x, y of Rn holds |x + y|2 = |x|2 + 2 · |(x, y)|+ |y|2.

(40) For all elements x, y of Rn holds |x− y|2 = (|x|2 − 2 · |(x, y)|) + |y|2.

(41) For all elements x, y of Rn holds |x + y|2 + |x− y|2 = 2 · (|x|2 + |y|2).
(42) For all elements x, y of Rn holds |x + y|2 − |x− y|2 = 4 · |(x, y)|.
(43) For all elements x, y of Rn holds ||(x, y)|| ¬ |x| · |y|.
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(44) For all elements x, y of Rn holds |x + y| ¬ |x|+ |y|.
Let us consider n and let x1, x2 be elements of Rn. We say that x1, x2 are

orthogonal if and only if:

(Def. 6) |(x1, x2)| = 0.

Let us note that the predicate x1, x2 are orthogonal is symmetric.
We now state the proposition

(45) Let R be a subset of R and x1, x2, y1 be elements of Rn. Suppose
R = {|y1−x|; x ranges over elements of Rn: x ∈ Line(x1, x2)}. Then there
exists an element y2 of Rn such that y2 ∈ Line(x1, x2) and |y1−y2| = inf R

and x1 − x2, y1 − y2 are orthogonal.

Let us consider n and let p1, p2 be points of En
T. The functor Line(p1, p2)

yielding a subset of En
T is defined by:

(Def. 7) Line(p1, p2) = {(1− l1) · p1 + l1 · p2}.
Let us consider n and let p1, p2 be points of En

T. Observe that Line(p1, p2) is
non empty.

In the sequel p1, p2, q1, q2 are points of En
T.

The following proposition is true

(46) Line(p1, p2) = Line(p2, p1).
Let us consider n and let p1, p2 be points of En

T. Let us observe that the
functor Line(p1, p2) is commutative.

One can prove the following three propositions:

(47) p1 ∈ Line(p1, p2) and p2 ∈ Line(p1, p2).
(48) If q1 ∈ Line(p1, p2) and q2 ∈ Line(p1, p2), then Line(q1, q2) ⊆

Line(p1, p2).
(49) If q1 ∈ Line(p1, p2) and q2 ∈ Line(p1, p2) and q1 6= q2, then Line(p1, p2) ⊆

Line(q1, q2).
Let us consider n and let A be a subset of En

T. We say that A is line if and
only if:

(Def. 8) There exist p1, p2 such that p1 6= p2 and A = Line(p1, p2).
We introduce A is a line as a synonym of A is line.

We now state three propositions:

(50) For all subsets A, C of En
T such that A is a line and C is a line and p1 ∈ A

and p2 ∈ A and p1 ∈ C and p2 ∈ C holds p1 = p2 or A = C.

(51) For every subset A of En
T such that A is a line there exist p1, p2 such

that p1 ∈ A and p2 ∈ A and p1 6= p2.

(52) For every subset A of En
T such that A is a line there exists p2 such that

p1 6= p2 and p2 ∈ A.

Let us consider n and let p be a point of En
T. The functor TPn2Rn(p) yields

an element of Rn and is defined as follows:
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(Def. 9) TPn2Rn(p) = p.

Let us consider n and let p be a point of En
T. The functor |p| yields a real

number and is defined as follows:

(Def. 10) |p| = |TPn2Rn(p)|.
Let us consider n and let p1, p2 be points of En

T. The functor |(p1, p2)| yields
a real number and is defined as follows:

(Def. 11) |(p1, p2)| = |(TPn2Rn(p1), TPn2Rn(p2))|.
Let us observe that the functor |(p1, p2)| is commutative.

Let us consider n and let p1, p2 be points of En
T. We say that p1, p2 are

orthogonal if and only if:

(Def. 12) |(p1, p2)| = 0.

Let us note that the predicate p1, p2 are orthogonal is symmetric.
Next we state the proposition

(53) Let R be a subset of R and p1, p2, q1 be points of En
T. Suppose R =

{|q1− p|; p ranges over points of En
T: p ∈ Line(p1, p2)}. Then there exists a

point q2 of En
T such that q2 ∈ Line(p1, p2) and |q1−q2| = inf R and p1−p2,

q1 − q2 are orthogonal.
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The notation and terminology used here are introduced in the following papers:
[14], [17], [4], [1], [13], [7], [2], [3], [18], [16], [10], [15], [11], [9], [8], [12], and [6].

1. The Space of Absolute Summable Real Sequences

The subset the set of l1-real sequences of the linear space of real sequences
is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ the set of l1-real sequences if and only if x ∈ the
set of real sequences and idseq(x) is absolutely summable.

Let us observe that the set of l1-real sequences is non empty.
One can prove the following two propositions:

(1) The set of l1-real sequences is linearly closed.

(2) 〈the set of l1-real sequences, Zero (the set of l1-real sequences, the linear
space of real sequences), Add (the set of l1-real sequences, the linear space
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of real sequences), Mult (the set of l1-real sequences, the linear space of
real sequences)〉 is a subspace of the linear space of real sequences.

One can check that 〈the set of l1-real sequences, Zero (the set of
l1-real sequences, the linear space of real sequences), Add (the set of l1-
real sequences, the linear space of real sequences), Mult (the set of l1-real
sequences, the linear space of real sequences)〉 is Abelian, add-associative, ri-
ght zeroed, right complementable, and real linear space-like.

One can prove the following proposition

(3) 〈the set of l1-real sequences, Zero (the set of l1-real sequences, the linear
space of real sequences), Add (the set of l1-real sequences, the linear space
of real sequences), Mult (the set of l1-real sequences, the linear space of
real sequences)〉 is a real linear space.

The function normseq from the set of l1-real sequences into R is defined by:

(Def. 2) For every set x such that x ∈ the set of l1-real sequences holds
normseq(x) =

∑|idseq(x)|.
Let X be a non empty set, let Z be an element of X, let A be a binary

operation on X, let M be a function from [:R, X :] into X, and let N be a
function from X into R. One can check that 〈X, Z, A,M,N〉 is non empty.

Next we state four propositions:

(4) Let l be a normed structure. Suppose 〈the carrier of l, the zero of l, the
addition of l, the external multiplication of l〉 is a real linear space. Then
l is a real linear space.

(5) Let r1 be a sequence of real numbers. Suppose that for every natural
number n holds r1(n) = 0. Then r1 is absolutely summable and

∑|r1| = 0.

(6) Let r1 be a sequence of real numbers. Suppose r1 is absolutely summable
and

∑|r1| = 0. Let n be a natural number. Then r1(n) = 0.

(7) 〈the set of l1-real sequences, Zero (the set of l1-real sequences, the linear
space of real sequences), Add (the set of l1-real sequences, the linear space
of real sequences), Mult (the set of l1-real sequences, the linear space of
real sequences), normseq〉 is a real linear space.

The non empty normed structure l1-Space is defined by the condition
(Def. 3).

(Def. 3) l1-Space = 〈the set of l1-real sequences, Zero (the set of l1-real
sequences, the linear space of real sequences), Add (the set of l1-real
sequences, the linear space of real sequences), Mult (the set of l1-real
sequences, the linear space of real sequences), normseq〉.
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2. The Space is Banach Space

One can prove the following two propositions:

(8) The carrier of l1-Space = the set of l1-real sequences and for every set x

holds x is an element of l1-Space iff x is a sequence of real numbers and
idseq(x) is absolutely summable and for every set x holds x is a vector
of l1-Space iff x is a sequence of real numbers and idseq(x) is absolutely
summable and 0l1-Space = Zeroseq and for every vector u of l1-Space holds
u = idseq(u) and for all vectors u, v of l1-Space holds u + v = idseq(u) +
idseq(v) and for every real number r and for every vector u of l1-Space
holds r · u = r idseq(u) and for every vector u of l1-Space holds −u =
−idseq(u) and idseq(−u) = −idseq(u) and for all vectors u, v of l1-Space
holds u − v = idseq(u) − idseq(v) and for every vector v of l1-Space holds
idseq(v) is absolutely summable and for every vector v of l1-Space holds
‖v‖ =

∑|idseq(v)|.
(9) Let x, y be points of l1-Space and a be a real number. Then ‖x‖ = 0 iff

x = 0l1-Space and 0 ¬ ‖x‖ and ‖x + y‖ ¬ ‖x‖+ ‖y‖ and ‖a · x‖ = |a| · ‖x‖.
Let us observe that l1-Space is real normed space-like, real linear space-like,

Abelian, add-associative, right zeroed, and right complementable.
Let X be a non empty normed structure and let x, y be points of X. The

functor ρ(x, y) yields a real number and is defined by:

(Def. 4) ρ(x, y) = ‖x− y‖.
Let N1 be a non empty normed structure and let s1 be a sequence of N1.

We say that s1 is CCauchy if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let r2 be a real number. Suppose r2 > 0. Then there exists a natural
number k1 such that for all natural numbers n1, m1 if n1 ­ k1 and m1 ­
k1, then ρ(s1(n1), s1(m1)) < r2.

We introduce s1 is Cauchy sequence by norm as a synonym of s1 is CCauchy.
In the sequel N1 denotes a non empty real normed space and s2 denotes a

sequence of N1.
We now state two propositions:

(10) s2 is Cauchy sequence by norm if and only if for every real number r

such that r > 0 there exists a natural number k such that for all natural
numbers n, m such that n ­ k and m ­ k holds ‖s2(n)− s2(m)‖ < r.

(11) For every sequence v1 of l1-Space such that v1 is Cauchy sequence by
norm holds v1 is convergent.
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The articles [14], [2], [12], [9], [6], [4], [3], [5], [13], [10], [11], [7], [8], and [1]
provide the terminology and notation for this paper.

We adopt the following convention: x, y, z denote real numbers, x3, y3 denote
elements of R, and p denotes a point of E3

T.
We now state the proposition

(1) There exist x, y, z such that p = 〈x, y, z〉.
Let us consider p. The functor p1 yielding a real number is defined as follows:

(Def. 1) For every finite sequence f such that p = f holds p1 = f(1).
The functor p2 yields a real number and is defined by:

(Def. 2) For every finite sequence f such that p = f holds p2 = f(2).
The functor p3 yields a real number and is defined by:

(Def. 3) For every finite sequence f such that p = f holds p3 = f(3).
Let us consider x, y, z. The functor [x, y, z] yields a point of E3

T and is defined
as follows:

(Def. 4) [x, y, z] = 〈x, y, z〉.
One can prove the following three propositions:

(2) [x, y, z]1 = x and [x, y, z]2 = y and [x, y, z]3 = z.

(3) p = [p1, p2, p3].
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(4) 0E3T = [0, 0, 0].

We adopt the following rules: p1, p2, p3, p4 are points of E3
T and x1, x2, y1,

y2, z1, z2 are real numbers.
Next we state several propositions:

(5) p1 + p2 = [(p1)1 + (p2)1, (p1)2 + (p2)2, (p1)3 + (p2)3].

(6) [x1, y1, z1] + [x2, y2, z2] = [x1 + x2, y1 + y2, z1 + z2].

(7) x · p = [x · p1, x · p2, x · p3].

(8) x · [x1, y1, z1] = [x · x1, x · y1, x · z1].

(9) (x · p)1 = x · p1 and (x · p)2 = x · p2 and (x · p)3 = x · p3.

(10) −p = [−p1,−p2,−p3].

(11) −[x1, y1, z1] = [−x1,−y1,−z1].

(12) p1 − p2 = [(p1)1 − (p2)1, (p1)2 − (p2)2, (p1)3 − (p2)3].

(13) [x1, y1, z1]− [x2, y2, z2] = [x1 − x2, y1 − y2, z1 − z2].

Let us consider p1, p2. The functor p1 × p2 yielding a point of E3
T is defined

by:

(Def. 5) p1 × p2 = [(p1)2 · (p2)3 − (p1)3 · (p2)2, (p1)3 · (p2)1 − (p1)1 · (p2)3, (p1)1 ·
(p2)2 − (p1)2 · (p2)1].

The following propositions are true:

(14) If p = [x, y, z], then p1 = x and p2 = y and p3 = z.

(15) [x1, y1, z1]× [x2, y2, z2] = [y1 · z2− z1 · y2, z1 · x2− x1 · z2, x1 · y2− y1 · x2].

(16) (x · p1)× p2 = x · (p1 × p2) and (x · p1)× p2 = p1 × (x · p2).

(17) p1 × p2 = −p2 × p1.

(18) (−p1)× p2 = p1 ×−p2.

(19) [0, 0, 0]× [x, y, z] = 0E3T .

(20) [x1, 0, 0]× [x2, 0, 0] = 0E3T .

(21) [0, y1, 0]× [0, y2, 0] = 0E3T .

(22) [0, 0, z1]× [0, 0, z2] = 0E3T .

(23) p1 × (p2 + p3) = p1 × p2 + p1 × p3.

(24) (p1 + p2)× p3 = p1 × p3 + p2 × p3.

(25) p1 × p1 = 0E3T .

(26) (p1 + p2)× (p3 + p4) = p1 × p3 + p1 × p4 + p2 × p3 + p2 × p4.

(27) p = 〈p1, p2, p3〉.
(28) For all finite sequences f1, f2 of elements of R such that len f1 = 3 and

len f2 = 3 holds f1 • f2 = 〈f1(1) · f2(1), f1(2) · f2(2), f1(3) · f2(3)〉.
(29) |(p1, p2)| = (p1)1 · (p2)1 + (p1)2 · (p2)2 + (p1)3 · (p2)3.

(30) |([x1, x2, x3], [y1, y2, y3])| = x1 · y1 + x2 · y2 + x3 · y3.
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Let us consider p1, p2, p3. The functor 〈|p1, p2, p3|〉 yielding a real number is
defined as follows:

(Def. 6) 〈|p1, p2, p3|〉 = |(p1, p2 × p3)|.
The following propositions are true:

(31) 〈|p1, p1, p2|〉 = 0 and 〈|p2, p1, p2|〉 = 0.

(32) p1 × (p2 × p3) = |(p1, p3)| · p2 − |(p1, p2)| · p3.

(33) 〈|p1, p2, p3|〉 = 〈|p2, p3, p1|〉.
(34) 〈|p1, p2, p3|〉 = 〈|p3, p1, p2|〉.
(35) 〈|p1, p2, p3|〉 = |(p1 × p2, p3)|.
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The articles [8], [3], [10], [11], [4], [1], [5], [2], [13], [6], [7], [12], and [9] provide
the notation and terminology for this paper.

In this paper i denotes a natural number.
Let K be a field and let M1, M2 be matrices over K. The functor M1 −M2

yielding a matrix over K is defined by:

(Def. 1) M1 −M2 = M1 +−M2.

One can prove the following propositions:

(1) For every field K and for every matrix M over K such that len M > 0
holds −−M = M.

(2) For every field K and for every matrix M over K such that len M > 0

holds M +−M =




0 . . . 0
...

. . .
...

0 . . . 0




(len M)×(width M)

K

.

(3) For every field K and for every matrix M over K such that len M > 0

holds M −M =




0 . . . 0
...

. . .
...

0 . . . 0




(len M)×(width M)

K

.

(4) Let K be a field and M1, M2, M3 be matrices over K. Suppose len M1 =
len M2 and len M2 = len M3 and width M1 = width M2 and width M2 =
width M3 and len M1 > 0 and M1 + M3 = M2 + M3. Then M1 = M2.
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(5) For every field K and for all matrices M1, M2 over K such that len M2 >

0 holds M1 −−M2 = M1 + M2.

(6) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 and M1 = M1 + M2

holds M2 =




0 . . . 0
...

. . .
...

0 . . . 0




(len M1)×(width M1)

K

.

(7) For every field K and for all matrices M1, M2 over K such that
len M1 = len M2 and width M1 = width M2 and len M1 > 0 and M1−M2 =


0 . . . 0
...

. . .
...

0 . . . 0




(len M1)×(width M1)

K

holds M1 = M2.

(8) For every field K and for all matrices M1, M2 over K such that
len M1 = len M2 and width M1 = width M2 and len M1 > 0 and M1+M2 =


0 . . . 0
...

. . .
...

0 . . . 0




(len M1)×(width M1)

K

holds M2 = −M1.

(9) For all natural numbers n, m and for every field K such that n > 0 holds

−




0 . . . 0
...

. . .
...

0 . . . 0




n×m

K

=




0 . . . 0
...

. . .
...

0 . . . 0




n×m

K

.

(10) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 and M2 −M1 = M2

holds M1 =




0 . . . 0
...

. . .
...

0 . . . 0




(len M1)×(width M1)

K

.

(11) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = M1−(M2−
M2).

(12) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds −(M1 + M2) =
−M1 +−M2.

(13) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1−(M1−M2) =
M2.

(14) Let K be a field and M1, M2, M3 be matrices over K. Suppose len M1 =
len M2 and len M2 = len M3 and width M1 = width M2 and width M2 =
width M3 and len M1 > 0 and M1 −M3 = M2 −M3. Then M1 = M2.
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(15) Let K be a field and M1, M2, M3 be matrices over K. Suppose len M1 =
len M2 and len M2 = len M3 and width M1 = width M2 and width M2 =
width M3 and len M1 > 0 and M3 −M1 = M3 −M2. Then M1 = M2.

(16) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 −M2 −M3 = M1 −M3 −M2.

(17) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 −M3 = M1 −M2 − (M3 −M2).
(18) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M3 −M1 − (M3 −M2) = M2 −M1.

(19) Let K be a field and M1, M2, M3, M4 be matrices over K. Sup-
pose len M1 = len M2 and len M2 = len M3 and len M3 = len M4

and width M1 = width M2 and width M2 = width M3 and width M3 =
width M4 and len M1 > 0 and M1 −M2 = M3 −M4. Then M1 −M3 =
M2 −M4.

(20) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = M1 +(M2−
M2).

(21) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = (M1+M2)−
M2.

(22) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = (M1−M2)+
M2.

(23) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 + M3 = M1 + M2 + (M3 −M2).
(24) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then (M1 + M2)−M3 = (M1 −M3) + M2.

(25) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then (M1 −M2) + M3 = (M3 −M2) + M1.

(26) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 + M3 = (M1 + M2)− (M2 −M3).
(27) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3
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and len M1 > 0, then M1 −M3 = (M1 + M2)− (M3 + M2).

(28) Let K be a field and M1, M2, M3, M4 be matrices over K. Sup-
pose len M1 = len M2 and len M2 = len M3 and len M3 = len M4

and width M1 = width M2 and width M2 = width M3 and width M3 =
width M4 and len M1 > 0 and M1 + M2 = M3 + M4. Then M1 −M3 =
M4 −M2.

(29) Let K be a field and M1, M2, M3, M4 be matrices over K. Sup-
pose len M1 = len M2 and len M2 = len M3 and len M3 = len M4

and width M1 = width M2 and width M2 = width M3 and width M3 =
width M4 and len M1 > 0 and M1 −M3 = M4 −M2. Then M1 + M2 =
M3 + M4.

(30) Let K be a field and M1, M2, M3, M4 be matrices over K. Sup-
pose len M1 = len M2 and len M2 = len M3 and len M3 = len M4

and width M1 = width M2 and width M2 = width M3 and width M3 =
width M4 and len M1 > 0 and M1 + M2 = M3 −M4. Then M1 + M4 =
M3 −M2.

(31) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 − (M2 + M3) = M1 −M2 −M3.

(32) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 − (M2 −M3) = (M1 −M2) + M3.

(33) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 − (M2 −M3) = M1 + (M3 −M2).

(34) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M1 −M3 = (M1 −M2) + (M2 −M3).

(35) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0 and −M1 = −M2, then M1 = M2.

(36) For every field K and for every matrix M over K such that len M > 0

and −M =




0 . . . 0
...

. . .
...

0 . . . 0




(len M)×(width M)

K

holds M =




0 . . . 0
...

. . .
...

0 . . . 0




(len M)×(width M)

K

.

(37) For every field K and for all matrices M1, M2 over K such that len M1 =
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len M2 and width M1 = width M2 and len M1 > 0 and M1 + −M2 =


0 . . . 0
...

. . .
...

0 . . . 0




(len M1)×(width M1)

K

holds M1 = M2.

(38) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = M1 + M2 +
−M2.

(39) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = M1 +(M2 +
−M2).

(40) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = −M2+M1+
M2.

(41) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds −(−M1 + M2) =
M1 +−M2.

(42) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 + M2 =
−(−M1 +−M2).

(43) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds −(M1 −M2) =
M2 −M1.

(44) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds −M1 − M2 =
−M2 −M1.

(45) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = −M2 −
(−M1 −M2).

(46) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then −M1 −M2 −M3 = −M1 −M3 −M2.

(47) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then −M1 −M2 −M3 = −M2 −M3 −M1.

(48) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then −M1 −M2 −M3 = −M3 −M2 −M1.

(49) Let K be a field and M1, M2, M3 be matrices over K. If len M1 = len M2

and len M2 = len M3 and width M1 = width M2 and width M2 = width M3

and len M1 > 0, then M3 −M1 − (M3 −M2) = −(M1 −M2).
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(50) For every field K and for every matrix M over K such that len M > 0

holds




0 . . . 0
...

. . .
...

0 . . . 0




(len M)×(width M)

K

−M = −M.

(51) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 + M2 =
M1 −−M2.

(52) For every field K and for all matrices M1, M2 over K such that len M1 =
len M2 and width M1 = width M2 and len M1 > 0 holds M1 = M1−(M2 +
−M2).

(53) Let K be a field and M1, M2, M3 be matrices over K. Suppose len M1 =
len M2 and len M2 = len M3 and width M1 = width M2 and width M2 =
width M3 and len M1 > 0 and M1 −M3 = M2 +−M3. Then M1 = M2.

(54) Let K be a field and M1, M2, M3 be matrices over K. Suppose len M1 =
len M2 and len M2 = len M3 and width M1 = width M2 and width M2 =
width M3 and len M1 > 0 and M3 −M1 = M3 +−M2. Then M1 = M2.

(55) Let K be a field and A, B be matrices over K. If len A = len B and
width A = width B, then the indices of A = the indices of B.

(56) Let K be a field and x, y, z be finite sequences of elements of the carrier
of K. If len x = len y and len y = len z, then (x + y) • z = x • z + y • z.

(57) Let K be a field and x, y, z be finite sequences of elements of the carrier
of K. If len x = len y and len y = len z, then z • (x + y) = z • x + z • y.

(58) Let D be a non empty set and M be a matrix over D. Suppose len M > 0.

Let n be a natural number. Then M is a matrix over D of dimension n ×
width M if and only if n = len M.

(59) Let K be a field, j be a natural number, and A, B be matrices over K.
Suppose len A = len B and width A = width B and there exists a natural
number j such that 〈〈i, j〉〉 ∈ the indices of A. Then Line(A + B, i) =
Line(A, i) + Line(B, i).

(60) Let K be a field, j be a natural number, and A, B be matrices over
K. Suppose len A = len B and width A = width B and there exists a
natural number i such that 〈〈i, j〉〉 ∈ the indices of A. Then (A + B)¤,j =
A¤,j + B¤,j .

(61) Let V1 be a field and P1, P2 be finite sequences of elements of the carrier
of V1. If len P1 = len P2, then

∑
(P1 + P2) =

∑
P1 +

∑
P2.

(62) Let K be a field and A, B, C be matrices over K. If len B = len C and
width B = width C and width A = len B and len A > 0 and len B > 0,

then A · (B + C) = A ·B + A · C.

(63) Let K be a field and A, B, C be matrices over K. If len B = len C and
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width B = width C and len A = width B and len B > 0 and len A > 0,

then (B + C) ·A = B ·A + C ·A.

(64) Let K be a field, n, m, k be natural numbers, M1 be a matrix over K

of dimension n × m, and M2 be a matrix over K of dimension m × k.
Suppose width M1 = len M2 and 0 < len M1 and 0 < len M2. Then M1 ·M2

is a matrix over K of dimension n × k.
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Summary. This article concerns a connection of fuzzy logic and lattice
theory. Namely, the fuzzy sets form a Heyting lattice with union and intersection
of fuzzy sets as meet and join operations. The lattice of fuzzy sets is defined as
the product of interval posets. As the final result, we have characterized the com-
position of fuzzy relations in terms of lattice theory and proved its associativity.

MML Identifier: LFUZZY 0.

The notation and terminology used in this paper are introduced in the following
articles: [18], [9], [23], [6], [7], [17], [1], [8], [22], [16], [20], [15], [24], [21], [14],
[19], [2], [3], [4], [12], [10], [5], [13], and [11].

1. Posets of Real Numbers

Let R be a relational structure. We say that R is real if and only if the
conditions (Def. 1) are satisfied.

(Def. 1)(i) The carrier of R ⊆ R, and
(ii) for all real numbers x, y such that x ∈ the carrier of R and y ∈ the

carrier of R holds 〈〈x, y〉〉 ∈ the internal relation of R iff x ¬ y.

Let R be a relational structure. We say that R is interval if and only if:

(Def. 2) R is real and there exist real numbers a, b such that a ¬ b and the carrier
of R = [a, b].

Let us mention that every relational structure which is interval is also real
and non empty.

1This work has been partially supported by the Polish Academy of Sciences and the Japan
Society for the Promotion of Science (JSPS Grant 0324101 and JSPS Grant-in-aid 15700195)
when the first author was visiting Białystok Technical University as postdoctoral fellow.
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Let us observe that every relational structure which is empty is also real.
One can prove the following proposition

(1) For every subset X of R there exists a strict relational structure R such
that the carrier of R = X and R is real.

Let us note that there exists a relational structure which is interval and
strict.

The following proposition is true

(2) Let R1, R2 be real relational structures. Suppose the carrier of R1 = the
carrier of R2. Then the relational structure of R1 = the relational structure
of R2.

Let R be a non empty real relational structure. Observe that every element
of R is real.

Let X be a subset of R. The functor RealPoset X yields a real strict relational
structure and is defined as follows:

(Def. 3) The carrier of RealPoset X = X.

Let X be a non empty subset of R. Note that RealPoset X is non empty.
Let R be a relational structure and let x, y be elements of R. We introduce

x � y and y � x as synonyms of x ¬ y.

Let x, y be real numbers. We introduce x ¬R y and y ­R x as synonyms of
x ¬ y. We introduce y <R x and x >R y as antonyms of x ¬ y.

We now state the proposition

(3) For every non empty real relational structure R and for all elements x,
y of R holds x ¬R y iff x � y.

Let us observe that every relational structure which is real is also reflexive,
antisymmetric, and transitive.

Let us observe that every real non empty relational structure is connected.
Let R be a non empty real relational structure and let x, y be elements of

R. Then max(x, y) is an element of R.
Let R be a non empty real relational structure and let x, y be elements of

R. Then min(x, y) is an element of R.
Let us note that every real non empty relational structure has l.u.b.’s and

g.l.b.’s.
We follow the rules: x, y denote real numbers, R denotes a real non empty

relational structure, and a, b denote elements of R.
One can prove the following four propositions:

(4) a t b = max(a, b).

(5) a u b = min(a, b).

(6) There exists x such that x ∈ the carrier of R and for every y such that
y ∈ the carrier of R holds x ¬ y if and only if R is lower-bounded.
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(7) There exists x such that x ∈ the carrier of R and for every y such that
y ∈ the carrier of R holds x ­ y if and only if R is upper-bounded.

Let us observe that every non empty relational structure which is interval is
also bounded.

The following proposition is true

(8) For every interval non empty relational structure R and for every set X

holds sup X exists in R.

Let us observe that every interval non empty relational structure is complete.

Let us note that every chain is distributive.

One can check that every interval non empty relational structure is Heyting.

One can verify that [0, 1] is non empty.

Let us observe that RealPoset[0, 1] is interval.

2. Product of Heyting Lattices

We now state several propositions:

(9) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element i of I holds J(i) is a sup-semilattice. Then

∏
J has l.u.b.’s.

(10) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element i of I holds J(i) is a semilattice. Then

∏
J has g.l.b.’s.

(11) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element i of I holds J(i) is a semilattice. Let f , g be elements of∏

J and i be an element of I. Then (f u g)(i) = f(i) u g(i).

(12) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element i of I holds J(i) is a sup-semilattice. Let f , g be elements
of

∏
J and i be an element of I. Then (f t g)(i) = f(i) t g(i).

(13) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
every element i of I holds J(i) is a Heyting complete lattice. Then

∏
J is

complete and Heyting.

Let A be a non empty set and let R be a complete Heyting lattice. Observe
that RA is Heyting.
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3. Lattice of Fuzzy Sets

Let A be a non empty set. The functor FuzzyLattice A yielding a Heyting
complete lattice is defined by:

(Def. 4) FuzzyLattice A = (RealPoset[0, 1])A.

We now state the proposition

(14) For every non empty set A holds the carrier of FuzzyLattice A = [0, 1]A.

Let A be a non empty set. Note that FuzzyLattice A is constituted functions.
Next we state the proposition

(15) Let R be a complete Heyting lattice, X be a subset of R, and y be an
element of R. Then

⊔
R X u y =

⊔
R{x u y; x ranges over elements of R:

x ∈ X}.
Let X be a non empty set and let a be an element of FuzzyLattice X. The

functor @a yields a membership function of X and is defined by:

(Def. 5) @a = a.

Let X be a non empty set and let f be a membership function of X. The
functor f@ yielding an element of FuzzyLattice X is defined by:

(Def. 6) f@ = f.

Let X be a non empty set, let f be a membership function of X, and let x

be an element of X. Then f(x) is an element of RealPoset[0, 1].
Let X be a non empty set, let f be an element of FuzzyLattice X, and let x

be an element of X. Then f(x) is an element of RealPoset[0, 1].
For simplicity, we follow the rules: C is a non empty set, c is an element of

C, f , g are membership functions of C, and s, t are elements of FuzzyLattice C.

Next we state several propositions:

(16) For every c holds f(c) ¬R g(c) iff f@ � g@.

(17) s � t iff for every c holds (@s)(c) ¬R (@t)(c).

(18) max(f, g) = f@ t g@.

(19) s t t = max(@s, @t).

(20) min(f, g) = f@ u g@.

(21) s u t = min(@s, @t).

4. Associativity of Composition of Fuzzy Relations

In this article we present several logical schemes. The scheme SupDistribu-
tivity deals with a complete lattice A, non empty sets B, C, a binary functor F
yielding an element of A, and two unary predicates P, Q, and states that:
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⊔
A{

⊔
A{F(x, y); y ranges over elements of C : Q[y]}; x ranges

over elements of B : P[x]} =
⊔
A{F(x, y);x ranges over elements

of B, y ranges over elements of C : P[x] ∧ Q[y]}
for all values of the parameters.

The scheme SupDistributivity’ deals with a complete lattice A, non empty
sets B, C, a binary functor F yielding an element of A, and two unary predicates
P, Q, and states that:⊔

A{
⊔
A{F(x, y);x ranges over elements of B : P[x]}; y ranges

over elements of C : Q[y]} =
⊔
A{F(x, y);x ranges over elements

of B, y ranges over elements of C : P[x] ∧ Q[y]}
for all values of the parameters.

The scheme FraenkelF’R’ deals with a non empty set A, a non empty set B,

two binary functors F and G yielding sets, and a binary predicate P, and states
that:

{F(u1, v1);u1 ranges over elements of A, v1 ranges over elements
of B : P[u1, v1]} = {G(u2, v2);u2 ranges over elements of A, v2

ranges over elements of B : P[u2, v2]}
provided the parameters meet the following condition:
• For every element u of A and for every element v of B such that
P[u, v] holds F(u, v) = G(u, v).

The scheme FraenkelF6”R deals with a non empty set A, a non empty set
B, two binary functors F and G yielding sets, and two binary predicates P, Q,

and states that:
{F(u1, v1);u1 ranges over elements of A, v1 ranges over elements
of B : P[u1, v1]} = {G(u2, v2);u2 ranges over elements of A, v2

ranges over elements of B : Q[u2, v2]}
provided the following requirements are met:
• For every element u ofA and for every element v of B holds P[u, v]

iff Q[u, v], and
• For every element u of A and for every element v of B such that
P[u, v] holds F(u, v) = G(u, v).

The scheme SupCommutativity deals with a complete lattice A, non empty
sets B, C, two binary functors F and G yielding elements of A, and two unary
predicates P, Q, and states that:⊔

A{
⊔
A{F(x, y); y ranges over elements of C : Q[y]};x ranges over

elements of B : P[x]} =
⊔
A{

⊔
A{G(x′, y′);x′ ranges over elements

of B : P[x′]}; y′ ranges over elements of C : Q[y′]}
provided the parameters meet the following condition:
• For every element x of B and for every element y of C such that
P[x] and Q[y] holds F(x, y) = G(x, y).

One can prove the following propositions:
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(22) Let X, Y , Z be non empty sets, R be a membership function of X, Y ,
S be a membership function of Y , Z, x be an element of X, and z be
an element of Z. Then (R S)(〈〈x, z〉〉) =

⊔
RealPoset[0,1]{R(〈〈x, y〉〉) u S(〈〈y,

z〉〉) : y ranges over elements of Y }.
(23) Let X, Y , Z, W be non empty sets, R be a membership function of X,

Y , S be a membership function of Y , Z, and T be a membership function
of Z, W . Then (R S) T = R (S T ).
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Summary. In the paper we give formal descriptions of the two Kuratowski
limit oprators: Li S and Ls S, where S is an arbitrary sequence of subsets of a
fixed topological space. In the two last sections we prove basic properties of
these lower and upper topological limits, which may be found e.g. in [19]. In the
sections 2–4, we present three operators which are associated in some sense with
the above mentioned, that is lim inf F , lim sup F , and limes F , where F is a
sequence of subsets of a fixed 1-sorted structure.

MML Identifier: KURATO 2.

The articles [30], [33], [2], [29], [9], [1], [22], [24], [35], [12], [34], [6], [4], [18], [8],
[7], [16], [5], [13], [25], [31], [21], [10], [23], [14], [15], [20], [17], [27], [28], [26],
[11], [3], and [32] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following four propositions:

(1) For all sets X, x and for every subset A of X such that x /∈ A and x ∈ X

holds x ∈ Ac.

(2) For every function F and for every set i such that i ∈ dom F holds⋂
F ⊆ F (i).

(3) Let T be a non empty 1-sorted structure and S1, S2 be sequences of
subsets of the carrier of T . Then S1 = S2 if and only if for every natural
number n holds S1(n) = S2(n).

(4) For all sets A, B, C, D such that A meets B and C meets D holds [:A,

C :] meets [:B, D :].
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Let X be a 1-sorted structure. Note that every sequence of subsets of the
carrier of X is non empty.

Let T be a non empty 1-sorted structure. One can check that there exists a
sequence of subsets of the carrier of T which is non-empty.

Let T be a non empty 1-sorted structure.

(Def. 1) A sequence of subsets of the carrier of T is said to be a sequence of
subsets of T .

In this article we present several logical schemes. The scheme LambdaSSeq
deals with a non empty 1-sorted structure A and a unary functor F yielding a
subset of A, and states that:

There exists a sequence f of subsets of A such that for every
natural number n holds f(n) = F(n)

for all values of the parameters.
The scheme ExTopStrSeq deals with a non empty topological space A and a

unary functor F yielding a subset of A, and states that:
There exists a sequence S of subsets of the carrier of A such that
for every natural number n holds S(n) = F(n)

for all values of the parameters.
We now state the proposition

(5) Let X be a non empty 1-sorted structure and F be a sequence of subsets
of the carrier of X. Then rng F is a family of subsets of X.

Let X be a non empty 1-sorted structure and let F be a sequence of subsets
of the carrier of X. Then

⋃
F is a subset of X. Then

⋂
F is a subset of X.

2. Lower and Upper Limit of Sequences of Subsets

Let X be a non empty set, let S be a function from N into X, and let k

be a natural number. The functor S ↑ k yields a function from N into X and is
defined as follows:

(Def. 2) For every natural number n holds (S ↑ k)(n) = S(n + k).
Let X be a non empty 1-sorted structure and let F be a sequence of subsets

of the carrier of X. The functor lim inf F yields a subset of X and is defined as
follows:

(Def. 3) There exists a sequence f of subsets of X such that lim inf F =
⋃

f and
for every natural number n holds f(n) =

⋂
(F ↑ n).

The functor lim sup F yields a subset of X and is defined by:

(Def. 4) There exists a sequence f of subsets of X such that lim sup F =
⋂

f and
for every natural number n holds f(n) =

⋃
(F ↑ n).

Next we state a number of propositions:
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(6) Let X be a non empty 1-sorted structure, F be a sequence of subsets of
the carrier of X, and x be a set. Then x ∈ ⋂

F if and only if for every
natural number z holds x ∈ F (z).

(7) Let X be a non empty 1-sorted structure, F be a sequence of subsets of
the carrier of X, and x be a set. Then x ∈ lim inf F if and only if there
exists a natural number n such that for every natural number k holds
x ∈ F (n + k).

(8) Let X be a non empty 1-sorted structure, F be a sequence of subsets of
the carrier of X, and x be a set. Then x ∈ lim sup F if and only if for every
natural number n there exists a natural number k such that x ∈ F (n+k).

(9) For every non empty 1-sorted structure X and for every sequence F of
subsets of the carrier of X holds lim inf F ⊆ lim sup F.

(10) For every non empty 1-sorted structure X and for every sequence F of
subsets of the carrier of X holds

⋂
F ⊆ lim inf F.

(11) For every non empty 1-sorted structure X and for every sequence F of
subsets of the carrier of X holds lim sup F ⊆ ⋃

F.

(12) For every non empty 1-sorted structure X and for every sequence F of
subsets of the carrier of X holds lim inf F = (lim sup Complement F )c.

(13) Let X be a non empty 1-sorted structure and A, B, C be sequences of
subsets of the carrier of X. If for every natural number n holds C(n) =
A(n) ∩B(n), then lim inf C = lim inf A ∩ lim inf B.

(14) Let X be a non empty 1-sorted structure and A, B, C be sequences of
subsets of the carrier of X. If for every natural number n holds C(n) =
A(n) ∪B(n), then lim sup C = lim sup A ∪ lim sup B.

(15) Let X be a non empty 1-sorted structure and A, B, C be sequences of
subsets of the carrier of X. If for every natural number n holds C(n) =
A(n) ∪B(n), then lim inf A ∪ lim inf B ⊆ lim inf C.

(16) Let X be a non empty 1-sorted structure and A, B, C be sequences of
subsets of the carrier of X. If for every natural number n holds C(n) =
A(n) ∩B(n), then lim sup C ⊆ lim sup A ∩ lim sup B.

(17) Let X be a non empty 1-sorted structure, A be a sequence of subsets of
the carrier of X, and B be a subset of X. If for every natural number n

holds A(n) = B, then lim sup A = B.

(18) Let X be a non empty 1-sorted structure, A be a sequence of subsets of
the carrier of X, and B be a subset of X. If for every natural number n

holds A(n) = B, then lim inf A = B.

(19) Let X be a non empty 1-sorted structure, A, B be sequences of subsets
of the carrier of X, and C be a subset of X. If for every natural number
n holds B(n) = C−. A(n), then C−. lim inf A ⊆ lim sup B.

(20) Let X be a non empty 1-sorted structure, A, B be sequences of subsets
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of the carrier of X, and C be a subset of X. If for every natural number
n holds B(n) = C−. A(n), then C−. lim sup A ⊆ lim sup B.

3. Ascending and Descending Families of Subsets

Let T be a non empty 1-sorted structure and let S be a sequence of subsets
of T . We say that S is descending if and only if:

(Def. 5) For every natural number i holds S(i + 1) ⊆ S(i).
We say that S is ascending if and only if:

(Def. 6) For every natural number i holds S(i) ⊆ S(i + 1).
Next we state several propositions:

(21) Let f be a function. Suppose that for every natural number i holds
f(i + 1) ⊆ f(i). Let i, j be natural numbers. If i ¬ j, then f(j) ⊆ f(i).

(22) Let T be a non empty 1-sorted structure and C be a sequence of subsets
of T . Suppose C is descending. Let i, m be natural numbers. If i ­ m,

then C(i) ⊆ C(m).
(23) Let T be a non empty 1-sorted structure and C be a sequence of subsets

of T . Suppose C is ascending. Let i, m be natural numbers. If i ­ m, then
C(m) ⊆ C(i).

(24) Let T be a non empty 1-sorted structure, F be a sequence of subsets
of T , and x be a set. Suppose F is descending and there exists a natural
number k such that for every natural number n such that n > k holds
x ∈ F (n). Then x ∈ ⋂

F.

(25) Let T be a non empty 1-sorted structure and F be a sequence of subsets
of T . If F is descending, then lim inf F =

⋂
F.

(26) Let T be a non empty 1-sorted structure and F be a sequence of subsets
of T . If F is ascending, then lim sup F =

⋃
F.

4. Constant and Convergent Sequences

Let T be a non empty 1-sorted structure and let S be a sequence of subsets
of T . We say that S is convergent if and only if:

(Def. 7) lim sup S = lim inf S.

We now state the proposition

(27) Let T be a non empty 1-sorted structure and S be a sequence of subsets
of T . If S is constant, then the value of S is a subset of T .

Let T be a non empty 1-sorted structure and let S be a sequence of subsets
of T . Let us observe that S is constant if and only if:
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(Def. 8) There exists a subset A of T such that for every natural number n holds
S(n) = A.

Let T be a non empty 1-sorted structure. Observe that every sequence of
subsets of T which is constant is also convergent, ascending, and descending.

Let T be a non empty 1-sorted structure. Note that there exists a sequence
of subsets of T which is constant and non empty.

Let T be a non empty 1-sorted structure and let S be a convergent sequence
of subsets of T . The functor limes S yields a subset of T and is defined as follows:

(Def. 9) limes S = lim sup S and limes S = lim inf S.

One can prove the following proposition

(28) Let X be a non empty 1-sorted structure, F be a convergent sequence
of subsets of X, and x be a set. Then x ∈ limes F if and only if there
exists a natural number n such that for every natural number k holds
x ∈ F (n + k).

5. Topological Lemmas

In the sequel n denotes a natural number.
Let f be a finite sequence of elements of the carrier of E2

T. One can check
that L̃(f) is closed.

We now state several propositions:

(29) Let r be a real number, M be a non empty Reflexive metric structure,
and x be an element of M . If 0 < r, then x ∈ Ball(x, r).

(30) For every point x of En and for every real number r holds Ball(x, r) is
an open subset of En

T.

(31) For all points p, q of En
T and for all points p′, q′ of En such that p = p′

and q = q′ holds ρ(p′, q′) = |p− q|.
(32) Let p be a point of En, x, p′ be points of En

T, and r be a real number. If
p = p′ and x ∈ Ball(p, r), then |x− p′| < r.

(33) Let p be a point of En, x, p′ be points of En
T, and r be a real number. If

p = p′ and |x− p′| < r, then x ∈ Ball(p, r).
(34) Let n be a natural number, r be a point of En

T, and X be a subset of En
T.

Suppose r ∈ X. Then there exists a sequence s1 in En
T such that rng s1 ⊆ X

and s1 is convergent and lim s1 = r.

Let M be a non empty metric space. Note that Mtop is first-countable.
Let n be a natural number. Note that En

T is first-countable.
Next we state several propositions:

(35) Let p be a point of En, q be a point of En
T, and r be a real number. If

p = q and r > 0, then Ball(p, r) is a neighbourhood of q.
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(36) Let A be a subset of En
T, p be a point of En

T, and p′ be a point of En.
Suppose p = p′. Then p ∈ A if and only if for every real number r such
that r > 0 holds Ball(p′, r) meets A.

(37) Let x, y be points of En
T and x′ be a point of En. If x′ = x and x 6= y,

then there exists a real number r such that y /∈ Ball(x′, r).
(38) Let S be a subset of En

T. Then S is non Bounded if and only if for every
real number r such that r > 0 there exist points x, y of En such that x ∈ S

and y ∈ S and ρ(x, y) > r.

(39) For all real numbers a, b and for all points x, y of En such that Ball(x, a)
meets Ball(y, b) holds ρ(x, y) < a + b.

(40) Let a, b, c be real numbers and x, y, z be points of En. If Ball(x, a) meets
Ball(z, c) and Ball(z, c) meets Ball(y, b), then ρ(x, y) < a + b + 2 · c.

(41) Let X, Y be non empty topological spaces, x be a point of X, y be a
point of Y , and V be a subset of [:X, Y :]. Then V is a neighbourhood of
[: {x}, {y} :] if and only if V is a neighbourhood of 〈〈x, y〉〉.

Now we present two schemes. The scheme TSubsetEx deals with a non empty
topological structure A and a unary predicate P, and states that:

There exists a subset X of A such that for every point x of A
holds x ∈ X iff P[x]

for all values of the parameters.
The scheme TSubsetUniq deals with a topological structure A and a unary

predicate P, and states that:
Let A1, A2 be subsets of A. Suppose for every point x of A holds
x ∈ A1 iff P[x] and for every point x of A holds x ∈ A2 iff P[x].
Then A1 = A2

for all values of the parameters.
Let T be a non empty topological structure, let S be a sequence of subsets

of the carrier of T , and let i be a natural number. Then S(i) is a subset of T .
One can prove the following two propositions:

(42) Let T be a non empty 1-sorted structure, S be a sequence of subsets of
the carrier of T , and R be a sequence of naturals. Then S ·R is a sequence
of subsets of T .

(43) idN is an increasing sequence of naturals.

Let us observe that idN is real-yielding.

6. Subsequences

Let T be a non empty 1-sorted structure and let S be a sequence of subsets
of the carrier of T . A sequence of subsets of T is said to be a subsequence of S

if:
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(Def. 10) There exists an increasing sequence N1 of naturals such that it = S ·N1.

We now state several propositions:

(44) For every non empty 1-sorted structure T holds every sequence S of
subsets of the carrier of T is a subsequence of S.

(45) Let T be a non empty 1-sorted structure, S be a sequence of subsets of
T , and S1 be a subsequence of S. Then rng S1 ⊆ rng S.

(46) Let T be a non empty 1-sorted structure, S1 be a sequence of subsets of
the carrier of T , and S2 be a subsequence of S1. Then every subsequence
of S2 is a subsequence of S1.

(47) Let T be a non empty 1-sorted structure, F , G be sequences of subsets
of the carrier of T , and A be a subset of T . Suppose G is a subsequence
of F and for every natural number i holds F (i) = A. Then G = F.

(48) Let T be a non empty 1-sorted structure, A be a constant sequence of
subsets of T , and B be a subsequence of A. Then A = B.

(49) Let T be a non empty 1-sorted structure, S be a sequence of subsets of
the carrier of T , R be a subsequence of S, and n be a natural number.
Then there exists a natural number m such that m ­ n and R(n) = S(m).

Let T be a non empty 1-sorted structure and let X be a constant sequence
of subsets of T . Note that every subsequence of X is constant.

The scheme SubSeqChoice deals with a non empty topological space A, a
sequence B of subsets of the carrier of A, and a unary predicate P, and states
that:

There exists a subsequence S1 of B such that for every natural
number n holds P[S1(n)]

provided the following condition is satisfied:
• For every natural number n there exists a natural number m such

that n ¬ m and P[B(m)].

7. The Lower Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets
of the carrier of T . The functor Li S yielding a subset of T is defined by the
condition (Def. 11).

(Def. 11) Let p be a point of T . Then p ∈ Li S if and only if for every neighbour-
hood G of p there exists a natural number k such that for every natural
number m such that m > k holds S(m) meets G.

The following propositions are true:

(50) Let S be a sequence of subsets of the carrier of En
T, p be a point of En

T,
and p′ be a point of En. Suppose p = p′. Then p ∈ Li S if and only if
for every real number r such that r > 0 there exists a natural number k
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such that for every natural number m such that m > k holds S(m) meets
Ball(p′, r).

(51) For every non empty topological space T and for every sequence S of
subsets of the carrier of T holds Li S = Li S.

(52) For every non empty topological space T and for every sequence S of
subsets of the carrier of T holds Li S is closed.

(53) Let T be a non empty topological space and R, S be sequences of subsets
of the carrier of T . If R is a subsequence of S, then Li S ⊆ Li R.

(54) Let T be a non empty topological space and A, B be sequences of subsets
of the carrier of T . If for every natural number i holds A(i) ⊆ B(i), then
Li A ⊆ Li B.

(55) Let T be a non empty topological space and A, B, C be sequences of
subsets of the carrier of T . If for every natural number i holds C(i) =
A(i) ∪B(i), then Li A ∪ Li B ⊆ Li C.

(56) Let T be a non empty topological space and A, B, C be sequences of
subsets of the carrier of T . If for every natural number i holds C(i) =
A(i) ∩B(i), then Li C ⊆ Li A ∩ Li B.

(57) Let T be a non empty topological space and F , G be sequences of subsets
of the carrier of T . If for every natural number i holds G(i) = F (i), then
Li G = Li F.

(58) Let S be a sequence of subsets of the carrier of En
T and p be a point of En

T.
Given a sequence s in En

T such that s is convergent and for every natural
number x holds s(x) ∈ S(x) and p = lim s. Then p ∈ Li S.

(59) Let T be a non empty topological space, P be a subset of T , and s be a
sequence of subsets of the carrier of T . If for every natural number i holds
s(i) ⊆ P, then Li s ⊆ P .

(60) Let T be a non empty topological space, F be a sequence of subsets of
the carrier of T , and A be a subset of T . If for every natural number i

holds F (i) = A, then Li F = A.

(61) Let T be a non empty topological space, F be a sequence of subsets of
the carrier of T , and A be a closed subset of T . If for every natural number
i holds F (i) = A, then Li F = A.

(62) Let S be a sequence of subsets of the carrier of En
T and P be a subset of

En
T. Suppose P is Bounded and for every natural number i holds S(i) ⊆ P.

Then Li S is Bounded.

(63) Let S be a sequence of subsets of the carrier of E2
T and P be a subset of E2

T.
Suppose P is Bounded and for every natural number i holds S(i) ⊆ P and
for every natural number i holds S(i) is compact. Then Li S is compact.

(64) Let A, B be sequences of subsets of the carrier of En
T and C be a sequence

of subsets of the carrier of [: En
T, En

T :]. If for every natural number i holds



on the kuratowski limit operators 407

C(i) = [:A(i), B(i) :], then [: Li A, Li B :] = Li C.

(65) For every sequence S of subsets of E2
T holds lim inf S ⊆ Li S.

(66) For every simple closed curve C and for every natural number i holds
Fr((UBD L̃(Cage(C, i)))c) = L̃(Cage(C, i)).

8. The Upper Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets of
the carrier of T . The functor Ls S yields a subset of T and is defined as follows:

(Def. 12) For every set x holds x ∈ Ls S iff there exists a subsequence A of S such
that x ∈ Li A.

One can prove the following propositions:

(67) Let N be a natural number, F be a sequence of EN
T , x be a point of

EN
T , and x′ be a point of EN . Suppose x = x′. Then x is a cluster point

of F if and only if for every real number r and for every natural number
n such that r > 0 there exists a natural number m such that n ¬ m and
F (m) ∈ Ball(x′, r).

(68) For every non empty topological space T and for every sequence A of
subsets of the carrier of T holds Li A ⊆ Ls A.

(69) Let A, B, C be sequences of subsets of the carrier of E2
T. Suppose for

every natural number i holds A(i) ⊆ B(i) and C is a subsequence of A.
Then there exists a subsequence D of B such that for every natural number
i holds C(i) ⊆ D(i).

(70) Let A, B, C be sequences of subsets of the carrier of E2
T. Suppose for

every natural number i holds A(i) ⊆ B(i) and C is a subsequence of B.
Then there exists a subsequence D of A such that for every natural number
i holds D(i) ⊆ C(i).

(71) Let A, B be sequences of subsets of the carrier of E2
T. If for every natural

number i holds A(i) ⊆ B(i), then Ls A ⊆ Ls B.

(72) Let A, B, C be sequences of subsets of the carrier of E2
T. If for every

natural number i holds C(i) = A(i) ∪B(i), then Ls A ∪ Ls B ⊆ Ls C.

(73) Let A, B, C be sequences of subsets of the carrier of E2
T. If for every

natural number i holds C(i) = A(i) ∩B(i), then Ls C ⊆ Ls A ∩ Ls B.

(74) Let A, B be sequences of subsets of the carrier of E2
T and C, C1 be

sequences of subsets of the carrier of [: E2
T, E2

T :]. Suppose for every natural
number i holds C(i) = [:A(i), B(i) :] and C1 is a subsequence of C. Then
there exist sequences A1, B1 of subsets of the carrier of E2

T such that A1

is a subsequence of A and B1 is a subsequence of B and for every natural
number i holds C1(i) = [:A1(i), B1(i) :].
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(75) Let A, B be sequences of subsets of the carrier of E2
T and C be a sequence

of subsets of the carrier of [: E2
T, E2

T :]. If for every natural number i holds
C(i) = [:A(i), B(i) :], then Ls C ⊆ [: Ls A, Ls B :].

(76) Let T be a non empty topological space, F be a sequence of subsets of
the carrier of T , and A be a subset of T . If for every natural number i

holds F (i) = A, then Li F = Ls F.

(77) Let F be a sequence of subsets of the carrier of E2
T and A be a subset of

E2
T. If for every natural number i holds F (i) = A, then Ls F = A.

(78) Let F , G be sequences of subsets of the carrier of E2
T. If for every natural

number i holds G(i) = F (i), then Ls G = Ls F.
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On the Segmentation of a Simple Closed
Curve1

Andrzej Trybulec
University of Białystok

Summary. The main goal of the work was to introduce the concept of the
segmentation of a simple closed curve into (arbitrary small) arcs. The existence
of it has been proved by Yatsuka Nakamura [21]. The concept of the gap of a
segmentation is also introduced. It is the smallest distance between disjoint seg-
ments in the segmentation. For this purpose, the relationship between segments
of an arc [24] and segments on a simple closed curve [21] has been shown.

MML Identifier: JORDAN A.

The papers [30], [35], [10], [3], [2], [29], [1], [13], [8], [9], [7], [4], [34], [25], [33],
[22], [20], [28], [15], [26], [27], [18], [6], [12], [31], [19], [14], [16], [17], [23], [5],
[24], [21], [11], and [32] provide the notation and terminology for this paper.

1. Preliminaries

The scheme AndScheme deals with a non empty set A and two unary pre-
dicates P, Q, and states that:

{a; a ranges over elements of A : P[a] ∧ Q[a]} = {a1; a1 ranges
over elements of A : P[a1]} ∩ {a2; a2 ranges over elements of A :
Q[a2]}

for all values of the parameters.
For simplicity, we follow the rules: C is a simple closed curve, p, q are points

of E2
T, i, j, k, n are natural numbers, and e is a real number.
The following proposition is true

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102 and TYPES grant IST-1999-29001.
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(1) For all finite non empty subsets A, B of R holds min(A ∪ B) =
min(min A, min B).

Let T be a non empty topological space. One can check that there exists a
subset of T which is compact and non empty.

Next we state several propositions:

(2) Let T be a non empty topological space, f be a continuous real map of
T , and A be a compact subset of T . Then f◦A is compact.

(3) For every compact subset A of R and for every non empty subset B of
R such that B ⊆ A holds inf B ∈ A.

(4) Let A, B be compact non empty subsets of En
T, f be a continuous real

map of [: En
T, En

T :], and g be a real map of En
T. Suppose that for every point

p of En
T there exists a subset G of R such that G = {f(p, q); q ranges over

points of En
T: q ∈ B} and g(p) = inf G. Then inf(f◦[:A, B :]) = inf(g◦A).

(5) Let A, B be compact non empty subsets of En
T, f be a continuous real

map of [: En
T, En

T :], and g be a real map of En
T. Suppose that for every point

q of En
T there exists a subset G of R such that G = {f(p, q); p ranges over

points of En
T: p ∈ A} and g(q) = inf G. Then inf(f◦[:A, B :]) = inf(g◦B).

(6) If q ∈ LowerArc(C) and q 6= Wmin(C), then Emax(C) ¬C q.

(7) If q ∈ UpperArc(C), then q ¬C Emax(C).

2. The Euclidean Distance

Let us consider n. The functor EuclDist(n) yielding a real map of [: En
T, En

T :]
is defined as follows:

(Def. 1) For all points p, q of En
T holds (EuclDist(n))(p, q) = |p− q|.

Let T be a non empty topological space and let f be a real map of T . Let
us observe that f is continuous if and only if:

(Def. 2) For every point p of T and for every neighbourhood N of f(p) there
exists a neighbourhood V of p such that f◦V ⊆ N.

Let us consider n. Note that EuclDist(n) is continuous.

3. On the Distance between Subsets of a Euclidean Space

The following proposition is true

(8) For all non empty compact subsets A, B of En
T such that A misses B

holds distmin(A,B) > 0.
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4. On the Segments

The following propositions are true:

(9) If p ¬C q and q ¬C Emax(C) and p 6= q, then Segment(p, q, C) =
Segment(UpperArc(C), Wmin(C), Emax(C), p, q).

(10) If Emax(C) ¬C q, then Segment(Emax(C), q, C) = Segment(LowerArc(C),
Emax(C), Wmin(C), Emax(C), q).

(11) If Emax(C) ¬C q, then Segment(q, Wmin(C), C) = Segment(LowerArc(C),
Emax(C), Wmin(C), q, Wmin(C)).

(12) If p ¬C q and Emax(C) ¬C p, then Segment(p, q, C) =
Segment(LowerArc(C), Emax(C), Wmin(C), p, q).

(13) If p ¬C Emax(C) and Emax(C) ¬C q, then Segment(p, q, C) =
RSegment(UpperArc(C), Wmin(C), Emax(C), p)∪LSegment(LowerArc(C),
Emax(C), Wmin(C), q).

(14) If p ¬C Emax(C), then Segment(p, Wmin(C), C) = RSegment(UpperArc
(C), Wmin(C), Emax(C), p) ∪ LSegment(LowerArc(C), Emax(C), Wmin(C),
Wmin(C)).

(15) RSegment(UpperArc(C), Wmin(C), Emax(C), p) = Segment(UpperArc
(C), Wmin(C), Emax(C), p, Emax(C)).

(16) LSegment(LowerArc(C), Emax(C), Wmin(C), p) = Segment(LowerArc(C),
Emax(C), Wmin(C), Emax(C), p).

(17) For every point p of E2
T such that p ∈ C and p 6= Wmin(C) holds

Segment(p, Wmin(C), C) is an arc from p to Wmin(C).
(18) For all points p, q of E2

T such that p 6= q and p ¬C q holds
Segment(p, q, C) is an arc from p to q.

(19) C = Segment(Wmin(C), Wmin(C), C).
(20) For every point q of E2

T such that q ∈ C holds Segment(q, Wmin(C), C)
is compact.

(21) For all points q1, q2 of E2
T such that q1 ¬C q2 holds Segment(q1, q2, C) is

compact.

5. The Concept of a Segmentation

Let us consider C. A finite sequence of elements of E2
T is said to be a seg-

mentation of C if it satisfies the conditions (Def. 3).

(Def. 3) It1 = Wmin(C) and it is one-to-one and 8 ¬ len it and rng it ⊆ C

and for every natural number i such that 1 ¬ i and i < len it holds
iti ¬C iti+1 and for every natural number i such that 1 ¬ i and
i + 1 < len it holds Segment(iti, iti+1, C) ∩ Segment(iti+1, iti+2, C) =
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{iti+1} and Segment(itlen it, it1, C) ∩ Segment(it1, it2, C) = {it1} and
Segment(itlen it−′1, itlen it, C) ∩ Segment(itlen it, it1, C) = {itlen it} and
Segment(itlen it−′1, itlen it, C) misses Segment(it1, it2, C) and for all natu-
ral numbers i, j such that 1 ¬ i and i < j and j < len it and i and j

are not adjacent holds Segment(iti, iti+1, C) misses Segment(itj , itj+1, C)
and for every natural number i such that 1 < i and i + 1 < len it holds
Segment(itlen it, it1, C) misses Segment(iti, iti+1, C).

Let us consider C. One can verify that every segmentation of C is non trivial.
One can prove the following proposition

(22) For every segmentation S of C and for every i such that 1 ¬ i and
i ¬ len S holds Si ∈ C.

6. The Segments of a Segmentation

Let us consider C, let i be a natural number, and let S be a segmentation
of C. The functor Segm(S, i) yields a subset of E2

T and is defined by:

(Def. 4) Segm(S, i) =
{

Segment(Si, Si+1, C), if 1 ¬ i and i < len S,

Segment(Slen S , S1, C), otherwise.
The following proposition is true

(23) For every segmentation S of C such that i ∈ dom S holds Segm(S, i) ⊆ C.

Let us consider C, let S be a segmentation of C, and let us consider i. Note
that Segm(S, i) is non empty and compact.

We now state several propositions:

(24) For every segmentation S of C and for every p such that p ∈ C there
exists a natural number i such that i ∈ dom S and p ∈ Segm(S, i).

(25) Let S be a segmentation of C and given i, j. Suppose 1 ¬ i and i < j and
j < len S and i and j are not adjacent. Then Segm(S, i) misses Segm(S, j).

(26) For every segmentation S of C and for every j such that 1 < j and
j < len S −′ 1 holds Segm(S, len S) misses Segm(S, j).

(27) Let S be a segmentation of C and given i, j. Suppose 1 ¬ i and i < j and
j < len S and i and j are adjacent. Then Segm(S, i)∩Segm(S, j) = {Si+1}.

(28) Let S be a segmentation of C and given i, j. Suppose 1 ¬ i and i < j

and j < len S and i and j are adjacent. Then Segm(S, i) meets Segm(S, j).
(29) For every segmentation S of C holds Segm(S, len S)∩Segm(S, 1) = {S1}.
(30) For every segmentation S of C holds Segm(S, len S) meets Segm(S, 1).
(31) For every segmentation S of C holds Segm(S, len S) ∩ Segm(S, len S −′

1) = {Slen S}.
(32) For every segmentation S of C holds Segm(S, len S) meets

Segm(S, len S −′ 1).
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7. The Diameter of a Segmentation

Let us consider n and let C be a subset of En
T. The functor ØC yielding a

real number is defined by:

(Def. 5) There exists a subset W of En such that W = C and ØC = ØW.

Let us consider C and let S be a segmentation of C. The functor ØS yielding
a real number is defined as follows:

(Def. 6) There exists a non empty finite subset S1 of R such that S1 =
{Ø Segm(S, i) : i ∈ dom S} and ØS = max S1.

We now state three propositions:

(33) For every segmentation S of C and for every i holds Ø Segm(S, i) ¬ ØS.

(34) For every segmentation S of C and for every real number e such that for
every i holds Ø Segm(S, i) < e holds ØS < e.

(35) For every real number e such that e > 0 there exists a segmentation S

of C such that ØS < e.

8. The Concept of the Gap of a Segmentation

Let us consider C and let S be a segmentation of C. The functor Gap(S)
yields a real number and is defined by the condition (Def. 7).

(Def. 7) There exist non empty finite subsets S1, S2 of R such that S1 =
{distmin(Segm(S, i), Segm(S, j)) : 1 ¬ i ∧ i < j ∧ j < len S ∧ i

and j are not adjacent} and S2 = {distmin(Segm(S, len S), Segm(S, k)) :
1 < k ∧ k < len S −′ 1} and Gap(S) = min(min S1, min S2).

Next we state two propositions:

(36) Let S be a segmentation of C. Then there exists a finite non empty
subset F of R such that F = {distmin(Segm(S, i), Segm(S, j)) : 1 ¬ i ∧ i <

j ∧ j ¬ len S ∧ Segm(S, i) misses Segm(S, j)} and Gap(S) = min F.

(37) For every segmentation S of C holds Gap(S) > 0.
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Summary. In this paper, we have binary arithmetic and its related ope-
rations. We include some theorems concerning logical operators.

MML Identifier: BINARI 5.

The notation and terminology used in this paper have been introduced in the
following articles: [3], [4], [2], and [1].

Let x, y be boolean sets. The functor x ′nand′ y is defined as follows:

(Def. 1) x ′nand′ y = ¬(x ∧ y).
Let us note that the functor x ′nand′ y is commutative.

Let x, y be boolean sets. Note that x ′nand′ y is boolean.
Let x, y be elements of Boolean. Then x ′nand′ y is an element of Boolean.
Let x, y be boolean sets. The functor x ′nor′ y is defined by:

(Def. 2) x ′nor′ y = ¬(x ∨ y).
Let us note that the functor x ′nor′ y is commutative.

Let x, y be boolean sets. Note that x ′nor′ y is boolean.
Let x, y be elements of Boolean. Then x ′nor′ y is an element of Boolean.
Let x, y be boolean sets. The functor x ′xnor′ y is defined as follows:

(Def. 3) x ′xnor′ y = ¬(x⊕ y).
Let us observe that the functor x ′xnor′ y is commutative.

Let x, y be boolean sets. Note that x ′xnor′ y is boolean.
Let x, y be elements of Boolean. Then x ′xnor′ y is an element of Boolean.
In the sequel x, y, z, w are boolean sets.
The following propositions are true:

(1) true ′nand′ x = ¬x.

(2) false ′nand′ x = true.

(3) x ′nand′ x = ¬x and ¬(x ′nand′ x) = x.
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(4) ¬(x ′nand′ y) = x ∧ y.

(5) x ′nand′ ¬x = true and ¬(x ′nand′ ¬x) = false.

(6) x ′nand′ y ∧ z = ¬(x ∧ y ∧ z).
(7) x ′nand′ y ∧ z = x ∧ y ′nand′ z.

(8) x ′nand′ (y ∨ z) = ¬(x ∧ y) ∧ ¬(x ∧ z).
(9) x ′nand′ (y ⊕ z) = x ∧ y ⇔ x ∧ z.

(10) true ′nor′ x = false.

(11) false ′nor′ x = ¬x.

(12) x ′nor′ x = ¬x and ¬(x ′nor′ x) = x.

(13) ¬(x ′nor′ y) = x ∨ y.

(14) x ′nor′ ¬x = false and ¬(x ′nor′ ¬x) = true.

(15) x ′nor′ y ∧ z = ¬(x ∨ y) ∨ ¬(x ∨ z).
(16) x ′nor′ (y ∨ z) = ¬(x ∨ y ∨ z).
(17) true ′xnor′ x = x.

(18) false ′xnor′ x = ¬x.

(19) x ′xnor′ x = true and ¬(x ′xnor′ x) = false.

(20) ¬(x ′xnor′ y) = x⊕ y.

(21) x ′xnor′ ¬x = false and ¬(x ′xnor′ ¬x) = true.

(22) x b y ⇒ z iff x ∧ y b z.

(23) x⇔ y = (x⇒ y) ∧ (y ⇒ x).
(24) x⇔ y = true iff x⇒ y = true and y ⇒ x = true.

(25) If x⇒ y = true and y ⇒ x = true, then x = y.

(26) If x⇒ y = true and y ⇒ z = true, then x⇒ z = true.

(27) If x⇔ y = true and y ⇔ z = true, then x⇔ z = true.

(28) x⇒ y = ¬y ⇒ ¬x.

(29) x⇔ y = ¬x⇔ ¬y.

(30) If x⇔ y = true and z ⇔ w = true, then x ∧ z ⇔ y ∧ w = true.

(31) If x⇔ y = true and z ⇔ w = true, then x⇒ z ⇔ y ⇒ w = true.

(32) If x⇔ y = true and z ⇔ w = true, then x ∨ z ⇔ y ∨ w = true.

(33) If x⇔ y = true and z ⇔ w = true, then x⇔ z ⇔ y ⇔ w = true.

(34) If x = true and x⇒ y = true, then y = true.

(35) If y = true, then x⇒ y = true.

(36) If ¬x = true, then x⇒ y = true.

(37) x⇒ x = true.

(38) If x⇒ y = true and x⇒ ¬y = true, then ¬x = true.

(39) ¬x⇒ x⇒ x = true.

(40) x⇒ y ⇒ ¬(y ∧ z)⇒ ¬(x ∧ z) = true.
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(41) x⇒ y ⇒ y ⇒ z ⇒ x⇒ z = true.

(42) If x⇒ y = true, then y ⇒ z ⇒ x⇒ z = true.

(43) y ⇒ x⇒ y = true.

(44) x⇒ y ⇒ z ⇒ y ⇒ z = true.

(45) y ⇒ y ⇒ x⇒ x = true.

(46) z ⇒ y ⇒ x⇒ y ⇒ z ⇒ x = true.

(47) y ⇒ z ⇒ x⇒ y ⇒ x⇒ z = true.

(48) y ⇒ y ⇒ z ⇒ y ⇒ z = true.

(49) x⇒ y ⇒ z ⇒ x⇒ y ⇒ x⇒ z = true.

(50) If x = true, then x⇒ y ⇒ y = true.

(51) If z ⇒ y ⇒ x = true, then y ⇒ z ⇒ x = true.

(52) If z ⇒ y ⇒ x = true and y = true, then z ⇒ x = true.

(53) If z ⇒ y ⇒ x = true and y = true and z = true, then x = true.

(54) If y ⇒ y ⇒ z = true, then y ⇒ z = true.

(55) If x⇒ y ⇒ z = true, then x⇒ y ⇒ x⇒ z = true.
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Summary. The aim of the paper is to show that SCMPDS ([8]) does not
belong to the class of standard computers ([16]).

MML Identifier: SCMPDS 9.

The terminology and notation used in this paper are introduced in the following
papers: [14], [19], [11], [3], [2], [13], [6], [12], [17], [1], [5], [9], [18], [20], [7], [4],
[10], [15], [8], and [16].

1. Preliminaries

In this paper r, s are real numbers.
We now state several propositions:

(1) 0 ¬ r + |r|.
(2) 0 ¬ −r + |r|.
(3) If |r| = |s|, then r = s or r = −s.

(4) For all natural numbers i, j such that i < j and i 6= 0 holds i
j is not

integer.

(5) {2 · k; k ranges over natural numbers: k > 1} is infinite.

(6) For every function f and for all sets a, b, c such that a 6= c holds
(f+·(a 7−→. b))(c) = f(c).

(7) For every function f and for all sets a, b, c, d such that a 6= b holds
(f+·[a 7−→ c, b 7−→ d])(a) = c and (f+·[a 7−→ c, b 7−→ d])(b) = d.

1This paper was written during the first author’s post-doctoral fellowship granted by Shin-
shu University, Japan.
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2. SCMPDS

For simplicity, we adopt the following rules: a, b are Int positions, i is an
instruction of SCMPDS, l is an instruction-location of SCMPDS, and k, k1, k2

are integers.
Let l1, l2 be Int positions and let a, b be integers. Then [l1 7−→ a, l2 7−→ b]

is a finite partial state of SCMPDS.
One can verify that SCMPDS has non trivial instruction locations.
Let l be an instruction-location of SCMPDS. The functor locnum(l) yields

a natural number and is defined by:

(Def. 1) ilocnum(l) = l.

Let l be an instruction-location of SCMPDS. Then locnum(l) is an element
of N.

We now state a number of propositions:

(8) l = 2 · locnum(l) + 2.

(9) For all instruction-locations l3, l4 of SCMPDS such that l3 6= l4 holds
locnum(l3) 6= locnum(l4).

(10) For all instruction-locations l3, l4 of SCMPDS such that l3 6= l4 holds
Next(l3) 6= Next(l4).

(11) Let N be a set with non empty elements, S be an IC-Ins-separated
definite non empty non void AMI over N , i be an instruction of S, and l

be an instruction-location of S. Then JUMP(i) ⊆ NIC(i, l).
(12) If for every state s of SCMPDS such that ICs = l and s(l) = i holds

(Exec(i, s))(ICSCMPDS) = Next(ICs), then NIC(i, l) = {Next(l)}.
(13) If for every instruction-location l of SCMPDS holds NIC(i, l) =
{Next(l)}, then JUMP(i) is empty.

(14) NIC(goto k, l) = {2 · |k + locnum(l)|+ 2}.
(15) NIC(return a, l) = {2 · k; k ranges over natural numbers: k > 1}.
(16) NIC(saveIC(a, k1), l) = {Next(l)}.
(17) NIC(a:=k1, l) = {Next(l)}.
(18) NIC(ak1 :=k2, l) = {Next(l)}.
(19) NIC((a, k1) := (b, k2), l) = {Next(l)}.
(20) NIC(AddTo(a, k1, k2), l) = {Next(l)}.
(21) NIC(AddTo(a, k1, b, k2), l) = {Next(l)}.
(22) NIC(SubFrom(a, k1, b, k2), l) = {Next(l)}.
(23) NIC(MultBy(a, k1, b, k2), l) = {Next(l)}.
(24) NIC(Divide(a, k1, b, k2), l) = {Next(l)}.
(25) NIC((a, k1) <> 0 goto k2, l) = {Next(l), |2 · (k2 + locnum(l))|+ 2}.
(26) NIC((a, k1) <= 0 goto k2, l) = {Next(l), |2 · (k2 + locnum(l))|+ 2}.
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(27) NIC((a, k1) >= 0 goto k2, l) = {Next(l), |2 · (k2 + locnum(l))|+ 2}.
Let us consider k. Observe that JUMP(goto k) is empty.
Next we state the proposition

(28) JUMP(return a) = {2 · k; k ranges over natural numbers: k > 1}.
Let us consider a. Note that JUMP(return a) is infinite.
Let us consider a, k1. One can verify that JUMP(saveIC(a, k1)) is empty.
Let us consider a, k1. Observe that JUMP(a:=k1) is empty.
Let us consider a, k1, k2. Note that JUMP(ak1 :=k2) is empty.
Let us consider a, b, k1, k2. One can check that JUMP((a, k1) := (b, k2)) is

empty.
Let us consider a, k1, k2. One can verify that JUMP(AddTo(a, k1, k2)) is

empty.
Let us consider a, b, k1, k2. One can verify the following observations:

∗ JUMP(AddTo(a, k1, b, k2)) is empty,

∗ JUMP(SubFrom(a, k1, b, k2)) is empty,

∗ JUMP(MultBy(a, k1, b, k2)) is empty, and

∗ JUMP(Divide(a, k1, b, k2)) is empty.

Let us consider a, k1, k2. One can verify the following observations:

∗ JUMP((a, k1) <> 0 goto k2) is empty,

∗ JUMP((a, k1) <= 0 goto k2) is empty, and

∗ JUMP((a, k1) >= 0 goto k2) is empty.

Next we state two propositions:

(29) SUCC(l) = the instruction locations of SCMPDS.

(30) Let N be a set with non empty elements, S be an IC-Ins-separated
definite non empty non void AMI over N , and l3, l4 be instruction-locations
of S. If SUCC(l3) = the instruction locations of S, then l3 ¬ l4.

Let us mention that SCMPDS is non InsLoc-antisymmetric.
One can verify that SCMPDS is non standard.
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The papers [28], [32], [2], [15], [1], [5], [6], [4], [31], [16], [29], [17], [27], [13], [3],
[25], [26], [10], [11], [8], [30], [14], [20], [18], [12], [23], [22], [24], [7], [9], [19], and
[21] provide the terminology and notation for this paper.

In this paper n denotes a natural number.
Let C be a simple closed curve. The functor UpperAppr(C) yields a sequence

of subsets of the carrier of E2
T and is defined as follows:

(Def. 1) For every natural number i holds (UpperAppr(C))(i) =
UpperArc(L̃(Cage(C, i))).

The functor LowerAppr(C) yielding a sequence of subsets of the carrier of E2
T

is defined as follows:

(Def. 2) For every natural number i holds (LowerAppr(C))(i) =
LowerArc(L̃(Cage(C, i))).

Let C be a simple closed curve. The functor NorthArc(C) yields a subset of
E2

T and is defined by:

(Def. 3) NorthArc(C) = Li UpperAppr(C).
The functor SouthArc(C) yielding a subset of E2

T is defined as follows:

(Def. 4) SouthArc(C) = Li LowerAppr(C).
We now state a number of propositions:

(1) For all natural numbers n, m such that n ¬ m and n 6= 0 holds n+1
n ­

m+1
m .

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(2) Let E be a compact non vertical non horizontal subset of
E2

T and m, j be natural numbers. Suppose 1 ¬ m and
m ¬ n and 1 ¬ j and j ¬ width Gauge(E, n). Then
L(Gauge(E, n) ◦ (Center Gauge(E, n), width Gauge(E,n)), Gauge(E, n) ◦
(Center Gauge(E, n), j)) ⊆ L(Gauge(E,m) ◦ (Center Gauge(E, m),
width Gauge(E, m)), Gauge(E,n) ◦ (Center Gauge(E, n), j)).

(3) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n) and
1 ¬ j and j ¬ width Gauge(C, n) and Gauge(C, n)◦(i, j) ∈ L̃(Cage(C, n)).
Then L(Gauge(C, n) ◦ (i, width Gauge(C, n)), Gauge(C, n) ◦ (i, j)) meets
L̃(UpperSeq(C, n)).

(4) Let C be a compact connected non vertical non horizontal subset
of E2

T and n be a natural number. Suppose n > 0. Let i, j be na-
tural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n) and 1 ¬ j

and j ¬ width Gauge(C, n) and Gauge(C, n) ◦ (i, j) ∈ L̃(Cage(C, n)).
Then L(Gauge(C, n) ◦ (i, width Gauge(C, n)), Gauge(C, n) ◦ (i, j)) meets
UpperArc(L̃(Cage(C, n))).

(5) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and j be a natural number. Suppose Gauge(C, n +
1) ◦ (Center Gauge(C, n + 1), j) ∈ LowerArc(L̃(Cage(C, n + 1))) and
1 ¬ j and j ¬ width Gauge(C, n + 1). Then L(Gauge(C, 1) ◦
(Center Gauge(C, 1), width Gauge(C, 1)), Gauge(C, n + 1) ◦ (Center Gauge
(C, n + 1), j)) meets UpperArc(L̃(Cage(C, n + 1))).

(6) Let C be a compact connected non vertical non horizontal subset of
E2

T, f be a finite sequence of elements of E2
T, and k be a natural number.

Suppose 1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong
to Gauge(C, n). Then ρ(fk, fk+1) = N-bound(C)−S-bound(C)

2n or ρ(fk, fk+1) =
E-bound(C)−W-bound(C)

2n .

(7) Let M be a symmetric triangle metric structure, r be a real number,
and p, q, x be elements of M . If p ∈ Ball(x, r) and q ∈ Ball(x, r), then
ρ(p, q) < 2 · r.

(8) Let A be a subset of En
T, p be a point of En

T, and p′ be a point of En.
Suppose p = p′. Let s be a real number. Suppose s > 0. Then p ∈ A if and
only if for every real number r such that 0 < r and r < s holds Ball(p′, r)
meets A.

(9) For every compact connected non vertical non horizontal subset C of E2
T

holds N-bound(C) < N-bound(L̃(Cage(C, n))).

(10) For every compact connected non vertical non horizontal subset C of E2
T

holds E-bound(C) < E-bound(L̃(Cage(C, n))).

(11) For every compact connected non vertical non horizontal subset C of E2
T
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holds S-bound(L̃(Cage(C, n))) < S-bound(C).
(12) For every compact connected non vertical non horizontal subset C of E2

T
holds W-bound(L̃(Cage(C, n))) < W-bound(C).

(13) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ k and k ¬ j

and j ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (i, k), Gauge(C, n) ◦
(i, j)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦
(i, k), Gauge(C, n) ◦ (i, j)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (i, j)}.
Then L(Gauge(C, n) ◦ (i, k), Gauge(C, n) ◦ (i, j)) meets UpperArc(C).

(14) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ k and k ¬ j

and j ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (i, k), Gauge(C, n) ◦
(i, j)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦
(i, k), Gauge(C, n) ◦ (i, j)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (i, j)}.
Then L(Gauge(C, n) ◦ (i, k), Gauge(C, n) ◦ (i, j)) meets LowerArc(C).

(15) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose that 1 < i and i < len Gauge(C, n) and 1 ¬
j and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩ LowerArc(L̃(Cage(C, n))) =
{Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩
UpperArc(L̃(Cage(C, n))) = {Gauge(C, n) ◦ (i, j)}. Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets UpperArc(C).

(16) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose that 1 < i and i < len Gauge(C, n) and 1 ¬
j and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩ LowerArc(L̃(Cage(C, n))) =
{Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩
UpperArc(L̃(Cage(C, n))) = {Gauge(C, n) ◦ (i, j)}. Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets LowerArc(C).

(17) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < i and i < len Gauge(C, n) and 1 ¬ j and j ¬ k and
k ¬ width Gauge(C, n) and Gauge(C, n) ◦ (i, k) ∈ L̃(LowerSeq(C, n))
and Gauge(C, n) ◦ (i, j) ∈ L̃(UpperSeq(C, n)). Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets UpperArc(C).

(18) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < i and i < len Gauge(C, n) and 1 ¬ j and j ¬ k and
k ¬ width Gauge(C, n) and Gauge(C, n) ◦ (i, k) ∈ L̃(LowerSeq(C, n))
and Gauge(C, n) ◦ (i, j) ∈ L̃(UpperSeq(C, n)). Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets LowerArc(C).

(19) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ j
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and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (i, k) ∈ LowerArc(L̃(Cage(C, n))) and Gauge(C, n) ◦ (i, j) ∈
UpperArc(L̃(Cage(C, n))). Then L(Gauge(C, n)◦(i, j), Gauge(C, n)◦(i, k))
meets UpperArc(C).

(20) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ j

and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (i, k) ∈ LowerArc(L̃(Cage(C, n))) and Gauge(C, n) ◦ (i, j) ∈
UpperArc(L̃(Cage(C, n))). Then L(Gauge(C, n)◦(i, j), Gauge(C, n)◦(i, k))
meets LowerArc(C).

(21) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i1 and i1 ¬ i2 and i2 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i1, j)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i2, k)}.
Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets UpperArc(C).

(22) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i1 and i1 ¬ i2 and i2 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i1, j)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i2, k)}.
Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets LowerArc(C).

(23) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i2 and i2 ¬ i1 and i1 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i1, j)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i2, k)}.
Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets UpperArc(C).

(24) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i2 and i2 ¬ i1 and i1 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
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(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i1, j)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i2, k)}.
Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets LowerArc(C).

(25) Let C be a simple closed curve and i1, i2, j, k be natural numbers.
Suppose that 1 < i1 and i1 < len Gauge(C, n + 1) and 1 < i2 and i2 <

len Gauge(C, n+1) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n+1) and
Gauge(C, n+1)◦(i1, k) ∈ LowerArc(L̃(Cage(C, n+1))) and Gauge(C, n+
1) ◦ (i2, j) ∈ UpperArc(L̃(Cage(C, n + 1))). Then L(Gauge(C, n + 1) ◦
(i2, j), Gauge(C, n+1)◦ (i2, k))∪L(Gauge(C, n+1)◦ (i2, k), Gauge(C, n+
1) ◦ (i1, k)) meets LowerArc(C).

(26) Let C be a simple closed curve and i1, i2, j, k be natural numbers.
Suppose that 1 < i1 and i1 < len Gauge(C, n + 1) and 1 < i2 and i2 <

len Gauge(C, n+1) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n+1) and
Gauge(C, n+1)◦(i1, k) ∈ LowerArc(L̃(Cage(C, n+1))) and Gauge(C, n+
1) ◦ (i2, j) ∈ UpperArc(L̃(Cage(C, n + 1))). Then L(Gauge(C, n + 1) ◦
(i2, j), Gauge(C, n+1)◦ (i2, k))∪L(Gauge(C, n+1)◦ (i2, k), Gauge(C, n+
1) ◦ (i1, k)) meets UpperArc(C).

(27) For every simple closed curve C and for every point p of E2
T such that

W-bound(C) < p1 and p1 < E-bound(C) holds p /∈ NorthArc(C) or
p /∈ SouthArc(C).

(28) For every simple closed curve C and for every point p of E2
T such that

p1 = W-bound(C)+E-bound(C)
2 holds p /∈ NorthArc(C) or p /∈ SouthArc(C).
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