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Summary. In this article, a new radix-2k signed-digit number (Radix-2k

sub signed-digit number) is defined and its properties for hardware realization
are discussed.

Until now, high speed calculation method with Radix-2k signed-digit num-
bers is proposed, but this method used “Compares With 2” to calculate carry.
“Compares with 2” is a very simple method, but it needs very complicated har-
dware especially when the value of k becomes large. In this article, we propose
a subset of Radix-2k signed-digit, named Radix-2k sub signed-digit numbers.
Radix-2k sub signed-digit was designed so that the carry calculation use “bit
compare” to hardware-realization simplifies more.

In the first section of this article, we defined the concept of Radix-2k sub
signed-digit numbers and proved some of their properties. In the second sec-
tion, we defined the new carry calculation method in consideration of hardware-
realization, and proved some of their properties. In the third section, we provide
some functions for generating Radix-2k sub signed-digit numbers from Radix-2k

signed-digit numbers. In the last section, we defined some functions for generation
natural numbers from Radix-2k sub signed-digit, and we clarified its correctness.

MML Identifier: RADIX 3.

The articles [11], [14], [8], [12], [1], [4], [3], [13], [10], [7], [2], [9], [5], and [6]
provide the notation and terminology for this paper.

1. Definition for Radix-2k Sub Signed-Digit Number

We adopt the following convention: i, n, m, k, x are natural numbers and
i1, i2 are integers.

Next we state the proposition
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(1) ((Radix k)n
N) · Radix k = (Radix k)n+1

N .

Let us consider k. The functor k−SD Sub S is defined as follows:

(Def. 1) k−SD Sub S = {e; e ranges over elements of Z: e ­ −Radix(k −′ 1) ∧
e ¬ Radix(k −′ 1)− 1}.

Let us consider k. The functor k−SD Sub is defined by:

(Def. 2) k−SD Sub = {e; e ranges over elements of Z: e ­ −Radix(k −′ 1)− 1 ∧
e ¬ Radix(k −′ 1)}.

The following propositions are true:

(2) If i1 ∈ k−SD Sub, then −Radix(k −′ 1)−1 ¬ i1 and i1 ¬ Radix(k−′ 1).
(3) For every natural number k holds k−SD Sub S ⊆ k−SD Sub .

(4) k−SD Sub S ⊆ (k + 1)−SD Sub S .

(5) For every natural number k such that 2 ¬ k holds k−SD Sub ⊆ k−SD .

(6) 0 ∈ 0−SD Sub S .

(7) 0 ∈ k−SD Sub S .

(8) 0 ∈ k−SD Sub .

(9) For every set e such that e ∈ k−SD Sub holds e is an integer.

(10) k−SD Sub ⊆ Z.

(11) k−SD Sub S ⊆ Z.

Let us consider k. One can verify that k−SD Sub S is non empty.
Let us consider k. Note that k−SD Sub is non empty.
Let us consider k. Then k−SD Sub S is a non empty subset of Z.
Let us consider k. Then k−SD Sub is a non empty subset of Z.
In the sequel a denotes a n-tuple of k−SD and a1 denotes a n-tuple of

k−SD Sub.
One can prove the following proposition

(12) If i ∈ Seg n, then a1(i) is an element of k−SD Sub.

2. Definition for New Carry Calculation Method

Let x be an integer and let k be a natural number.
The functor SDSubAddCarry(x, k) yields an integer and is defined as follows:

(Def. 3) SDSubAddCarry(x, k) =





1, if Radix(k −′ 1) ¬ x,

−1, if x < −Radix(k −′ 1),
0, otherwise.

Let x be an integer and let k be a natural number.
The functor SDSubAddData(x, k) yields an integer and is defined as follows:

(Def. 4) SDSubAddData(x, k) = x− Radix k · SDSubAddCarry(x, k).
One can prove the following propositions:
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(13) For every integer x and for every natural number k such that 2 ¬ k holds
−1 ¬ SDSubAddCarry(x, k) and SDSubAddCarry(x, k) ¬ 1.

(14) If 2 ¬ k and i1 ∈ k−SD, then SDSubAddData(i1, k) ­ −Radix(k −′ 1)
and SDSubAddData(i1, k) ¬ Radix(k −′ 1)− 1.

(15) For every integer x and for every natural number k such that 2 ¬ k holds
SDSubAddCarry(x, k) ∈ k−SD Sub S .

(16) If 2 ¬ k and i1 ∈ k−SD and i2 ∈ k−SD, then SDSubAddData(i1, k) +
SDSubAddCarry(i2, k) ∈ k−SD Sub .

(17) If 2 ¬ k, then SDSubAddCarry(0, k) = 0.

3. Definition for Translation from Radix-2k Signed-Digit Number

Let i, k, n be natural numbers and let x be a n-tuple of k−SD Sub. The
functor DigA SDSub(x, i) yields an integer and is defined as follows:

(Def. 5)(i) DigA SDSub(x, i) = x(i) if i ∈ Seg n,

(ii) DigA SDSub(x, i) = 0 if i = 0.

Let i, k, n be natural numbers and let x be a n-tuple of k−SD. The functor
SD2SDSubDigit(x, i, k) yields an integer and is defined by:

(Def. 6) SD2SDSubDigit(x, i, k) =





(i) SDSubAddData(DigA(x, i), k)+
SDSubAddCarry(DigA(x, i−′ 1), k),
if i ∈ Seg n,

(ii) SDSubAddCarry(DigA(x, i−′ 1), k),
if i = n + 1,

0, otherwise.
We now state the proposition

(18) If 2 ¬ k and i ∈ Seg(n + 1), then SD2SDSubDigit(a, i, k) is an element
of k−SD Sub.

Let i, k, n be natural numbers and let x be a n-tuple of k−SD. Let us
assume that 2 ¬ k and i ∈ Seg(n + 1). The functor SD2SDSubDigitS(x, i, k)
yielding an element of k−SD Sub is defined by:

(Def. 7) SD2SDSubDigitS(x, i, k) = SD2SDSubDigit(x, i, k).
Let n, k be natural numbers and let x be a n-tuple of k−SD. The functor

SD2SDSub x yielding a n + 1-tuple of k−SD Sub is defined by:

(Def. 8) For every natural number i such that i ∈ Seg(n + 1) holds
DigA SDSub(SD2SDSub x, i) = SD2SDSubDigitS(x, i, k).

Next we state two propositions:

(19) If i ∈ Seg n, then DigA SDSub(a1, i) is an element of k−SD Sub.

(20) If 2 ¬ k and i1 ∈ k−SD and i2 ∈ k−SD Sub, then SDSubAddData(i1 +
i2, k) ∈ k−SD Sub S .
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4. Definiton for Translation from Radix-2k Sub Signed-Digit
Number to INT

Let i, k, n be natural numbers and let x be a n-tuple of k−SD Sub. The
functor DigB SDSub(x, i) yielding an element of Z is defined by:

(Def. 9) DigB SDSub(x, i) = DigA SDSub(x, i).
Let i, k, n be natural numbers and let x be a n-tuple of k−SD Sub. The

functor SDSub2INTDigit(x, i, k) yielding an element of Z is defined as follows:

(Def. 10) SDSub2INTDigit(x, i, k) = ((Radix k)i−′1
N ) ·DigB SDSub(x, i).

Let n, k be natural numbers and let x be a n-tuple of k−SD Sub. The
functor SDSub2INT x yields a n-tuple of Z and is defined as follows:

(Def. 11) For every natural number i such that i ∈ Seg n holds (SDSub2INT x)i =
SDSub2INTDigit(x, i, k).

Let n, k be natural numbers and let x be a n-tuple of k−SD Sub. The
functor SDSub2IntOut x yields an integer and is defined as follows:

(Def. 12) SDSub2IntOut x =
∑

SDSub2INT x.

Next we state two propositions:

(21) For every i such that i ∈ Seg n holds if 2 ¬ k, then
DigA SDSub(SD2SDSub DecSD(m,n + 1, k), i) =
DigA SDSub(SD2SDSub DecSD(m mod (Radix k)n

N, n, k), i).
(22) For every n such that n ­ 1 and for all k, x such that k ­ 2 and x is

represented by n, k holds x = SDSub2IntOut SD2SDSub DecSD(x, n, k).
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Summary. In this article, a new adder algorithm using Radix-2k sub
signed-digit numbers is defined and properties for the hardware-realization is
discussed.

Until now, we proposed Radix-2k sub signed-digit numbers in consideration
of the hardware realization. In this article, we proposed High Speed Adder Algo-
rithm using this Radix-2k sub signed-digit numbers. This method has two ways
to speed up at hardware-realization. One is ’bit compare’ at carry calculation, it
is proposed in another article. Other is carry calculation between two numbers.
We proposed that n digits Radix-2k signed-digit numbers is expressed in n + 1

digits Radix-2k sub signed-digit numbers, and addition result of two n + 1 digits
Radix-2k sub signed-digit numbers is expressed in n+1 digits. In this way, carry
operation between two Radix-2k sub signed-digit numbers can be processed at
n + 1 digit adder circuit and additional circuit to operate carry is not needed.

In the first section of this article, we prepared some useful theorems for
operation of Radix-2k numbers. In the second section, we proved some properties
about carry on Radix-2k sub signed-digit numbers. In the last section, we defined
the new addition operation using Radix-2k sub signed-digit numbers, and we
clarified its correctness.

MML Identifier: RADIX 4.

The terminology and notation used here are introduced in the following articles:
[11], [13], [12], [1], [4], [3], [10], [7], [2], [8], [5], [6], and [9].

1. Preliminaries

In this paper i, n, m, k, x, y are natural numbers.
The following proposition is true
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(1) For every natural number k such that 2 ¬ k holds 2 < Radix k.

2. Carry Operation at n + 1 Digits Radix-2k Sub Signed-Digit
Number

The following propositions are true:

(2) For all integers x, y and for every natural number k such that 3 ¬ k holds
SDSubAddCarry(SDSubAddCarry(x, k) + SDSubAddCarry(y, k), k) = 0.

(3) If 2 ¬ k, then DigA SDSub(SD2SDSub DecSD(m,n, k), n + 1) =
SDSubAddCarry(DigA(DecSD(m, n, k), n), k).

(4) If 2 ¬ k and m is represented by 1, k, then
DigA SDSub(SD2SDSub DecSD(m, 1, k), 1+1) = SDSubAddCarry(m, k).

(5) Let k, x, n be natural numbers. Suppose n ­ 1 and k ­ 3 and x

is represented by n + 1, k. Then DigA SDSub(SD2SDSub DecSD(x mod
(Radix k)n

N, n, k), n + 1) = SDSubAddCarry(DigA(DecSD(x, n, k), n), k).
(6) If 2 ¬ k and m is represented by 1, k, then

DigA SDSub(SD2SDSub DecSD(m, 1, k), 1) = m−SDSubAddCarry(m, k)·
Radix k.

(7) Let k, x, n be natural numbers. Suppose n ­ 1 and
k ­ 2 and x is represented by n + 1, k. Then ((Radix k)n

N) ·
DigA SDSub(SD2SDSub DecSD(x, n + 1, k), n + 1) = (((Radix k)n

N) ·
DigA(DecSD(x, n + 1, k), n + 1)− ((Radix k)n+1

N ) · SDSubAddCarry(DigA
(DecSD(x, n+1, k), n+1), k))+((Radix k)n

N)·SDSubAddCarry(DigA(DecSD
(x, n + 1, k), n), k).

3. Definition for Adder Operation on Radix-2k Sub Signed-Digit
Number

Let i, n, k be natural numbers, let x be a n-tuple of k−SD Sub, and let
y be a n-tuple of k−SD Sub. Let us assume that i ∈ Seg n and k ­ 2. The
functor SDSubAddDigit(x, y, i, k) yields an element of k−SD Sub and is defined
as follows:

(Def. 1) SDSubAddDigit(x, y, i, k) = SDSubAddData(DigA SDSub(x, i)+
DigA SDSub(y, i), k) + SDSubAddCarry(DigA SDSub(x, i−′ 1)+
DigA SDSub(y, i−′ 1), k).

Let n, k be natural numbers and let x, y be n-tuples of k−SD Sub. The
functor x′ +′ y yields a n-tuple of k−SD Sub and is defined by:

(Def. 2) For every i such that i ∈ Seg n holds DigA SDSub(x′ +′ y, i) =
SDSubAddDigit(x, y, i, k).



high speed adder algorithm with radix-2k . . . 141

Next we state two propositions:

(8) For every i such that i ∈ Seg n holds if 2 ¬ k, then
SDSubAddDigit(SD2SDSub DecSD(x, n + 1, k), SD2SDSub DecSD(y, n +
1, k), i, k) = SDSubAddDigit(SD2SDSub DecSD(x mod (Radix k)n

N, n, k),
SD2SDSub DecSD(y mod (Radix k)n

N, n, k), i, k).
(9) Let given n. Suppose n ­ 1. Let given k, x, y. Suppose k ­ 3 and

x is represented by n, k and y is represented by n, k. Then x + y =
SDSub2IntOut SD2SDSub DecSD(x, n, k)′ +′ SD2SDSub DecSD(y, n, k).
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Summary. A path from a source vertex v to a target vertex u is said to
be a shortest path if its total cost is minimum among all v-to-u paths. Dijk-
stra’s algorithm is a classic shortest path algorithm, which is described in many
textbooks. To justify its correctness (whose rigorous proof will be given in the
next article), it is necessary to clarify its underlying principle. For this purpose,
the article justifies the following basic facts, which are the core of Dijkstra’s
algorithm.

• A graph is given, its vertex set is denoted by V. Assume U is the subset of
V, and if a path p from s to t is the shortest among the set of paths, each
of which passes through only the vertices in U, except the source and sink,
and its source and sink is s and in V, respectively, then p is a shortest path
from s to t in the graph, and for any subgraph which contains at least U,

it is also the shortest.
• Let p(s, x, U) denote the shortest path from s to x in a subgraph whose

the vertex set is the union of {s, x} and U, and cost (p) denote the cost of
path p(s, x, U), cost(x, y) the cost of the edge from x to y. Give p(s, x, U),

q(s, y, U) and r(s, y, U∪{x}). If cost(p) = min{cost(w) : w(s, t, U)∧t ∈ V },
then we have

cost(r) = min(cost(p) + cost(x, y), cost(q)).

This is the well-known triangle comparison of Dijkstra’s algorithm.

MML Identifier: GRAPH 5.

The articles [14], [16], [13], [17], [5], [3], [4], [15], [1], [8], [9], [2], [10], [6], [12],
[7], and [11] provide the terminology and notation for this paper.
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1. Preliminaries

We follow the rules: n, m, i, j, k denote natural numbers, x, y, e, X, V , U

denote sets, and W , f , g denote functions.
Let f be a finite function. Observe that rng f is finite.
One can prove the following two propositions:

(1) For every finite function f holds card rng f ¬ card dom f.

(2) If rng f ⊆ rng g and x ∈ dom f, then there exists y such that y ∈ dom g

and f(x) = g(y).
The scheme LambdaAB deals with sets A, B and a unary functor F yielding

a set, and states that:
There exists a function f such that dom f = A and for every
element x of B such that x ∈ A holds f(x) = F(x)

for all values of the parameters.
The following propositions are true:

(3) Let D be a finite set, n be a natural number, and X be a set. If X = {x; x
ranges over elements of D∗: 1 ¬ len x ∧ len x ¬ n}, then X is finite.

(4) Let D be a finite set, n be a natural number, and X be a set. If X = {x; x
ranges over elements of D∗: len x ¬ n}, then X is finite.

(5) For every finite set D holds card D 6= 0 iff D 6= ∅.
(6) Let D be a finite set and k be a natural number. Suppose card D = k+1.

Then there exists an element x of D and there exists a subset C of D such
that D = C ∪ {x} and card C = k.

(7) For every finite set D such that card D = 1 there exists an element x of
D such that D = {x}.

The scheme MinValue deals with a non empty finite set A and a unary
functor F yielding a real number, and states that:

There exists an element x of A such that for every element y of
A holds F(x) ¬ F(y)

for all values of the parameters.
Let D be a set and let X be a non empty subset of D∗. We see that the

element of X is a finite sequence of elements of D.

2. Additional Properties of Finite Sequences

In the sequel p, q are finite sequences.
One can prove the following propositions:

(8) p 6= ∅ iff len p ­ 1.

(9) For all n, m such that 1 ¬ n and n < m and m ¬ len p holds p(n) 6= p(m)
iff p is one-to-one.
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(10) For all n, m such that 1 ¬ n and n < m and m ¬ len p holds p(n) 6= p(m)
iff card rng p = len p.

In the sequel G denotes a graph and p1, q1 denote finite sequences of elements
of the edges of G.

Next we state two propositions:

(11) If i ∈ dom p1, then (the source of G)(p1(i)) ∈ the vertices of G and (the
target of G)(p1(i)) ∈ the vertices of G.

(12) If q a 〈x〉 is one-to-one and rng(q a 〈x〉) ⊆ rng p, then there exist finite
sequences p2, p3 such that p = p2

a 〈x〉 a p3 and rng q ⊆ rng(p2
a p3).

3. Additional Properties of Chains and Oriented Paths

One can prove the following three propositions:

(13) If p a q is a chain of G, then p is a chain of G and q is a chain of G.

(14) If p a q is an oriented chain of G, then p is an oriented chain of G and q

is an oriented chain of G.

(15) Let p, q be oriented chains of G. Suppose (the target of G)(p(len p)) =
(the source of G)(q(1)). Then p a q is an oriented chain of G.

4. Additional Properties of Acyclic Oriented Paths

The following propositions are true:

(16) ∅ is a Simple oriented chain of G.

(17) Suppose paq is a Simple oriented chain of G. Then p is a Simple oriented
chain of G and q is a Simple oriented chain of G.

(18) If len p1 = 1, then p1 is a Simple oriented chain of G.

(19) Let p be a Simple oriented chain of G and q be a finite sequence of
elements of the edges of G. Suppose that

(i) len p ­ 1,

(ii) len q = 1,

(iii) (the source of G)(q(1)) = (the target of G)(p(len p)),
(iv) (the source of G)(p(1)) 6= (the target of G)(p(len p)), and
(v) it is not true that there exists k such that 1 ¬ k and k ¬ len p and (the

target of G)(p(k)) = (the target of G)(q(1)).
Then p a q is a Simple oriented chain of G.

(20) Every Simple oriented chain of G is one-to-one.
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5. The Set of the Vertices On a Path or an Edge

Let G be a graph and let e be an element of the edges of G. The functor
vertices e is defined as follows:

(Def. 1) vertices e = {(the source of G)(e), (the target of G)(e)}.
Let us consider G, p1. The functor vertices p1 yields a subset of the vertices

of G and is defined by:

(Def. 2) vertices p1 = {v; v ranges over vertices of G:
∨

i (i ∈ dom p1 ∧ v ∈
vertices((p1)i))}.

We now state several propositions:

(21) Let p be a Simple oriented chain of G. Suppose p = p1
a q1 and len p1 ­ 1

and len q1 ­ 1 and (the source of G)(p(1)) 6= (the target of G)(p(len p)).
Then (the source of G)(p(1)) /∈ vertices q1 and (the target of G)(p(len p)) /∈
vertices p1.

(22) vertices p1 ⊆ V iff for every i such that i ∈ dom p1 holds vertices((p1)i) ⊆
V.

(23) Suppose vertices p1 6⊆ V. Then there exists a natural number i and there
exist finite sequences q, r of elements of the edges of G such that i +
1 ¬ len p1 and vertices((p1)i+1) 6⊆ V and len q = i and p1 = q a r and
vertices q ⊆ V.

(24) If rng q1 ⊆ rng p1, then vertices q1 ⊆ vertices p1.

(25) If rng q1 ⊆ rng p1 and vertices p1 \X ⊆ V, then vertices q1 \X ⊆ V.

(26) If vertices(p1
a q1)\X ⊆ V, then vertices p1\X ⊆ V and vertices q1\X ⊆

V.

In the sequel v, v1, v2, v3 denote elements of the vertices of G.
One can prove the following four propositions:

(27) For every element e of the edges of G such that v = (the source of G)(e)
or v = (the target of G)(e) holds v ∈ vertices e.

(28) If i ∈ dom p1 and if v = (the source of G)(p1(i)) or v = (the target of
G)(p1(i)), then v ∈ vertices p1.

(29) If len p1 = 1, then vertices p1 = vertices((p1)1).
(30) vertices p1 ⊆ vertices(p1

a q1) and vertices q1 ⊆ vertices(p1
a q1).

In the sequel p, q are oriented chains of G.
Next we state two propositions:

(31) If p = q a p1 and len q ­ 1 and len p1 = 1, then vertices p = vertices q ∪
{(the target of G)(p1(1))}.

(32) If v 6= (the source of G)(p(1)) and v ∈ vertices p, then there exists i such
that 1 ¬ i and i ¬ len p and v = (the target of G)(p(i)).
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6. Directed Paths between Two Vertices

Let us consider G, p, v1, v2. We say that p is oriented path from v1 to v2 if
and only if:

(Def. 3) p 6= ∅ and (the source of G)(p(1)) = v1 and (the target of G)(p(len p)) =
v2.

Let us consider G, v1, v2, p, V . We say that p is oriented path from v1 to v2

in V if and only if:

(Def. 4) p is oriented path from v1 to v2 and vertices p \ {v2} ⊆ V.

Let G be a graph and let v1, v2 be elements of the vertices of G. The functor
OrientedPaths(v1, v2) yields a subset of (the edges of G)∗ and is defined by:

(Def. 5) OrientedPaths(v1, v2) = {p; p ranges over oriented chains of G: p is orien-
ted path from v1 to v2}.

Next we state several propositions:

(33) If p is oriented path from v1 to v2, then v1 ∈ vertices p and v2 ∈ vertices p.

(34) x ∈ OrientedPaths(v1, v2) iff there exists p such that p = x and p is
oriented path from v1 to v2.

(35) If p is oriented path from v1 to v2 in V and v1 6= v2, then v1 ∈ V.

(36) If p is oriented path from v1 to v2 in V and V ⊆ U, then p is oriented
path from v1 to v2 in U .

(37) Suppose len p ­ 1 and p is oriented path from v1 to v2 and p1(1) orien-
tedly joins v2, v3 and len p1 = 1. Then there exists q such that q = p a p1

and q is oriented path from v1 to v3.

(38) Suppose q = p a p1 and len p ­ 1 and len p1 = 1 and p is oriented path
from v1 to v2 in V and p1(1) orientedly joins v2, v3. Then q is oriented
path from v1 to v3 in V ∪ {v2}.

7. Acyclic (or Simple) Paths

Let G be a graph, let p be an oriented chain of G, and let v1, v2 be elements
of the vertices of G. We say that p is acyclic path from v1 to v2 if and only if:

(Def. 6) p is Simple and oriented path from v1 to v2.

Let G be a graph, let p be an oriented chain of G, let v1, v2 be elements of
the vertices of G, and let V be a set. We say that p is acyclic path from v1 to
v2 in V if and only if:

(Def. 7) p is Simple and oriented path from v1 to v2 in V .

Let G be a graph and let v1, v2 be elements of the vertices of G. The functor
AcyclicPaths(v1, v2) yielding a subset of (the edges of G)∗ is defined as follows:
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(Def. 8) AcyclicPaths(v1, v2) = {p; p ranges over Simple oriented chains of G: p

is acyclic path from v1 to v2}.
Let G be a graph, let v1, v2 be elements of the vertices of G, and let V be

a set. The functor AcyclicPaths(v1, v2, V ) yielding a subset of (the edges of G)∗

is defined as follows:

(Def. 9) AcyclicPaths(v1, v2, V ) = {p; p ranges over Simple oriented chains of G:
p is acyclic path from v1 to v2 in V }.

Let G be a graph and let p be an oriented chain of G. The functor
AcyclicPaths(p) yielding a subset of (the edges of G)∗ is defined by the con-

dition (Def. 10).

(Def. 10) AcyclicPaths(p) = {q; q ranges over Simple oriented chains of G: q 6=
∅ ∧ (the source of G)(q(1)) = (the source of G)(p(1)) ∧ (the target of
G)(q(len q)) = (the target of G)(p(len p)) ∧ rng q ⊆ rng p}.

Let G be a graph. The functor AcyclicPaths(G) yields a subset of
(the edges of G)∗ and is defined as follows:

(Def. 11) AcyclicPaths(G) = {q : q ranges over Simple oriented chains of G}.
The following propositions are true:

(39) If p = ∅, then p is not acyclic path from v1 to v2.

(40) If p is acyclic path from v1 to v2, then p is oriented path from v1 to v2.

(41) AcyclicPaths(v1, v2) ⊆ OrientedPaths(v1, v2).

(42) AcyclicPaths(p) ⊆ AcyclicPaths(G).

(43) AcyclicPaths(v1, v2) ⊆ AcyclicPaths(G).

(44) If p is oriented path from v1 to v2, then AcyclicPaths(p) ⊆
AcyclicPaths(v1, v2).

(45) If p is oriented path from v1 to v2 in V , then AcyclicPaths(p) ⊆
AcyclicPaths(v1, v2, V ).

(46) If q ∈ AcyclicPaths(p), then len q ¬ len p.

(47) If p is oriented path from v1 to v2, then AcyclicPaths(p) 6= ∅ and
AcyclicPaths(v1, v2) 6= ∅.

(48) If p is oriented path from v1 to v2 in V , then AcyclicPaths(p) 6= ∅ and
AcyclicPaths(v1, v2, V ) 6= ∅.

(49) AcyclicPaths(v1, v2, V ) ⊆ AcyclicPaths(G).

8. Weight Graphs and Their Basic Properties

The subset R­0 of R is defined by:

(Def. 12) R­0 = {r; r ranges over real numbers: r ­ 0}.
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Let us mention that R­0 is non empty.
Let G be a graph and let W be a function. We say that W is nonnegative

weight of G if and only if:

(Def. 13) W is a function from the edges of G into R­0.

Let G be a graph and let W be a function. We say that W is weight of G if
and only if:

(Def. 14) W is a function from the edges of G into R.

Let G be a graph, let p be a finite sequence of elements of the edges of G,
and let W be a function. Let us assume that W is weight of G. The functor
RealSequence(p,W ) yielding a finite sequence of elements of R is defined as
follows:

(Def. 15) dom p = dom RealSequence(p, W ) and for every natural number i such
that i ∈ dom p holds (RealSequence(p,W ))(i) = W (p(i)).

Let G be a graph, let p be a finite sequence of elements of the edges of G,
and let W be a function. The functor cost(p, W ) yields a real number and is
defined as follows:

(Def. 16) cost(p,W ) =
∑

RealSequence(p,W ).

Next we state a number of propositions:

(50) If W is nonnegative weight of G, then W is weight of G.

(51) Let f be a finite sequence of elements of R. Suppose W is nonnegative
weight of G and f = RealSequence(p1,W ). Let given i. If i ∈ dom f, then
f(i) ­ 0.

(52) If rng q1 ⊆ rng p1 and W is weight of G and i ∈ dom q1, then
there exists j such that j ∈ dom p1 and (RealSequence(p1, W ))(j) =
(RealSequence(q1,W ))(i).

(53) If len q1 = 1 and rng q1 ⊆ rng p1 and W is nonnegative weight of G, then
cost(q1,W ) ¬ cost(p1,W ).

(54) If W is nonnegative weight of G, then cost(p1,W ) ­ 0.

(55) If p1 = ∅ and W is weight of G, then cost(p1,W ) = 0.

(56) Let D be a non empty finite subset of (the edges of G)∗. If D =
AcyclicPaths(v1, v2), then there exists p1 such that p1 ∈ D and for every
q1 such that q1 ∈ D holds cost(p1,W ) ¬ cost(q1,W ).

(57) Let D be a non empty finite subset of (the edges of G)∗. If D =
AcyclicPaths(v1, v2, V ), then there exists p1 such that p1 ∈ D and for
every q1 such that q1 ∈ D holds cost(p1,W ) ¬ cost(q1,W ).

(58) If W is weight of G, then cost(p1
a q1,W ) = cost(p1, W ) + cost(q1,W ).

(59) If q1 is one-to-one and rng q1 ⊆ rng p1 and W is nonnegative weight of
G, then cost(q1,W ) ¬ cost(p1,W ).
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(60) If p1 ∈ AcyclicPaths(p) and W is nonnegative weight of G, then
cost(p1,W ) ¬ cost(p,W ).

9. Shortest Paths and Their Basic Properties

Let G be a graph, let v1, v2 be vertices of G, let p be an oriented chain of
G, and let W be a function. We say that p is shortest path from v1 to v2 in W

if and only if the conditions (Def. 17) are satisfied.

(Def. 17)(i) p is oriented path from v1 to v2, and
(ii) for every oriented chain q of G such that q is oriented path from v1 to

v2 holds cost(p,W ) ¬ cost(q, W ).
Let G be a graph, let v1, v2 be vertices of G, let p be an oriented chain of

G, let V be a set, and let W be a function. We say that p is shortest path from
v1 to v2 in V w.r.t. W if and only if the conditions (Def. 18) are satisfied.

(Def. 18)(i) p is oriented path from v1 to v2 in V , and
(ii) for every oriented chain q of G such that q is oriented path from v1 to

v2 in V holds cost(p,W ) ¬ cost(q,W ).

10. Basic Properties of a Graph with Finite Vertices

For simplicity, we adopt the following rules: G is a finite graph, p4 is a Simple
oriented chain of G, P , Q are oriented chains of G, v1, v2, v3 are elements of
the vertices of G, and p1, q1 are finite sequences of elements of the edges of G.

One can prove the following two propositions:

(61) len p4 ¬ the number of vertices of G.

(62) len p4 ¬ the number of edges of G.

Let us consider G. Note that AcyclicPaths(G) is finite.
Let us consider G, P . Note that AcyclicPaths(P ) is finite.
Let us consider G, v1, v2. One can verify that AcyclicPaths(v1, v2) is finite.
Let us consider G, v1, v2, V . Observe that AcyclicPaths(v1, v2, V ) is finite.
We now state four propositions:

(63) If AcyclicPaths(v1, v2) 6= ∅, then there exists p1 such that p1 ∈
AcyclicPaths(v1, v2) and for every q1 such that q1 ∈ AcyclicPaths(v1, v2)
holds cost(p1,W ) ¬ cost(q1,W ).

(64) If AcyclicPaths(v1, v2, V ) 6= ∅, then there exists p1 such that
p1 ∈ AcyclicPaths(v1, v2, V ) and for every q1 such that q1 ∈
AcyclicPaths(v1, v2, V ) holds cost(p1,W ) ¬ cost(q1,W ).

(65) If P is oriented path from v1 to v2 and W is nonnegative weight of G,
then there exists a Simple oriented chain of G which is shortest path from
v1 to v2 in W .
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(66) Suppose P is oriented path from v1 to v2 in V and W is nonnegative
weight of G. Then there exists a Simple oriented chain of G which is
shortest path from v1 to v2 in V w.r.t. W .

11. Three Basic Theorems for Dijkstra’s Shortest Path Algorithm

We now state two propositions:

(67) Suppose that
(i) W is nonnegative weight of G,
(ii) P is shortest path from v1 to v2 in V w.r.t. W ,
(iii) v1 6= v2, and
(iv) for all Q, v3 such that v3 /∈ V and Q is shortest path from v1 to v3 in

V w.r.t. W holds cost(P,W ) ¬ cost(Q,W ).
Then P is shortest path from v1 to v2 in W .

(68) Suppose that
(i) W is nonnegative weight of G,
(ii) P is shortest path from v1 to v2 in V w.r.t. W ,
(iii) v1 6= v2,

(iv) V ⊆ U, and
(v) for all Q, v3 such that v3 /∈ V and Q is shortest path from v1 to v3 in

V w.r.t. W holds cost(P,W ) ¬ cost(Q,W ).
Then P is shortest path from v1 to v2 in U w.r.t. W .

Let G be a graph, let p1 be a finite sequence of elements of the edges of G,
let V be a set, let v1 be a vertex of G, and let W be a function. We say that
p1 is longest in shortest path from v1 in V w.r.t. W if and only if the condition
(Def. 19) is satisfied.

(Def. 19) Let v be a vertex of G. Suppose v ∈ V and v 6= v1. Then there exists an
oriented chain q of G such that q is shortest path from v1 to v in V w.r.t.
W and cost(q, W ) ¬ cost(p1,W ).

One can prove the following proposition

(69) Let G be a finite oriented graph, P , Q, R be oriented chains of G, and
v1, v2, v3 be elements of the vertices of G such that e ∈ the edges of G

and W is nonnegative weight of G and len P ­ 1 and P is shortest path
from v1 to v2 in V w.r.t. W and v1 6= v2 and v1 6= v3 and R = P a 〈e〉 and
Q is shortest path from v1 to v3 in V w.r.t. W and e orientedly joins v2,
v3 and P is longest in shortest path from v1 in V w.r.t. W . Then

(i) if cost(Q,W ) ¬ cost(R, W ), then Q is shortest path from v1 to v3 in
V ∪ {v2} w.r.t. W , and

(ii) if cost(Q,W ) ­ cost(R, W ), then R is shortest path from v1 to v3 in
V ∪ {v2} w.r.t. W .
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Summary. In [1] the pseudo-metric distmax
min on compact subsets A and B

of a topological space generated from arbitrary metric space is defined. Using
this notion we define the Hausdorff distance (see e.g. [5]) of A and B as a maxi-
mum of the two pseudo-distances: from A to B and from B to A. We justify its
distance properties. At the end we define some special notions which enable to
apply the Hausdorff distance operator “HausDist” to the subsets of the Euclidean
topological space En

T .

MML Identifier: HAUSDORF.

The papers [16], [18], [15], [10], [17], [19], [3], [14], [6], [9], [8], [11], [2], [7], [4],
[1], [13], and [12] provide the terminology and notation for this paper.

1. Preliminaries

Let r be a real number. Then {r} is a subset of R.
Let M be a non empty metric space. One can verify that Mtop is T2.
Next we state a number of propositions:

(1) For all real numbers x, y such that x ­ 0 and y ­ 0 and max(x, y) = 0
holds x = 0.

(2) For every non empty metric space M and for every point x of M holds
(dist(x))(x) = 0.

(3) For every non empty metric space M and for every subset P of Mtop

and for every point x of M such that x ∈ P holds 0 ∈ (dist(x))◦P.
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(4) Let M be a non empty metric space, P be a subset of Mtop, x be a point
of M , and y be a real number. If y ∈ (dist(x))◦P, then y ­ 0.

(5) For every non empty metric space M and for every subset P of Mtop

and for every set x such that x ∈ P holds (distmin(P ))(x) = 0.
(6) Let M be a non empty metric space, p be a point of M , q be a point

of Mtop, and r be a real number. If p = q and r > 0, then Ball(p, r) is a
neighbourhood of q.

(7) Let M be a non empty metric space, A be a subset of Mtop, and p be a
point of M . Then p ∈ A if and only if for every real number r such that
r > 0 holds Ball(p, r) meets A.

(8) Let M be a non empty metric space, p be a point of M , and A be a
subset of Mtop. Then p ∈ A if and only if for every real number r such
that r > 0 there exists a point q of M such that q ∈ A and ρ(p, q) < r.

(9) Let M be a non empty metric space, P be a non empty subset of Mtop,
and x be a point of M . Then (distmin(P ))(x) = 0 if and only if for every
real number r such that r > 0 there exists a point p of M such that p ∈ P

and ρ(x, p) < r.

(10) Let M be a non empty metric space, P be a non empty subset of Mtop,
and x be a point of M . Then x ∈ P if and only if (distmin(P ))(x) = 0.

(11) Let M be a non empty metric space, P be a non empty closed subset of
Mtop, and x be a point of M . Then x ∈ P if and only if (distmin(P ))(x) = 0.

(12) For every non empty subset A of the carrier of R1 there exists a non
empty subset X of R such that A = X and inf A = inf X.

(13) For every non empty subset A of the carrier of R1 there exists a non
empty subset X of R such that A = X and sup A = sup X.

(14) Let M be a non empty metric space, P be a non empty subset of Mtop,
x be a point of M , and X be a subset of R. If X = (dist(x))◦P, then X is
lower bounded.

(15) Let M be a non empty metric space, P be a non empty subset of Mtop,
and x, y be points of M . If y ∈ P, then (distmin(P ))(x) ¬ ρ(x, y).

(16) Let M be a non empty metric space, P be a non empty subset of Mtop,
r be a real number, and x be a point of M . If for every point y of M such
that y ∈ P holds ρ(x, y) ­ r, then (distmin(P ))(x) ­ r.

(17) Let M be a non empty metric space, P be a non empty subset of Mtop,
and x, y be points of M . Then (distmin(P ))(x) ¬ ρ(x, y)+(distmin(P ))(y).

(18) Let M be a non empty metric space, P be a subset of the carrier of
Mtop, and Q be a non empty subset of the carrier of M . If P = Q, then
Mtop¹P = (M¹Q)top.

(19) Let M be a non empty metric space, A be a subset of M , B be a non
empty subset of the carrier of M , and C be a subset of M¹B. If A ⊆ B
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and A = C and C is bounded, then A is bounded.

(20) Let M be a non empty metric space, B be a subset of M , and A be a
subset of Mtop. If A = B and A is compact, then B is bounded.

(21) Let M be a non empty metric space, P be a non empty subset of Mtop,
and z be a point of M . Then there exists a point w of M such that w ∈ P

and (distmin(P ))(z) ¬ ρ(w, z).

Let M be a non empty metric space and let x be a point of M . Note that
dist(x) is continuous.

Let M be a non empty metric space and let X be a compact non empty
subset of Mtop. One can check that distmax(X) is continuous and distmin(X) is
continuous.

One can prove the following propositions:

(22) Let M be a non empty metric space, P be a non empty subset of Mtop,
and x, y be points of M . If y ∈ P and P is compact, then (distmax(P ))(x) ­
ρ(x, y).

(23) Let M be a non empty metric space, P be a non empty subset of Mtop,
and z be a point of M . If P is compact, then there exists a point w of M

such that w ∈ P and (distmax(P ))(z) ­ ρ(w, z).

(24) Let M be a non empty metric space, P , Q be non empty subsets of Mtop,
and z be a point of M . If P is compact and Q is compact and z ∈ Q, then
(distmin(P ))(z) ¬ distmax

max(P, Q).

(25) Let M be a non empty metric space, P , Q be non empty subsets of Mtop,
and z be a point of M . If P is compact and Q is compact and z ∈ Q, then
(distmax(P ))(z) ¬ distmax

max(P, Q).

(26) Let M be a non empty metric space, P , Q be non empty subsets of Mtop,
and X be a subset of R. If X = (distmax(P ))◦Q and P is compact and Q

is compact, then X is upper bounded.

(27) Let M be a non empty metric space, P , Q be non empty subsets of Mtop,
and X be a subset of R. If X = (distmin(P ))◦Q and P is compact and Q

is compact, then X is upper bounded.

(28) Let M be a non empty metric space, P be a non empty subset of
Mtop, and z be a point of M . If P is compact, then (distmin(P ))(z) ¬
(distmax(P ))(z).

(29) For every non empty metric space M and for every non empty subset P

of Mtop holds (distmin(P ))◦P = {0}.
(30) Let M be a non empty metric space and P , Q be non empty subsets of

Mtop. If P is compact and Q is compact, then distmax
min (P, Q) ­ 0.

(31) For every non empty metric space M and for every non empty subset P

of Mtop holds distmax
min (P, P ) = 0.
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(32) Let M be a non empty metric space and P , Q be non empty subsets of
Mtop. If P is compact and Q is compact, then distmin

max(P, Q) ­ 0.

(33) Let M be a non empty metric space, Q, R be non empty subsets of Mtop,
and y be a point of M . If Q is compact and R is compact and y ∈ Q, then
(distmin(R))(y) ¬ distmax

min (R, Q).

2. The Hausdorff Distance

Let M be a non empty metric space and let P , Q be subsets of Mtop. The
functor HausDist(P, Q) yields a real number and is defined by:

(Def. 1) HausDist(P,Q) = max(distmax
min (P, Q), distmax

min (Q,P )).
Let us notice that the functor HausDist(P, Q) is commutative.

The following propositions are true:

(34) Let M be a non empty metric space, Q, R be non empty subsets of Mtop,
and y be a point of M . If Q is compact and R is compact and y ∈ Q, then
(distmin(R))(y) ¬ HausDist(Q,R).

(35) Let M be a non empty metric space and P , Q, R be non empty sub-
sets of Mtop. If P is compact and Q is compact and R is compact, then
distmax

min (P, R) ¬ HausDist(P,Q) + HausDist(Q,R).
(36) Let M be a non empty metric space and P , Q, R be non empty sub-

sets of Mtop. If P is compact and Q is compact and R is compact, then
distmax

min (R,P ) ¬ HausDist(P,Q) + HausDist(Q,R).
(37) Let M be a non empty metric space and P , Q be non empty subsets of

Mtop. If P is compact and Q is compact, then HausDist(P,Q) ­ 0.

(38) For every non empty metric space M and for every non empty subset P

of Mtop holds HausDist(P, P ) = 0.
(39) Let M be a non empty metric space and P , Q be non empty subsets of

Mtop. If P is compact and Q is compact and HausDist(P,Q) = 0, then
P = Q.

(40) Let M be a non empty metric space and P , Q, R be non empty sub-
sets of Mtop. If P is compact and Q is compact and R is compact, then
HausDist(P, R) ¬ HausDist(P,Q) + HausDist(Q,R).

Let n be a natural number and let P , Q be subsets of the carrier of En
T. The

functor distmax
min (P, Q) yields a real number and is defined by:

(Def. 2) There exist subsets P ′, Q′ of (En)top such that P = P ′ and Q = Q′ and
distmax

min (P, Q) = distmax
min (P ′, Q′).

Let n be a natural number and let P , Q be subsets of the carrier of En
T. The

functor HausDist(P, Q) yields a real number and is defined by:

(Def. 3) There exist subsets P ′, Q′ of (En)top such that P = P ′ and Q = Q′ and
HausDist(P, Q) = HausDist(P ′, Q′).



on the hausdorff distance between compact . . . 157

Let us note that the functor HausDist(P,Q) is commutative.
In the sequel n denotes a natural number.
Next we state four propositions:

(41) For all non empty subsets P , Q of En
T such that P is compact and Q is

compact holds HausDist(P, Q) ­ 0.

(42) For every non empty subset P of En
T holds HausDist(P, P ) = 0.

(43) For all non empty subsets P , Q of En
T such that P is compact and Q is

compact and HausDist(P, Q) = 0 holds P = Q.

(44) For all non empty subsets P , Q, R of En
T such that P is compact and Q

is compact and R is compact holds HausDist(P, R) ¬ HausDist(P,Q) +
HausDist(Q,R).
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1. Preliminaries

We use the following convention: X, x, y, z are sets and n, m, k, k′, d′ are
natural numbers.

The following two propositions are true:

(1) For all real numbers x, y such that x < y there exists a real number z

such that x < z and z < y.

(2) For all real numbers x, y there exists a real number z such that x < z

and y < z.

The scheme FrSet 1 2 deals with a non empty set A, a non empty set B, a
binary functor F yielding an element of A, and a binary predicate P, and states
that:

{F(x, y);x ranges over elements of B, y ranges over elements of
B : P[x, y]} ⊆ A

for all values of the parameters.
Let B be a set and let A be a subset of B. Then 2A is a subset of 2B.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102
and TYPES grant IST-1999-29001.
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Let X be a set. A subset of X is an element of 2X .
Let d be a real natural number. Let us observe that d is zero if and only if:

(Def. 1) d 6> 0.

Let d be a natural number. Let us observe that d is zero if and only if:

(Def. 2) d 6­ 1.

Let us note that there exists a natural number which is non zero.
In the sequel d denotes a non zero natural number.
Let us consider d. Observe that Seg d is non empty.
In the sequel i, i0 denote elements of Seg d.

Let us consider X. Let us observe that X is trivial if and only if:

(Def. 3) For all x, y such that x ∈ X and y ∈ X holds x = y.

Next we state the proposition

(4)2 {x, y} is trivial iff x = y.

Let us observe that there exists a set which is non trivial and finite.
Let X be a non trivial set and let Y be a set. Note that X ∪Y is non trivial

and Y ∪X is non trivial.
Let us observe that R is non trivial.
Let X be a non trivial set. Observe that there exists a subset of X which is

non trivial and finite.
The following proposition is true

(5) If X is trivial and X ∪ {y} is non trivial, then there exists x such that
X = {x}.

Now we present two schemes. The scheme NonEmptyFinite deals with a non
empty set A, a non empty finite subset B of A, and a unary predicate P, and
states that:

P[B]
provided the following requirements are met:
• For every element x of A such that x ∈ B holds P[{x}], and
• Let x be an element of A and B be a non empty finite subset of
A. If x ∈ B and B ⊆ B and x /∈ B and P[B], then P[B ∪ {x}].

The scheme NonTrivialFinite deals with a non trivial set A, a non trivial
finite subset B of A, and a unary predicate P, and states that:

P[B]
provided the following conditions are met:
• For all elements x, y of A such that x ∈ B and y ∈ B and x 6= y

holds P[{x, y}], and
• Let x be an element of A and B be a non trivial finite subset of
A. If x ∈ B and B ⊆ B and x /∈ B and P[B], then P[B ∪ {x}].

Next we state the proposition

2The proposition (3) has been removed.
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(6) X = 2 iff there exist x, y such that x ∈ X and y ∈ X and x 6= y and for
every z such that z ∈ X holds z = x or z = y.

Let X, Y be finite sets. Note that X−. Y is finite.
We now state three propositions:

(7) m is even iff n is even iff m + n is even.

(8) Let X, Y be finite sets. Suppose X misses Y . Then card X is even iff
card Y is even if and only if card(X ∪ Y ) is even.

(9) For all finite sets X, Y holds card X is even iff card Y is even iff
card(X−. Y ) is even.

Let us consider n. Then Rn can be characterized by the condition:

(Def. 4) For every x holds x ∈ Rn iff x is a function from Seg n into R.

We adopt the following rules: l, r, l′, r′, x are elements of Rd, G1 is a non
trivial finite subset of R, and l1, r1, l′1, r′1, x1 are real numbers.

Let us consider d, x, i. Then x(i) is a real number.

2. Gratings, Cells, Chains, Cycles

Let us consider d. A function from Seg d into 2R is said to be a d-dimensional
grating if:

(Def. 5) For every i holds it(i) is non trivial and finite.

In the sequel G is a d-dimensional grating.
Let us consider d, G, i. Then G(i) is a non trivial finite subset of R.
The following propositions are true:

(10) x ∈∏
G iff for every i holds x(i) ∈ G(i).

(11)
∏

G is finite.

(12) For every non empty finite subset X of R there exists r1 such that r1 ∈ X

and for every x1 such that x1 ∈ X holds r1 ­ x1.

(13) For every non empty finite subset X of R there exists l1 such that l1 ∈ X

and for every x1 such that x1 ∈ X holds l1 ¬ x1.

(14) There exist l1, r1 such that l1 ∈ G1 and r1 ∈ G1 and l1 < r1 and for
every x1 such that x1 ∈ G1 holds l1 6< x1 or x1 6< r1.

(15) There exist l1, r1 such that l1 ∈ G1 and r1 ∈ G1 and r1 < l1 and for
every x1 such that x1 ∈ G1 holds x1 6< r1 and l1 6< x1.

Let us consider G1. An element of [:R, R :] is called a gap of G1 if it satisfies
the condition (Def. 6).

(Def. 6) There exist l1, r1 such that
(i) it = 〈〈l1, r1〉〉,
(ii) l1 ∈ G1,

(iii) r1 ∈ G1, and
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(iv) l1 < r1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 or x1 6< r1 or
r1 < l1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 and x1 6< r1.

The following propositions are true:

(16) 〈〈l1, r1〉〉 is a gap of G1 if and only if the following conditions are satisfied:
(i) l1 ∈ G1,

(ii) r1 ∈ G1, and
(iii) l1 < r1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 or x1 6< r1 or

r1 < l1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 and x1 6< r1.

(17) If G1 = {l1, r1}, then 〈〈l′1, r′1〉〉 is a gap of G1 iff l′1 = l1 and r′1 = r1 or
l′1 = r1 and r′1 = l1.

(18) If x1 ∈ G1, then there exists r1 such that 〈〈x1, r1〉〉 is a gap of G1.

(19) If x1 ∈ G1, then there exists l1 such that 〈〈l1, x1〉〉 is a gap of G1.

(20) If 〈〈l1, r1〉〉 is a gap of G1 and 〈〈l1, r′1〉〉 is a gap of G1, then r1 = r′1.
(21) If 〈〈l1, r1〉〉 is a gap of G1 and 〈〈l′1, r1〉〉 is a gap of G1, then l1 = l′1.
(22) If r1 < l1 and 〈〈l1, r1〉〉 is a gap of G1 and r′1 < l′1 and 〈〈l′1, r′1〉〉 is a gap of

G1, then l1 = l′1 and r1 = r′1.

Let us consider d, l, r. The functor cell(l, r) yielding a non empty subset of
Rd is defined as follows:

(Def. 7) cell(l, r) = {x :
∧

i (l(i) ¬ x(i) ∧ x(i) ¬ r(i)) ∨ ∨
i (r(i) < l(i) ∧ (x(i) ¬

r(i) ∨ l(i) ¬ x(i)))}.
We now state several propositions:

(23) x ∈ cell(l, r) iff for every i holds l(i) ¬ x(i) and x(i) ¬ r(i) or there
exists i such that r(i) < l(i) but x(i) ¬ r(i) or l(i) ¬ x(i).

(24) If for every i holds l(i) ¬ r(i), then x ∈ cell(l, r) iff for every i holds
l(i) ¬ x(i) and x(i) ¬ r(i).

(25) If there exists i such that r(i) < l(i), then x ∈ cell(l, r) iff there exists i

such that r(i) < l(i) but x(i) ¬ r(i) or l(i) ¬ x(i).

(26) l ∈ cell(l, r) and r ∈ cell(l, r).

(27) cell(x, x) = {x}.
(28) If for every i holds l′(i) ¬ r′(i), then cell(l, r) ⊆ cell(l′, r′) iff for every i

holds l′(i) ¬ l(i) and l(i) ¬ r(i) and r(i) ¬ r′(i).
(29) If for every i holds r(i) < l(i), then cell(l, r) ⊆ cell(l′, r′) iff for every i

holds r(i) ¬ r′(i) and r′(i) < l′(i) and l′(i) ¬ l(i).

(30) Suppose for every i holds l(i) ¬ r(i) and for every i holds r′(i) < l′(i).
Then cell(l, r) ⊆ cell(l′, r′) if and only if there exists i such that r(i) ¬ r′(i)
or l′(i) ¬ l(i).

(31) If for every i holds l(i) ¬ r(i) or for every i holds l(i) > r(i), then
cell(l, r) = cell(l′, r′) iff l = l′ and r = r′.
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Let us consider d, G, k. Let us assume that k ¬ d. The functor k- cells(G)
yields a finite non empty subset of 2Rd

and is defined by the condition (Def. 8).

(Def. 8) k- cells(G) = {cell(l, r) :
∨

X : subset of Seg d (card X = k ∧ ∧
i (i ∈ X ∧

l(i) < r(i) ∧ 〈〈l(i), r(i)〉〉 is a gap of G(i) ∨ i /∈ X ∧ l(i) = r(i) ∧ l(i) ∈
G(i))) ∨ k = d ∧ ∧

i (r(i) < l(i) ∧ 〈〈l(i), r(i)〉〉 is a gap of G(i))}.
We now state a number of propositions:

(32) Suppose k ¬ d. Let A be a subset of Rd. Then A ∈ k- cells(G) if and
only if there exist l, r such that A = cell(l, r) but there exists a subset X

of Seg d such that card X = k and for every i holds i ∈ X and l(i) < r(i)
and 〈〈l(i), r(i)〉〉 is a gap of G(i) or i /∈ X and l(i) = r(i) and l(i) ∈ G(i) or
k = d and for every i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).

(33) Suppose k ¬ d. Then cell(l, r) ∈ k- cells(G) if and only if one of the
following conditions is satisfied:

(i) there exists a subset X of Seg d such that card X = k and for every i

holds i ∈ X and l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i) or i /∈ X and
l(i) = r(i) and l(i) ∈ G(i), or

(ii) k = d and for every i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).
(34) Suppose k ¬ d and cell(l, r) ∈ k- cells(G). Then

(i) for every i holds l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i) or l(i) = r(i)
and l(i) ∈ G(i), or

(ii) for every i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).
(35) If k ¬ d and cell(l, r) ∈ k- cells(G), then for every i holds l(i) ∈ G(i) and

r(i) ∈ G(i).
(36) If k ¬ d and cell(l, r) ∈ k- cells(G), then for every i holds l(i) ¬ r(i) or

for every i holds r(i) < l(i).
(37) For every subset A of Rd holds A ∈ 0- cells(G) iff there exists x such

that A = cell(x, x) and for every i holds x(i) ∈ G(i).
(38) cell(l, r) ∈ 0- cells(G) iff l = r and for every i holds l(i) ∈ G(i).
(39) Let A be a subset of Rd. Then A ∈ d- cells(G) if and only if there exist l,

r such that A = cell(l, r) but for every i holds 〈〈l(i), r(i)〉〉 is a gap of G(i)
but for every i holds l(i) < r(i) or for every i holds r(i) < l(i).

(40) cell(l, r) ∈ d- cells(G) iff for every i holds 〈〈l(i), r(i)〉〉 is a gap of G(i) but
for every i holds l(i) < r(i) or for every i holds r(i) < l(i).

(41) Suppose d = d′ + 1. Let A be a subset of Rd. Then A ∈ d′- cells(G) if
and only if there exist l, r, i0 such that A = cell(l, r) and l(i0) = r(i0) and
l(i0) ∈ G(i0) and for every i such that i 6= i0 holds l(i) < r(i) and 〈〈l(i),
r(i)〉〉 is a gap of G(i).

(42) Suppose d = d′+1. Then cell(l, r) ∈ d′- cells(G) if and only if there exists
i0 such that l(i0) = r(i0) and l(i0) ∈ G(i0) and for every i such that i 6= i0
holds l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).
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(43) Let A be a subset of Rd. Then A ∈ 1- cells(G) if and only if there exist
l, r, i0 such that A = cell(l, r) and l(i0) < r(i0) or d = 1 and r(i0) < l(i0)
and 〈〈l(i0), r(i0)〉〉 is a gap of G(i0) and for every i such that i 6= i0 holds
l(i) = r(i) and l(i) ∈ G(i).

(44) cell(l, r) ∈ 1- cells(G) if and only if there exists i0 such that l(i0) < r(i0)
or d = 1 and r(i0) < l(i0) but 〈〈l(i0), r(i0)〉〉 is a gap of G(i0) but for every
i such that i 6= i0 holds l(i) = r(i) and l(i) ∈ G(i).

(45) Suppose k ¬ d and k′ ¬ d and cell(l, r) ∈ k- cells(G) and cell(l′, r′) ∈
k′- cells(G) and cell(l, r) ⊆ cell(l′, r′). Let given i. Then

(i) l(i) = l′(i) and r(i) = r′(i), or
(ii) l(i) = l′(i) and r(i) = l′(i), or
(iii) l(i) = r′(i) and r(i) = r′(i), or
(iv) l(i) ¬ r(i) and r′(i) < l′(i) and r′(i) ¬ l(i) and r(i) ¬ l′(i).

(46) Suppose k < k′ and k′ ¬ d and cell(l, r) ∈ k- cells(G) and cell(l′, r′) ∈
k′- cells(G) and cell(l, r) ⊆ cell(l′, r′). Then there exists i such that l(i) =
l′(i) and r(i) = l′(i) or l(i) = r′(i) and r(i) = r′(i).

(47) Let X, X ′ be subsets of Seg d. Suppose that
(i) cell(l, r) ⊆ cell(l′, r′),
(ii) for every i holds i ∈ X and l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i)

or i /∈ X and l(i) = r(i) and l(i) ∈ G(i), and
(iii) for every i holds i ∈ X ′ and l′(i) < r′(i) and 〈〈l′(i), r′(i)〉〉 is a gap of

G(i) or i /∈ X ′ and l′(i) = r′(i) and l′(i) ∈ G(i).
Then

(iv) X ⊆ X ′,
(v) for every i such that i ∈ X or i /∈ X ′ holds l(i) = l′(i) and r(i) = r′(i),

and
(vi) for every i such that i /∈ X and i ∈ X ′ holds l(i) = l′(i) and r(i) = l′(i)

or l(i) = r′(i) and r(i) = r′(i).

Let us consider d, G, k. A k-cell of G is an element of k- cells(G).
Let us consider d, G, k. A k-chain of G is a subset of k- cells(G).
Let us consider d, G, k. The functor 0kG yields a k-chain of G and is defined

as follows:

(Def. 9) 0kG = ∅.
Let us consider d, G. The functor ΩG yielding a d-chain of G is defined as

follows:

(Def. 10) ΩG = d- cells(G).
Let us consider d, G, k and let C1, C2 be k-chains of G. Then C1−. C2 is a

k-chain of G. We introduce C1 + C2 as a synonym of C1−. C2.

Let us consider d, G. The infinite cell of G yielding a d-cell of G is defined
by:
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(Def. 11) There exist l, r such that the infinite cell of G = cell(l, r) and for every
i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).

We now state two propositions:

(48) If cell(l, r) is a d-cell of G, then cell(l, r) = the infinite cell of G iff for
every i holds r(i) < l(i).

(49) cell(l, r) = the infinite cell of G iff for every i holds r(i) < l(i) and 〈〈l(i),
r(i)〉〉 is a gap of G(i).

The scheme ChainInd deals with a non zero natural numberA, aA-dimensional
grating B, a natural number C, a C-chain D of B, and a unary predicate P, and
states that:

P[D]
provided the parameters have the following properties:
• P[0CB],
• For every C-cell A of B such that A ∈ D holds P[{A}], and
• For all C-chains C1, C2 of B such that C1 ⊆ D and C2 ⊆ D and
P[C1] and P[C2] holds P[C1 + C2].

Let us consider d, G, k and let A be a k-cell of G. The functor A? yields a
k + 1-chain of G and is defined by:

(Def. 12) A? = {B; B ranges over k + 1-cells of G: A ⊆ B}.
Next we state the proposition

(50) For every k-cell A of G and for every k + 1-cell B of G holds B ∈ A? iff
A ⊆ B.

Let us consider d, G, k and let C be a k + 1-chain of G. The functor ∂C

yielding a k-chain of G is defined as follows:

(Def. 13) ∂C = {A; A ranges over k-cells of G: k + 1 ¬ d ∧ card(A? ∩C)is odd}.
We introduce Ċ as a synonym of ∂C.

Let us consider d, G, k, let C be a k + 1-chain of G, and let C ′ be a k-chain
of G. We say that C ′ bounds C if and only if:

(Def. 14) C ′ = ∂C.

The following propositions are true:

(51) For every k-cell A of G and for every k + 1-chain C of G holds A ∈ ∂C

iff k + 1 ¬ d and card(A? ∩ C) is odd.

(52) If k + 1 > d, then for every k + 1-chain C of G holds ∂C = 0kG.

(53) If k + 1 ¬ d, then for every k-cell A of G and for every k + 1-cell B of G

holds A ∈ ∂{B} iff A ⊆ B.

(54) If d = d′ + 1, then for every d′-cell A of G holds card A? = 2.

(55) For every d-dimensional grating G and for every 0 + 1-cell B of G holds
card ∂{B} = 2.

(56) ΩG = (0dG)c and 0dG = (ΩG)c.
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(57) For every k-chain C of G holds C + 0kG = C.

(58) For every k-chain C of G holds C + C = 0kG.

(59) For every d-chain C of G holds Cc = C + ΩG.

(60) ∂0k+1G = 0kG.

(61) For every d′ + 1-dimensional grating G holds ∂ΩG = 0d′G.

(62) For all k + 1-chains C1, C2 of G holds ∂(C1 + C2) = ∂C1 + ∂C2.

(63) For every d′ + 1-dimensional grating G and for every d′ + 1-chain C of
G holds ∂(Cc) = ∂C.

(64) For every k + 1 + 1-chain C of G holds ∂∂C = 0kG.

Let us consider d, G, k. A k-chain of G is called a k-cycle of G if:

(Def. 15) k = 0 and card it is even or there exists k′ such that k = k′+1 and there
exists a k′ + 1-chain C of G such that C = it and ∂C = 0k′G.

One can prove the following propositions:

(65) For every k +1-chain C of G holds C is a k +1-cycle of G iff ∂C = 0kG.

(66) If k > d, then every k-chain of G is a k-cycle of G.

(67) For every 0-chain C of G holds C is a 0-cycle of G iff card C is even.

Let us consider d, G, k and let C be a k + 1-cycle of G. Then ∂C can be
characterized by the condition:

(Def. 16) ∂C = 0kG.

Let us consider d, G, k. Then 0kG is a k-cycle of G.
Let us consider d, G. Then ΩG is a d-cycle of G.
Let us consider d, G, k and let C1, C2 be k-cycles of G. Then C1−. C2 is a

k-cycle of G. We introduce C1 + C2 as a synonym of C1−. C2.

We now state the proposition

(68) For every d-cycle C of G holds Cc is a d-cycle of G.

Let us consider d, G, k and let C be a k+1-chain of G. Then ∂C is a k-cycle
of G.

3. Groups and Homomorphisms

Let us consider d, G, k. The functor k- Chains(G) yields a strict Abelian
group and is defined by the conditions (Def. 17).

(Def. 17)(i) The carrier of k- Chains(G) = 2k- cells(G),

(ii) 0k- Chains(G) = 0kG, and
(iii) for all elements A, B of k- Chains(G) and for all k-chains A′, B′ of G

such that A = A′ and B = B′ holds A + B = A′ + B′.
Let us consider d, G, k. A k-grchain of G is an element of k- Chains(G).
One can prove the following proposition



chains on a grating in euclidean space 167

(69) For every set x holds x is a k-chain of G iff x is a k-grchain of G.

Let us consider d, G, k. The functor ∂ yielding a homomorphism from (k +
1)- Chains(G) to k- Chains(G) is defined by:

(Def. 18) For every element A of (k + 1)- Chains(G) and for every k + 1-chain A′

of G such that A = A′ holds ∂(A) = ∂A′.
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Summary. In this article we defined the operation of a set and proved
Bessel’s inequality. In the first section, we defined the sum of all results of an
operation, in which the results are given by taking each element of a set. In the
second section, we defined Orthogonal Family and Orthonormal Family. In the
last section, we proved some properties of operation of set and Bessel’s inequality.

MML Identifier: BHSP 5.

The articles [12], [16], [10], [7], [5], [6], [17], [15], [9], [13], [3], [8], [1], [11], [4],
[2], and [14] provide the terminology and notation for this paper.

1. Sum of the Result of Operation with Each Element of a Set

For simplicity, we adopt the following convention: X denotes a real unitary
space, x, y, y1, y2 denote points of X, i, j denote natural numbers, D1 denotes
a non empty set, and p1, p2 denote finite sequences of elements of D1.

Next we state the proposition

(1) Suppose p1 is one-to-one and p2 is one-to-one and rng p1 = rng p2. Then
dom p1 = dom p2 and there exists a permutation P of dom p1 such that
p2 = p1 · P and dom P = dom p1 and rng P = dom p1.

Let D1 be a non empty set and let f be a binary operation on D1. Let us
assume that f is commutative and associative and has a unity. Let Y be a finite
subset of D1. The functor f⊕Y yields an element of D1 and is defined as follows:

(Def. 1) There exists a finite sequence p of elements of D1 such that p is one-to-
one and rng p = Y and f ⊕ Y = f � p.

Let us consider X and let Y be a finite subset of the carrier of X. The
functor SetopSum(Y,X) is defined as follows:
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(Def. 2) SetopSum(Y, X) =
{

(the addition of X)⊕ Y, if Y 6= ∅,
0X , otherwise.

Let us consider X, x, let p be a finite sequence, and let us consider i. The
functor PO(i, p, x) is defined by:

(Def. 3) PO(i, p, x) = (the scalar product of X)(〈〈x, p(i)〉〉).
Let D2, D1 be non empty sets, let F be a function from D1 into D2, and let

p be a finite sequence of elements of D1. The functor FuncSeq(F, p) yielding a
finite sequence of elements of D2 is defined as follows:

(Def. 4) FuncSeq(F, p) = F · p.

Let D2, D1 be non empty sets and let f be a binary operation on D2. Let
us assume that f is commutative and associative and has a unity. Let Y be a
finite subset of D1 and let F be a function from D1 into D2. Let us assume that
Y ⊆ dom F. The functor setopfunc(Y,D1, D2, F, f) yielding an element of D2 is
defined by:

(Def. 5) There exists a finite sequence p of elements of D1 such that p is one-to-
one and rng p = Y and setopfunc(Y, D1, D2, F, f) = f � FuncSeq(F, p).

Let us consider X, x and let Y be a finite subset of the carrier of X. The
functor SetopPreProd(x, Y, X) yields a real number and is defined by the con-
dition (Def. 6).

(Def. 6) There exists a finite sequence p of elements of the carrier of X such that
(i) p is one-to-one,
(ii) rng p = Y, and
(iii) there exists a finite sequence q of elements of R such that dom q =

dom p and for every i such that i ∈ dom q holds q(i) = PO(i, p, x) and
SetopPreProd(x, Y,X) = +R � q.

Let us consider X, x and let Y be a finite subset of the carrier of X. The
functor SetopProd(x, Y,X) yielding a real number is defined as follows:

(Def. 7) SetopProd(x, Y, X) =
{

SetopPreProd(x, Y, X), if Y 6= ∅,
0, otherwise.

2. Orthogonal Family and Orthonormal Family

Let us consider X. A subset of the carrier of X is said to be an orthogonal
family of X if:

(Def. 8) For all x, y such that x ∈ it and y ∈ it and x 6= y holds (x|y) = 0.
The following proposition is true

(2) ∅ is an orthogonal family of X.

Let us consider X. Observe that there exists an orthogonal family of X which
is finite.
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Let us consider X. A subset of the carrier of X is said to be an orthonormal
family of X if:

(Def. 9) It is an orthogonal family of X and for every x such that x ∈ it holds
(x|x) = 1.

One can prove the following proposition

(3) ∅ is an orthonormal family of X.

Let us consider X. One can check that there exists an orthonormal family
of X which is finite.

The following proposition is true

(4) x = 0X iff for every y holds (x|y) = 0.

3. Bessel’s Inequality

We now state a number of propositions:

(5) ‖x + y‖2 + ‖x− y‖2 = 2 · ‖x‖2 + 2 · ‖y‖2.

(6) If x, y are orthogonal, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(7) Let p be a finite sequence of elements of the carrier of X. Suppose len p ­
1 and for all i, j such that i ∈ dom p and j ∈ dom p and i 6= j holds
(the scalar product of X)(〈〈p(i), p(j)〉〉) = 0. Let q be a finite sequence of
elements of R. Suppose dom p = dom q and for every i such that i ∈ dom q

holds q(i) = (the scalar product of X)(〈〈p(i), p(i)〉〉). Then ((the addition
of X � p)|(the addition of X � p)) = +R � q.

(8) Let p be a finite sequence of elements of the carrier of X. Suppose len p ­
1. Let q be a finite sequence of elements of R. Suppose dom p = dom q and
for every i such that i ∈ dom q holds q(i) = (the scalar product of X)(〈〈x,

p(i)〉〉). Then (x|(the addition of X � p)) = +R � q.

(9) Let S be a finite non empty subset of the carrier of X and F be a function
from the carrier of X into the carrier of X. Suppose S ⊆ dom F and for all
y1, y2 such that y1 ∈ S and y2 ∈ S and y1 6= y2 holds (the scalar product
of X)(〈〈F (y1), F (y2)〉〉) = 0. Let H be a function from the carrier of X into
R. Suppose S ⊆ dom H and for every y such that y ∈ S holds H(y) = (the
scalar product of X)(〈〈F (y), F (y)〉〉). Let p be a finite sequence of elements
of the carrier of X. Suppose p is one-to-one and rng p = S. Then (the
scalar product of X)(〈〈the addition of X � FuncSeq(F, p), the addition of
X � FuncSeq(F, p)〉〉) = +R � FuncSeq(H, p).

(10) Let S be a finite non empty subset of the carrier of X and F be a function
from the carrier of X into the carrier of X. Suppose S ⊆ dom F. Let H be
a function from the carrier of X into R. Suppose S ⊆ dom H and for every
y such that y ∈ S holds H(y) = (the scalar product of X)(〈〈x, F (y)〉〉). Let
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p be a finite sequence of elements of the carrier of X. Suppose p is one-
to-one and rng p = S. Then (the scalar product of X)(〈〈x, the addition of
X � FuncSeq(F, p)〉〉) = +R � FuncSeq(H, p).

(11) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let given x and S be a finite orthonor-
mal family of X. Suppose S is non empty. Let H be a function from the
carrier of X into R. Suppose S ⊆ dom H and for every y such that y ∈ S

holds H(y) = (x|y)2. Let F be a function from the carrier of X into the
carrier of X. Suppose S ⊆ dom F and for every y such that y ∈ S holds
F (y) = (x|y) · y. Then (x| setopfunc(S, the carrier of X, the carrier of X,
F, the addition of X)) = setopfunc(S, the carrier of X, R,H,+R).

(12) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let given x and S be a finite ortho-
normal family of X. Suppose S is non empty. Let F be a function from
the carrier of X into the carrier of X. Suppose S ⊆ dom F and for every
y such that y ∈ S holds F (y) = (x|y) · y. Let H be a function from the
carrier of X into R. Suppose S ⊆ dom H and for every y such that y ∈ S

holds H(y) = (x|y)2. Then (setopfunc(S, the carrier of X, the carrier of
X, F, the addition of X)| setopfunc(S, the carrier of X, the carrier of X,
F, the addition of X)) = setopfunc(S, the carrier of X, R,H,+R).

(13) Let given X. Suppose the addition of X is commutative and associa-
tive and the addition of X has a unity. Let given x and S be a finite
orthonormal family of X. Suppose S is non empty. Let H be a function
from the carrier of X into R. Suppose S ⊆ dom H and for every y such
that y ∈ S holds H(y) = (x|y)2. Then setopfunc(S, the carrier of X,
R,H, +R) ¬ ‖x‖2.

(14) Let D2, D1 be non empty sets and f be a binary operation on D2. Sup-
pose f is commutative and associative and has a unity. Let Y1, Y2 be
finite subsets of D1. Suppose Y1 misses Y2. Let F be a function from
D1 into D2. Suppose Y1 ⊆ dom F and Y2 ⊆ dom F. Let Z be a fi-
nite subset of D1. If Z = Y1 ∪ Y2, then setopfunc(Z, D1, D2, F, f) =
f(setopfunc(Y1, D1, D2, F, f), setopfunc(Y2, D1, D2, F, f)).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.



bessel’s inequality 173

[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[9] Jan Popiołek. Introduction to Banach and Hilbert spaces - part I. Formalized Mathema-
tics, 2(4):511–516, 1991.

[10] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,

1(2):369–376, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[14] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.
[15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received January 30, 2003





FORMALIZED MATHEMATICS

Volume 11, Number 2, 2003
University of Białystok

A Representation of Integers by Binary
Arithmetics and Addition of Integers

Hisayoshi Kunimune
Shinshu University

Nagano

Yatsuka Nakamura
Shinshu University

Nagano

Summary. In this article, we introduce the new concept of 2’s complement
representation. Natural numbers that are congruent mod n can be represented
by the same n bits binary. Using the concept introduced here, negative numbers
that are congruent mod n also can be represented by the same n bit binary. We
also show some properties of addition of integers using this concept.
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The articles [16], [20], [2], [3], [12], [11], [10], [9], [17], [13], [14], [6], [7], [1], [15],
[18], [4], [21], [8], [5], and [19] provide the notation and terminology for this
paper.

1. Preliminaries

We follow the rules: n denotes a non empty natural number, j, k, l, m denote
natural numbers, and g, h, i denote integers.

We now state a number of propositions:

(1) If m > 0, then m · 2 ­ m + 1.

(2) For every natural number m holds 2m ­ m.

(3) For every natural number m holds 〈0, . . . , 0︸ ︷︷ ︸
m

〉+ 〈0, . . . , 0︸ ︷︷ ︸
m

〉 = 〈0, . . . , 0︸ ︷︷ ︸
m

〉.

(4) For every natural number k such that k ¬ l and l ¬ m holds k = l or
k + 1 ¬ l and l ¬ m.
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(5) For every non empty natural number n and for all n-tuples x, y of
Boolean such that x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 and y = 〈0, . . . , 0︸ ︷︷ ︸
n

〉 holds carry(x, y) =

〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(6) For every non empty natural number n and for all n-tuples x, y of
Boolean such that x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 and y = 〈0, . . . , 0︸ ︷︷ ︸
n

〉 holds x+y = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(7) For every non empty natural number n and for every n-tuple F of
Boolean such that F = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 holds Intval(F ) = 0.

(8) If l + m ¬ k − 1, then l < k and m < k.

(9) If g ¬ h + i and h < 0 and i < 0, then g < h and g < i.

(10) If l + m ¬ 2n − 1, then add ovfl(n -BinarySequence(l),
n -BinarySequence(m)) = false.

(11) For every non empty natural number n and for all natural numbers
l, m such that l + m ¬ 2n − 1 holds Absval((n -BinarySequence(l)) +
(n -BinarySequence(m))) = l + m.

(12) For every non empty natural number n and for every n-tuple z of Boolean
such that zn = true holds Absval(z) ­ 2n−′1.

(13) If l + m ¬ 2n−′1 − 1, then (carry(n -BinarySequence(l),
n -BinarySequence(m)))n = false.

(14) For every non empty natural number n such that l+m ¬ 2n−′1−1 holds
Intval((n -BinarySequence(l)) + (n -BinarySequence(m))) = l + m.

(15) For every 1-tuple z of Boolean such that z = 〈true〉 holds Intval(z) = −1.

(16) For every 1-tuple z of Boolean such that z = 〈false〉 holds Intval(z) = 0.

(17) For every boolean set x holds true ∨ x = true.

(18) For every non empty natural number n holds 0 ¬ 2n−′1−1 and −2n−′1 ¬
0.

(19) For all n-tuples x, y of Boolean such that x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉 and y =

〈0, . . . , 0︸ ︷︷ ︸
n

〉 holds x and y are summable.

(20) i · n mod n = 0.

2. Majorant Power

Let m, j be natural numbers. The functor MajP(m, j) yielding a natural
number is defined as follows:



a representation of integers by binary . . . 177

(Def. 1) 2MajP(m,j) ­ j and MajP(m, j) ­ m and for every natural number k

such that 2k ­ j and k ­ m holds k ­ MajP(m, j).
One can prove the following propositions:

(21) If j ­ k, then MajP(m, j) ­ MajP(m, k).
(22) If l ­ m, then MajP(l, j) ­ MajP(m, j).
(23) If m ­ 1, then MajP(m, 1) = m.

(24) If j ¬ 2m, then MajP(m, j) = m.

(25) If j > 2m, then MajP(m, j) > m.

3. 2’s Complement

Let m be a natural number and let i be an integer.
The functor 2sComplement(m, i) yields a m-tuple of Boolean and is defined

by:

(Def. 2) 2sComplement(m, i) =
{

m -BinarySequence(|2MajP(m,|i|) + i|), if i < 0,

m -BinarySequence(|i|), otherwise.
The following propositions are true:

(26) For every natural number m holds 2sComplement(m, 0) = 〈0, . . . , 0︸ ︷︷ ︸
m

〉.

(27) For every integer i such that i ¬ 2n−′1 − 1 and −2n−′1 ¬ i holds
Intval(2sComplement(n, i)) = i.

(28) For all integers h, i such that h ­ 0 and i ­ 0 or h < 0 and i < 0 but
h mod 2n = i mod 2n holds 2sComplement(n, h) = 2sComplement(n, i).

(29) For all integers h, i such that h ­ 0 and i ­ 0 or h < 0 and i < 0 but
h ≡ i(mod 2n) holds 2sComplement(n, h) = 2sComplement(n, i).

(30) For all natural numbers l, m such that l mod 2n = m mod 2n holds
n -BinarySequence(l) = n -BinarySequence(m).

(31) For all natural numbers l, m such that l ≡ m(mod 2n) holds
n -BinarySequence(l) = n -BinarySequence(m).

(32) For every natural number j such that 1 ¬ j and j ¬ n holds
(2sComplement(n + 1, i))j = (2sComplement(n, i))j .

(33) There exists an element x of Boolean such that 2sComplement(m+1, i) =
(2sComplement(m, i)) a 〈x〉.

(34) There exists an element x of Boolean such that (m+1) -BinarySequence(l) =
(m -BinarySequence(l)) a 〈x〉.

(35) Let n be a non empty natural number. Suppose −2n ¬ h + i and h < 0
and i < 0 and−2n−′1 ¬ h and−2n−′1 ¬ i. Then (carry(2sComplement(n+
1, h), 2sComplement(n + 1, i)))n+1 = true.
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(36) For every non empty natural number n such that −2n−′1 ¬ h + i and
h + i ¬ 2n−′1 − 1 and h ­ 0 and i ­ 0 holds Intval(2sComplement(n, h) +
2sComplement(n, i)) = h + i.

(37) Let n be a non empty natural number. Suppose −2(n+1)−′1 ¬ h + i and
h+ i ¬ 2(n+1)−′1−1 and h < 0 and i < 0 and −2n−′1 ¬ h and −2n−′1 ¬ i.

Then Intval(2sComplement(n + 1, h) + 2sComplement(n + 1, i)) = h + i.

(38) Let n be a non empty natural number. Suppose that −2n−′1 ¬ h and
h ¬ 2n−′1 − 1 and −2n−′1 ¬ i and i ¬ 2n−′1 − 1 and −2n−′1 ¬ h + i

and h + i ¬ 2n−′1 − 1 and h ­ 0 and i < 0 or h < 0 and i ­ 0. Then
Intval(2sComplement(n, h) + 2sComplement(n, i)) = h + i.
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Summary. First, we define the inner product to finite sequences of real
value. Next, we extend it to points of n-dimensional topological space En

T. At the
end, orthogonality is introduced to this space.
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The notation and terminology used in this paper are introduced in the following
articles: [11], [3], [9], [7], [1], [2], [6], [8], [4], [5], and [10].

1. Preliminaries

For simplicity, we use the following convention: i, n denote natural numbers,
x, y, a denote real numbers, v denotes an element of Rn, and p, p1, p2, p3, q, q1,
q2 denote points of En

T.
We now state several propositions:

(1) For every i such that i ∈ Seg n holds (v • 〈0, . . . , 0︸ ︷︷ ︸
n

〉)(i) = 0.

(2) v • 〈0, . . . , 0︸ ︷︷ ︸
n

〉 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(3) For every finite sequence x of elements of R holds (−1) · x = −x.

(4) For all finite sequences x, y of elements of R such that len x = len y holds
x− y = x +−y.

(5) For every finite sequence x of elements of R holds len(−x) = len x.
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(6) For all finite sequences x1, x2 of elements of R such that len x1 = len x2

holds len(x1 + x2) = len x1.

(7) For all finite sequences x1, x2 of elements of R such that len x1 = len x2

holds len(x1 − x2) = len x1.

(8) For every real number a and for every finite sequence x of elements of R
holds len(a · x) = len x.

(9) For all finite sequences x, y, z of elements of R such that len x = len y

and len y = len z holds (x + y) • z = x • z + y • z.

2. Inner Product of Finite Sequences

Let x1, x2 be finite sequences of elements of R. The functor |(x1, x2)| yielding
a real number is defined as follows:

(Def. 1) |(x1, x2)| =
∑

(x1 • x2).
Let us observe that the functor |(x1, x2)| is commutative.

We now state a number of propositions:

(10) Let y1, y2 be finite sequences of elements of R and x1, x2 be elements of
Rn. If x1 = y1 and x2 = y2, then |(y1, y2)| = 1

4 · (|x1 + x2|2 − |x1 − x2|2).
(11) For every finite sequence x of elements of R holds |(x, x)| ­ 0.

(12) For every finite sequence x of elements of R holds |x|2 = |(x, x)|.
(13) For every finite sequence x of elements of R holds |x| =

√
|(x, x)|.

(14) For every finite sequence x of elements of R holds 0 ¬ |x|.
(15) For every finite sequence x of elements of R holds |(x, x)| = 0 iff x =
〈0, . . . , 0︸ ︷︷ ︸

len x

〉.

(16) For every finite sequence x of elements of R holds |(x, x)| = 0 iff |x| = 0.

(17) For every finite sequence x of elements of R holds |(x, 〈0, . . . , 0︸ ︷︷ ︸
len x

〉)| = 0.

(18) For every finite sequence x of elements of R holds |(〈0, . . . , 0︸ ︷︷ ︸
len x

〉, x)| = 0.

(19) For all finite sequences x, y, z of elements of R such that len x = len y

and len y = len z holds |(x + y, z)| = |(x, z)|+ |(y, z)|.
(20) For all finite sequences x, y of elements of R and for every real number

a such that len x = len y holds |(a · x, y)| = a · |(x, y)|.
(21) For all finite sequences x, y of elements of R and for every real number

a such that len x = len y holds |(x, a · y)| = a · |(x, y)|.
(22) For all finite sequences x1, x2 of elements of R such that len x1 = len x2

holds |(−x1, x2)| = −|(x1, x2)|.
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(23) For all finite sequences x1, x2 of elements of R such that len x1 = len x2

holds |(x1,−x2)| = −|(x1, x2)|.
(24) For all finite sequences x1, x2 of elements of R such that len x1 = len x2

holds |(−x1,−x2)| = |(x1, x2)|.
(25) For all finite sequences x1, x2, x3 of elements of R such that len x1 =

len x2 and len x2 = len x3 holds |(x1 − x2, x3)| = |(x1, x3)| − |(x2, x3)|.
(26) Let x, y be real numbers and x1, x2, x3 be finite sequences of elements

of R. If len x1 = len x2 and len x2 = len x3, then |(x · x1 + y · x2, x3)| =
x · |(x1, x3)|+ y · |(x2, x3)|.

(27) For all finite sequences x, y1, y2 of elements of R such that len x = len y1

and len y1 = len y2 holds |(x, y1 + y2)| = |(x, y1)|+ |(x, y2)|.
(28) For all finite sequences x, y1, y2 of elements of R such that len x = len y1

and len y1 = len y2 holds |(x, y1 − y2)| = |(x, y1)| − |(x, y2)|.
(29) Let x1, x2, y1, y2 be finite sequences of elements of R. If len x1 = len x2

and len x2 = len y1 and len y1 = len y2, then |(x1+x2, y1+y2)| = |(x1, y1)|+
|(x1, y2)|+ |(x2, y1)|+ |(x2, y2)|.

(30) Let x1, x2, y1, y2 be finite sequences of elements of R. If len x1 = len x2

and len x2 = len y1 and len y1 = len y2, then |(x1 − x2, y1 − y2)| =
(|(x1, y1)| − |(x1, y2)| − |(x2, y1)|) + |(x2, y2)|.

(31) For all finite sequences x, y of elements of R such that len x = len y holds
|(x + y, x + y)| = |(x, x)|+ 2 · |(x, y)|+ |(y, y)|.

(32) For all finite sequences x, y of elements of R such that len x = len y holds
|(x− y, x− y)| = (|(x, x)| − 2 · |(x, y)|) + |(y, y)|.

(33) For all finite sequences x, y of elements of R such that len x = len y holds
|x + y|2 = |x|2 + 2 · |(y, x)|+ |y|2.

(34) For all finite sequences x, y of elements of R such that len x = len y holds
|x− y|2 = (|x|2 − 2 · |(y, x)|) + |y|2.

(35) For all finite sequences x, y of elements of R such that len x = len y holds
|x + y|2 + |x− y|2 = 2 · (|x|2 + |y|2).

(36) For all finite sequences x, y of elements of R such that len x = len y holds
|x + y|2 − |x− y|2 = 4 · |(x, y)|.

(37) For all finite sequences x, y of elements of R such that len x = len y holds
||(x, y)|| ¬ |x| · |y|.

(38) For all finite sequences x, y of elements of R such that len x = len y holds
|x + y| ¬ |x|+ |y|.

3. Inner Product of Points of En
T

Let us consider n and let p, q be points of En
T. The functor |(p, q)| yielding a

real number is defined as follows:
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(Def. 2) There exist finite sequences f , g of elements of R such that f = p and
g = q and |(p, q)| = |(f, g)|.

Let us observe that the functor |(p, q)| is commutative.
We now state a number of propositions:

(39) For every natural number n and for all points p1, p2 of En
T holds

|(p1, p2)| = 1
4 · (|p1 + p2|2 − |p1 − p2|2).

(40) |(p1 + p2, p3)| = |(p1, p3)|+ |(p2, p3)|.
(41) For every real number x holds |(x · p1, p2)| = x · |(p1, p2)|.
(42) For every real number x holds |(p1, x · p2)| = x · |(p1, p2)|.
(43) |(−p1, p2)| = −|(p1, p2)|.
(44) |(p1,−p2)| = −|(p1, p2)|.
(45) |(−p1,−p2)| = |(p1, p2)|.
(46) |(p1 − p2, p3)| = |(p1, p3)| − |(p2, p3)|.
(47) |(x · p1 + y · p2, p3)| = x · |(p1, p3)|+ y · |(p2, p3)|.
(48) |(p, q1 + q2)| = |(p, q1)|+ |(p, q2)|.
(49) |(p, q1 − q2)| = |(p, q1)| − |(p, q2)|.
(50) |(p1 + p2, q1 + q2)| = |(p1, q1)|+ |(p1, q2)|+ |(p2, q1)|+ |(p2, q2)|.
(51) |(p1 − p2, q1 − q2)| = (|(p1, q1)| − |(p1, q2)| − |(p2, q1)|) + |(p2, q2)|.
(52) |(p + q, p + q)| = |(p, p)|+ 2 · |(p, q)|+ |(q, q)|.
(53) |(p− q, p− q)| = (|(p, p)| − 2 · |(p, q)|) + |(q, q)|.
(54) |(p, 0En

T
)| = 0.

(55) |(0En
T
, p)| = 0.

(56) |(0En
T
, 0En

T
)| = 0.

(57) |(p, p)| ­ 0.

(58) |(p, p)| = |p|2.

(59) |p| =
√
|(p, p)|.

(60) 0 ¬ |p|.
(61) |0En

T
| = 0.

(62) |(p, p)| = 0 iff |p| = 0.

(63) |(p, p)| = 0 iff p = 0En
T
.

(64) |p| = 0 iff p = 0En
T
.

(65) p 6= 0En
T

iff |(p, p)| > 0.

(66) p 6= 0En
T

iff |p| > 0.

(67) |p + q|2 = |p|2 + 2 · |(q, p)|+ |q|2.

(68) |p− q|2 = (|p|2 − 2 · |(q, p)|) + |q|2.

(69) |p + q|2 + |p− q|2 = 2 · (|p|2 + |q|2).
(70) |p + q|2 − |p− q|2 = 4 · |(p, q)|.
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(71) |(p, q)| = 1
4 · (|p + q|2 − |p− q|2).

(72) |(p, q)| ¬ |(p, p)|+ |(q, q)|.
(73) For all points p, q of En

T holds ||(p, q)|| ¬ |p| · |q|.
(74) |p + q| ¬ |p|+ |q|.

Let us consider n, p, q. We say that p, q are orthogonal if and only if:

(Def. 3) |(p, q)| = 0.

Let us note that the predicate p, q are orthogonal is symmetric.
The following propositions are true:

(75) p, 0En
T

are orthogonal.

(76) 0En
T

, p are orthogonal.

(77) p, p are orthogonal iff p = 0En
T
.

(78) If p, q are orthogonal, then a · p, q are orthogonal.

(79) If p, q are orthogonal, then p, a · q are orthogonal.

(80) If for every q holds p, q are orthogonal, then p = 0En
T
.
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Summary. In this paper, we describe the definition of the fourth degree
algebraic equations and their properties. We clarify the relation between the four
roots of this equation and its coefficient. Also, the form of these roots for various
conditions is discussed. This solution is known as the Cardano solution.

MML Identifier: POLYEQ 2.

The articles [3], [4], [1], and [2] provide the notation and terminology for this
paper.

Let a, b, c, d, e, x be real numbers. The functor Four(a, b, c, d, e, x) is defined
by:

(Def. 1) Four(a, b, c, d, e, x) = a · x4 + b · x3 + c · x2 + d · x + e.

Let a, b, c, d, e, x be real numbers. Note that Four(a, b, c, d, e, x) is real.
One can prove the following propositions:

(1) Let a, c, e, x be real numbers. Suppose a 6= 0 and e 6= 0 and c2−4·a·e > 0.

Suppose Four(a, 0, c, 0, e, x) = 0. Then x 6= 0 but x =
√
−c+
√

∆(a,c,e)

2·a or

x =
√
−c−
√

∆(a,c,e)

2·a or x = −
√
−c+
√

∆(a,c,e)

2·a or x = −
√
−c−
√

∆(a,c,e)

2·a .

(2) Let a, b, c, x, y be real numbers. Suppose a 6= 0 and y = x + 1
x . If

Four(a, b, c, b, a, x) = 0, then x 6= 0 and (a · y2 + b · y + c)− 2 · a = 0.

(3) Let a, b, c, x, y be real numbers. Suppose a 6= 0 and (b2−4·a·c)+8·a2 > 0
and y = x+ 1

x . Suppose Four(a, b, c, b, a, x) = 0. Let y1, y2 be real numbers.

Suppose y1 = −b+
√

(b2−4·a·c)+8·a2

2·a and y2 = −b−
√

(b2−4·a·c)+8·a2

2·a . Then x 6=
0 but x = y1+

√
∆(1,−y1,1)

2 or x = y2+
√

∆(1,−y2,1)

2 or x = y1−
√

∆(1,−y1,1)

2 or

x = y2−
√

∆(1,−y2,1)

2 .
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(4) For every real number x holds x3 = x2 ·x and x3 ·x = x4 and x2 ·x2 = x4.

(5) For all real numbers x, y such that x + y 6= 0 holds (x + y)4 = (x3 + (3 ·
y · x2 + 3 · y2 · x) + y3) · x + (x3 + (3 · y · x2 + 3 · y2 · x) + y3) · y.

(6) For all real numbers x, y such that x + y 6= 0 holds (x + y)4 = x4 + (4 ·
y · x3 + 6 · y2 · x2 + 4 · y3 · x) + y4.

(7) Let a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 be real numbers. Sup-
pose that for every real number x holds Four(a1, a2, a3, a4, a5, x) =
Four(b1, b2, b3, b4, b5, x). Then a5 = b5 and ((a1 − a2) + a3) − a4 =
((b1 − b2) + b3)− b4 and a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4.

(8) Let a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 be real numbers. Sup-
pose that for every real number x holds Four(a1, a2, a3, a4, a5, x) =
Four(b1, b2, b3, b4, b5, x). Then a1 − b1 = b3 − a3 and a2 − b2 = b4 − a4.

(9) Let a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 be real numbers. Sup-
pose that for every real number x holds Four(a1, a2, a3, a4, a5, x) =
Four(b1, b2, b3, b4, b5, x). Then a1 = b1 and a2 = b2 and a3 = b3 and a4 = b4

and a5 = b5.

Let a1, x1, x2, x3, x4, x be real numbers. The functor Four0(a1, x1, x2, x3, x4, x)
is defined by:

(Def. 2) Four0(a1, x1, x2, x3, x4, x) = a1 · ((x− x1) · (x− x2) · (x− x3) · (x− x4)).
Let a1, x1, x2, x3, x4, x be real numbers.
One can verify that Four0(a1, x1, x2, x3, x4, x) is real.
One can prove the following propositions:

(10) Let a1, a2, a3, a4, a5, x, x1, x2, x3, x4 be real numbers. Suppose a1 6= 0.

Suppose that for every real number x holds Four(a1, a2, a3, a4, a5, x) =
Four0(a1, x1, x2, x3, x4, x). Then a1·x4+a2·x3+a3·x2+a4·x+a5

a1
= ((x2·x2−(x1+

x2 + x3) · (x2 · x)) + (x1 · x3 + x2 · x3 + x1 · x2) · x2)− x1 · x2 · x3 · x− (x−
x1) · (x− x2) · (x− x3) · x4.

(11) Let a1, a2, a3, a4, a5, x, x1, x2, x3, x4 be real numbers. Suppose a1 6= 0.

Suppose that for every real number x holds Four(a1, a2, a3, a4, a5, x) =
Four0(a1, x1, x2, x3, x4, x). Then a1·x4+a2·x3+a3·x2+a4·x+a5

a1
= (((x4 − (x1 +

x2 +x3 +x4) ·x3)+ (x1 ·x2 +x1 ·x3 +x1 ·x4 +(x2 ·x3 +x2 ·x4)+x3 ·x4) ·
x2)− (x1 ·x2 ·x3 +x1 ·x2 ·x4 +x1 ·x3 ·x4 +x2 ·x3 ·x4) ·x)+x1 ·x2 ·x3 ·x4.

(12) Let a1, a2, a3, a4, a5, x1, x2, x3, x4 be real numbers. Suppose
a1 6= 0 and for every real number x holds Four(a1, a2, a3, a4, a5, x) =
Four0(a1, x1, x2, x3, x4, x). Then a2

a1
= −(x1 + x2 + x3 + x4) and a3

a1
=

x1 · x2 + x1 · x3 + x1 · x4 + (x2 · x3 + x2 · x4) + x3 · x4 and a4
a1

=
−(x1 · x2 · x3 + x1 · x2 · x4 + x1 · x3 · x4 + x2 · x3 · x4) and a5

a1
= x1 · x2 ·

x3 · x4.

(13) Let a, k, y be real numbers. Suppose a 6= 0. Suppose that for every real
number x holds x4+a4 = k ·a ·x ·(x2+a2). Then (y4−k ·y3−k ·y)+1 = 0.
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Summary. This work is the continuation of formalization of [10]. Items
from 2.1 to 2.8 of Chapter 4 are proved.

MML Identifier: WAYBEL35.

The papers [16], [7], [19], [15], [4], [17], [18], [14], [1], [20], [22], [21], [5], [6], [2],
[12], [13], [23], [3], [8], [11], and [9] provide the notation and terminology for this
paper.

1. Preliminaries

Let X be a set. One can verify that there exists a subset of X which is
trivial.

Let X be a trivial set. Note that every subset of X is trivial.
Let L be a 1-sorted structure. One can check that there exists a subset of L

which is trivial.
Let L be a relational structure. Note that there exists a subset of L which

is trivial.
Let L be a non empty 1-sorted structure. One can check that there exists a

subset of L which is non empty and trivial.
Let L be a non empty relational structure. Note that there exists a subset

of L which is non empty and trivial.
Next we state three propositions:

(1) For every set X holds ⊆X is reflexive in X.

(2) For every set X holds ⊆X is transitive in X.

(3) For every set X holds ⊆X is antisymmetric in X.
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2. Main Part

Let L be a relational structure. Observe that there exists a binary relation
on L which is auxiliary(i).

Let L be a transitive relational structure. Observe that there exists a binary
relation on L which is auxiliary(i) and auxiliary(ii).

Let L be an antisymmetric relational structure with l.u.b.’s. Observe that
there exists a binary relation on L which is auxiliary(iii).

Let L be a non empty lower-bounded antisymmetric relational structure.
Note that there exists a binary relation on L which is auxiliary(iv).

Let L be a non empty relational structure and let R be a binary relation on
L. We say that R is extra-order if and only if:

(Def. 1) R is auxiliary(i), auxiliary(ii), and auxiliary(iv).

Let L be a non empty relational structure. One can verify that every binary
relation on L which is extra-order is also auxiliary(i), auxiliary(ii), and auxi-
liary(iv) and every binary relation on L which is auxiliary(i), auxiliary(ii), and
auxiliary(iv) is also extra-order.

Let L be a non empty relational structure. One can verify that every binary
relation on L which is extra-order and auxiliary(iii) is also auxiliary and every
binary relation on L which is auxiliary is also extra-order.

Let L be a lower-bounded antisymmetric transitive non empty relational
structure. One can check that there exists a binary relation on L which is extra-
order.

Let L be a lower-bounded poset with l.u.b.’s and let R be an auxiliary(ii)
binary relation on L. The functor R−LowerMap yields a map from L into
〈LOWER L,⊆〉 and is defined as follows:

(Def. 2) For every element x of the carrier of L holds R−LowerMap(x) = ↓↓Rx.

Let L be a lower-bounded poset with l.u.b.’s and let R be an auxiliary(ii)
binary relation on L. One can verify that R−LowerMap is monotone.

Let L be a 1-sorted structure and let R be a binary relation on the carrier
of L. A subset of L is called a strict chain of R if:

(Def. 3) For all sets x, y such that x ∈ it and y ∈ it holds 〈〈x, y〉〉 ∈ R or x = y or
〈〈y, x〉〉 ∈ R.

The following proposition is true

(4) Let L be a 1-sorted structure, C be a trivial subset of L, and R be a
binary relation on the carrier of L. Then C is a strict chain of R.

Let L be a non empty 1-sorted structure and let R be a binary relation on
the carrier of L. One can check that there exists a strict chain of R which is non
empty and trivial.

One can prove the following four propositions:
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(5) Let L be an antisymmetric relational structure, R be an auxiliary(i)
binary relation on L, C be a strict chain of R, and x, y be elements of the
carrier of L. If x ∈ C and y ∈ C and x < y, then 〈〈x, y〉〉 ∈ R.

(6) Let L be an antisymmetric relational structure, R be an auxiliary(i)
binary relation on L, and x, y be elements of the carrier of L. If 〈〈x,

y〉〉 ∈ R and 〈〈y, x〉〉 ∈ R, then x = y.

(7) Let L be a non empty lower-bounded antisymmetric relational structure,
x be an element of the carrier of L, and R be an auxiliary(iv) binary
relation on L. Then {⊥L, x} is a strict chain of R.

(8) Let L be a non empty lower-bounded antisymmetric relational structure,
R be an auxiliary(iv) binary relation on L, and C be a strict chain of R.
Then C ∪ {⊥L} is a strict chain of R.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,
and let C be a strict chain of R. We say that C is maximal if and only if:

(Def. 4) For every strict chain D of R such that C ⊆ D holds C = D.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,
and let C be a set. The functor StrictChains(R, C) is defined by:

(Def. 5) For every set x holds x ∈ StrictChains(R, C) iff x is a strict chain of R

and C ⊆ x.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,
and let C be a strict chain of R. Note that StrictChains(R, C) is non empty.

Let R be a binary relation and let X be a set. We introduce X is inductive
w.r.t. R as a synonym of X has the upper Zorn property w.r.t. R.

Next we state several propositions:

(9) Let L be a 1-sorted structure, R be a binary relation on the carrier of
L, and C be a strict chain of R. Then StrictChains(R,C) is inductive
w.r.t. ⊆StrictChains(R,C) and there exists a set D such that D is maximal in
⊆

StrictChains(R,C) and C ⊆ D.

(10) Let L be a non empty transitive relational structure, C be a non empty
subset of the carrier of L, and X be a subset of C. Suppose sup X exists
in L and

⊔
L X ∈ C. Then sup X exists in sub(C) and

⊔
L X =

⊔
sub(C) X.

(11) Let L be a non empty poset, R be an auxiliary(i) auxiliary(ii) binary
relation on L, C be a non empty strict chain of R, and X be a subset of
C. If sup X exists in L and C is maximal, then sup X exists in sub(C).

(12) Let L be a non empty poset, R be an auxiliary(i) auxiliary(ii) binary
relation on L, C be a non empty strict chain of R, and X be a subset
of C. Suppose inf ↑⊔L X ∩ C exists in L and sup X exists in L and C

is maximal. Then
⊔

sub(C) X = d−eL(↑⊔L X ∩ C) and if
⊔

L X /∈ C, then⊔
L X < d−eL(↑⊔L X ∩ C).

(13) Let L be a complete non empty poset, R be an auxiliary(i) auxiliary(ii)
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binary relation on L, and C be a non empty strict chain of R. If C is
maximal, then sub(C) is complete.

(14) Let L be a non empty lower-bounded antisymmetric relational structure,
R be an auxiliary(iv) binary relation on L, and C be a strict chain of R.
If C is maximal, then ⊥L ∈ C.

(15) Let L be a non empty upper-bounded poset, R be an auxiliary(ii) binary
relation on L, C be a strict chain of R, and m be an element of the carrier
of L. Suppose C is maximal and m is a maximum of C and 〈〈m, >L〉〉 ∈ R.

Then 〈〈>L, >L〉〉 ∈ R and m = >L.

Let L be a relational structure, let C be a set, and let R be a binary relation
on the carrier of L. We say that R satisfies SIC on C if and only if the condition
(Def. 6) is satisfied.

(Def. 6) Let x, z be elements of the carrier of L. Suppose x ∈ C and z ∈ C and
〈〈x, z〉〉 ∈ R and x 6= z. Then there exists an element y of L such that y ∈ C

and 〈〈x, y〉〉 ∈ R and 〈〈y, z〉〉 ∈ R and x 6= y.

Let L be a relational structure, let R be a binary relation on the carrier of
L, and let C be a strict chain of R. We say that C satisfies SIC if and only if:

(Def. 7) R satisfies SIC on C.

We introduce C satisfies the interpolation property and C satisfies the interpo-
lation property as synonyms of C satisfies SIC.

The following proposition is true

(16) Let L be a relational structure, C be a set, and R be an auxiliary(i)
binary relation on L. Suppose R satisfies SIC on C. Let x, z be elements
of the carrier of L. Suppose x ∈ C and z ∈ C and 〈〈x, z〉〉 ∈ R and x 6= z.

Then there exists an element y of L such that y ∈ C and 〈〈x, y〉〉 ∈ R and
〈〈y, z〉〉 ∈ R and x < y.

Let L be a relational structure and let R be a binary relation on the carrier
of L. Note that every strict chain of R which is trivial satisfies also SIC.

Let L be a non empty relational structure and let R be a binary relation on
the carrier of L. One can check that there exists a strict chain of R which is non
empty and trivial.

Next we state the proposition

(17) Let L be a lower-bounded poset with l.u.b.’s, R be an auxiliary(i) au-
xiliary(ii) binary relation on L, and C be a strict chain of R. Suppose C

is maximal and R satisfies strong interpolation property. Then R satisfies
SIC on C.

Let R be a binary relation and let C, y be sets. The functor SetBelow(R, C, y)
is defined as follows:

(Def. 8) SetBelow(R,C, y) = R−1({y}) ∩ C.

The following proposition is true
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(18) For every binary relation R and for all sets C, x, y holds x ∈
SetBelow(R,C, y) iff 〈〈x, y〉〉 ∈ R and x ∈ C.

Let L be a 1-sorted structure, let R be a binary relation on the carrier of L,
and let C, y be sets. Then SetBelow(R, C, y) is a subset of L.

Next we state three propositions:

(19) Let L be a relational structure, R be an auxiliary(i) binary relation
on L, C be a set, and y be an element of the carrier of L. Then
SetBelow(R,C, y) ¬ y.

(20) Let L be a reflexive transitive relational structure, R be an auxiliary(ii)
binary relation on L, C be a subset of the carrier of L, and x, y be elements
of the carrier of L. If x ¬ y, then SetBelow(R, C, x) ⊆ SetBelow(R, C, y).

(21) Let L be a relational structure, R be an auxiliary(i) binary relation on L,
C be a set, and x be an element of the carrier of L. If x ∈ C and 〈〈x, x〉〉 ∈ R

and sup SetBelow(R, C, x) exists in L, then x = sup SetBelow(R, C, x).

Let L be a relational structure and let C be a subset of L. We say that C is
sup-closed if and only if:

(Def. 9) For every subset X of C such that sup X exists in L holds
⊔

L X =⊔
sub(C) X.

Next we state three propositions:

(22) Let L be a complete non empty poset, R be an extra-order binary relation
on L, C be a strict chain of R satisfying SIC, and p, q be elements of the
carrier of L. Suppose p ∈ C and q ∈ C and p < q. Then there exists an ele-
ment y of L such that p < y and 〈〈y, q〉〉 ∈ R and y = sup SetBelow(R, C, y).

(23) Let L be a lower-bounded non empty poset, R be an extra-order binary
relation on L, and C be a non empty strict chain of R. Suppose that

(i) C is sup-closed,
(ii) for every element c of the carrier of L such that c ∈ C holds sup

SetBelow(R,C, c) exists in L, and
(iii) R satisfies SIC on C.

Let c be an element of the carrier of L. If c ∈ C, then c =
sup SetBelow(R, C, c).

(24) Let L be a non empty reflexive antisymmetric relational structure, R

be an auxiliary(i) binary relation on L, and C be a strict chain of R.
Suppose that for every element c of the carrier of L such that c ∈ C holds
sup SetBelow(R,C, c) exists in L and c = sup SetBelow(R, C, c). Then R

satisfies SIC on C.

Let L be a non empty relational structure, let R be a binary relation on the
carrier of L, and let C be a set. The functor SupBelow(R, C) is defined by:

(Def. 10) For every set y holds y ∈ SupBelow(R,C) iff y = sup SetBelow(R, C, y).
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Let L be a non empty relational structure, let R be a binary relation on the
carrier of L, and let C be a set. Then SupBelow(R, C) is a subset of L.

One can prove the following propositions:

(25) Let L be a non empty reflexive transitive relational structure, R be an
auxiliary(i) auxiliary(ii) binary relation on L, and C be a strict chain of R.
Suppose that for every element c of L holds sup SetBelow(R, C, c) exists
in L. Then SupBelow(R,C) is a strict chain of R.

(26) Let L be a non empty poset, R be an auxiliary(i) auxiliary(ii) binary rela-
tion on L, and C be a subset of the carrier of L. Suppose that for every ele-
ment c of L holds sup SetBelow(R, C, c) exists in L. Then SupBelow(R, C)
is sup-closed.

(27) Let L be a complete non empty poset, R be an extra-order binary relation
on L, C be a strict chain of R satisfying SIC, and d be an element of the
carrier of L. Suppose d ∈ SupBelow(R, C). Then d =

⊔
L{b; b ranges over

elements of the carrier of L: b ∈ SupBelow(R, C) ∧ 〈〈b, d〉〉 ∈ R}.
(28) Let L be a complete non empty poset, R be an extra-order binary relation

on L, and C be a strict chain of R satisfying SIC. Then R satisfies SIC on
SupBelow(R, C).

(29) Let L be a complete non empty poset, R be an extra-order binary relation
on L, C be a strict chain of R satisfying SIC, and a, b be elements of the
carrier of L. Suppose a ∈ C and b ∈ C and a < b. Then there exists an
element d of L such that d ∈ SupBelow(R,C) and a < d and 〈〈d, b〉〉 ∈ R.
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Summary. In this paper, we proved some elementary propositional calcu-
lus formulae for Boolean valued functions.

MML Identifier: BVFUNC25.

The notation and terminology used in this paper have been introduced in the
following articles: [4], [3], [2], and [1].

We use the following convention: Y is a non empty set and a, b, c, d are
elements of BooleanY .

The following propositions are true:

(1) ¬(a⇒ b) = a ∧ ¬b.

(2) ¬b⇒ ¬a⇒ a⇒ b = true(Y ).
(3) a⇒ b = ¬b⇒ ¬a.

(4) a⇔ b = ¬a⇔ ¬b.

(5) a⇒ b = a⇒ a ∧ b.

(6) a⇔ b = a ∨ b⇒ a ∧ b.

(7) a⇔ ¬a = false(Y ).
(8) a⇒ b⇒ c = b⇒ a⇒ c.

(9) a⇒ b⇒ c = a⇒ b⇒ a⇒ c.

(10) a⇔ b = a⊕ ¬b.

(11) a ∧ (b⊕ c) = a ∧ b⊕ a ∧ c.

(12) a⇔ b = ¬(a⊕ b).
(13) a⊕ a = false(Y ).
(14) a⊕ ¬a = true(Y ).
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(15) a⇒ b⇒ b⇒ a = b⇒ a.

(16) (a ∨ b) ∧ (¬a ∨ ¬b) = ¬a ∧ b ∨ a ∧ ¬b.
(17) a ∧ b ∨ ¬a ∧ ¬b = (¬a ∨ b) ∧ (a ∨ ¬b).
(18) a⊕ (b⊕ c) = (a⊕ b)⊕ c.

(19) a⇔ b⇔ c = a⇔ b⇔ c.

(20) ¬¬a⇒ a = true(Y ).
(21) (a⇒ b) ∧ a⇒ b = true(Y ).
(22) a⇒ ¬a⇒ a = true(Y ).
(23) ¬a⇒ a⇔ a = true(Y ).
(24) a ∨ (a⇒ b) = true(Y ).
(25) (a⇒ b) ∨ (c⇒ a) = true(Y ).
(26) (a⇒ b) ∨ (¬a⇒ b) = true(Y ).
(27) (a⇒ b) ∨ (a⇒ ¬b) = true(Y ).
(28) ¬a⇒ ¬b⇔ b⇒ a = true(Y ).
(29) a⇒ b⇒ a⇒ c⇒ b⇒ b = true(Y ).
(30) a⇒ b = a⇔ a ∧ b.

(31) a⇒ b = true(Y ) and b⇒ a = true(Y ) iff a = b.

(32) a = ¬a⇒ a.

(33) a⇒ a⇒ b⇒ a = true(Y ).
(34) a = a⇒ b⇒ a.

(35) a = (b⇒ a) ∧ (¬b⇒ a).
(36) a ∧ b = ¬(a⇒ ¬b).
(37) a ∨ b = ¬a⇒ b.

(38) a ∨ b = a⇒ b⇒ b.

(39) a⇒ b⇒ a⇒ a = true(Y ).
(40) a⇒ b⇒ c⇒ d⇒ b⇒ a⇒ d⇒ c = true(Y ).
(41) (a⇒ b) ∧ a ∧ c⇒ b = true(Y ).
(42) b⇒ c⇒ a ∧ b⇒ c = true(Y ).
(43) a ∧ b⇒ c⇒ a ∧ b⇒ c ∧ b = true(Y ).
(44) a⇒ b⇒ a ∧ c⇒ b ∧ c = true(Y ).
(45) (a⇒ b) ∧ (a ∧ c)⇒ b ∧ c = true(Y ).
(46) a ∧ (a⇒ b) ∧ (b⇒ c) b c.

(47) (a ∨ b) ∧ (a⇒ c) ∧ (b⇒ c) b ¬a⇒ b ∨ c.
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Summary. Orthoposets are defined. The approach is the standard one via
order relation similar to common text books on algebra like [8].

MML Identifier: OPOSET 1.

The terminology and notation used in this paper are introduced in the following
papers: [11], [13], [5], [3], [4], [15], [14], [16], [12], [9], [7], [10], [2], [6], and [1].

1. General Notions and Properties

In this paper S, X denote non empty sets and R denotes a binary relation
on X.

We consider orthorelational structures, extensions of relational structure and
ComplStr, as systems
〈 a carrier, an internal relation, a complement operation 〉,

where the carrier is a set, the internal relation is a binary relation on the carrier,
and the complement operation is a unary operation on the carrier.

Let A, B be sets. The functor ∅A,B yields a relation between A and B and
is defined as follows:

(Def. 1) ∅A,B = ∅.
The functor ΩB(A) yields a relation between A and B and is defined by:

(Def. 2) ΩB(A) = [:A, B :].
1This work has been partially supported by the CALCULEMUS project (FP5 grant HPRN-

CT-2000-00102).
2This paper was worked out while the author was visiting the University of Białystok in

autumn 2002.
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We now state several propositions:

(1) field(idX) = X.

(2) id{∅} = {〈〈∅, ∅〉〉}.
(3) op1 = {〈〈∅, ∅〉〉}.
(4) Let L be a non empty reflexive antisymmetric relational structure and

x, y be elements of L. If x ¬ y, then sup{x, y} = y and inf{x, y} = x.

(5) dom R ⊆ field R and rng R ⊆ field R.

(6) For all sets A, B holds field(∅A,B) = ∅.
Let Y be a set. Note that there exists a binary relation on Y which is

antisymmetric.
We now state a number of propositions:

(7) If R is reflexive in X, then R is reflexive and field R = X.

(8) If R is symmetric in X, then R is symmetric.

(9) If R is symmetric and field R ⊆ S, then R is symmetric in S.

(10) If R is antisymmetric and field R ⊆ S, then R is antisymmetric in S.

(11) If R is antisymmetric in X, then R is antisymmetric.

(12) If R is transitive and field R ⊆ S, then R is transitive in S.

(13) If R is transitive in X, then R is transitive.

(14) If R is asymmetric and field R ⊆ S, then R is asymmetric in S.

(15) If R is asymmetric in X, then R is asymmetric.

(16) If R is irreflexive and field R ⊆ S, then R is irreflexive in S.

(17) If R is irreflexive in X, then R is irreflexive.

Let X be a set. Observe that every binary relation on X which is equivalence
relation-like is also reflexive, symmetric, and transitive.

Let us consider X. One can check that there exists a binary relation on X

which is equivalence relation-like.
Let X be a set. Note that there exists a binary relation on X which is

irreflexive, asymmetric, and transitive.
The following proposition is true

(18) 4∅ is antisymmetric.

Let us consider X, R and let C be a unary operation on X. Note that
〈X,R, C〉 is non empty.

Let us mention that there exists a orthorelational structure which is non
empty and strict.

Let us consider X and let f be a unary operation on X. We say that f is
dneg if and only if:

(Def. 3) For every element x of X holds f(f(x)) = x.

We introduce f is involutive as a synonym of f is dneg.
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One can prove the following two propositions:

(19) op1 is dneg.

(20) idX is dneg.

Let O be a non empty orthorelational structure and let f be a map from O

into O. We say that f is DNeg if and only if:

(Def. 4) f is dneg.

Let O be a non empty orthorelational structure. Observe that there exists a
map from O into O which is DNeg.

The strict orthorelational structure TrivOrthoRelStr is defined as follows:

(Def. 5) TrivOrthoRelStr = 〈{∅}, id{∅}, op1〉.
We introduce TrivPoset as a synonym of TrivOrthoRelStr.

Let us mention that TrivOrthoRelStr is non empty.
The strict orthorelational structure TrivAsymOrthoRelStr is defined by:

(Def. 6) TrivAsymOrthoRelStr = 〈{∅}, ∅{∅},{∅}, op1〉.
Let us mention that TrivAsymOrthoRelStr is non empty.
Let O be a non empty orthorelational structure. We say that O is Dneg if

and only if:

(Def. 7) There exists a map f from O into O such that f = the complement
operation of O and f is DNeg.

One can prove the following proposition

(21) TrivOrthoRelStr is Dneg.

Let us note that TrivOrthoRelStr is Dneg.
Let us observe that there exists a non empty orthorelational structure which

is Dneg.
In the sequel O is a non empty orthorelational structure.
Let R1, R2 be relational structures and let f be a map from R1 into R2. We

say that f is Antitone on R1, R2 if and only if:

(Def. 8) f is antitone.

Let R be a relational structure and let f be a map from R into R. We say
that f is Antitone on R if and only if:

(Def. 9) f is Antitone on R, R.

Let us consider O. We say that O is SubReFlexive if and only if:

(Def. 10) The internal relation of O is reflexive.

Let us consider O. We say that O is ReFlexive if and only if:

(Def. 11) The internal relation of O is reflexive in the carrier of O.

We now state two propositions:

(22) If O is ReFlexive, then O is SubReFlexive.

(23) TrivOrthoRelStr is ReFlexive.
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Let us observe that TrivOrthoRelStr is ReFlexive.
One can verify that there exists a non empty orthorelational structure which

is ReFlexive and strict.
Let us consider O. We say that O is SubIrreFlexive if and only if:

(Def. 12) The internal relation of O is irreflexive.

We say that O is IrreFlexive if and only if:

(Def. 13) The internal relation of O is irreflexive in the carrier of O.

We now state two propositions:

(24) If O is IrreFlexive, then O is SubIrreFlexive.

(25) TrivAsymOrthoRelStr is IrreFlexive.

Let us note that every non empty orthorelational structure which is IrreFle-
xive is also SubIrreFlexive.

Let us observe that TrivAsymOrthoRelStr is IrreFlexive.
Let us note that there exists a non empty orthorelational structure which is

IrreFlexive and strict.
Let us consider O. We say that O is SubSymmetric if and only if:

(Def. 14) The internal relation of O is a symmetric binary relation on the carrier
of O.

Let us consider O. We say that O is Symmetric if and only if:

(Def. 15) The internal relation of O is symmetric in the carrier of O.

We now state two propositions:

(26) If O is Symmetric, then O is SubSymmetric.

(27) TrivOrthoRelStr is Symmetric.

Let us observe that every non empty orthorelational structure which is Sym-
metric is also SubSymmetric.

Let us note that there exists a non empty orthorelational structure which is
Symmetric and strict.

Let us consider O. We say that O is SubAntisymmetric if and only if:

(Def. 16) The internal relation of O is an antisymmetric binary relation on the
carrier of O.

Let us consider O. We say that O is Antisymmetric if and only if:

(Def. 17) The internal relation of O is antisymmetric in the carrier of O.

Next we state two propositions:

(28) If O is Antisymmetric, then O is SubAntisymmetric.

(29) TrivOrthoRelStr is Antisymmetric.

Let us observe that every non empty orthorelational structure which is An-
tisymmetric is also SubAntisymmetric.

One can verify that TrivOrthoRelStr is Symmetric and Antisymmetric.
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One can check that there exists a non empty orthorelational structure which
is Symmetric, Antisymmetric, and strict.

Let us consider O. We say that O is SubAsymmetric if and only if:

(Def. 18) The internal relation of O is an asymmetric binary relation on the carrier
of O.

Let us consider O. We say that O is Asymmetric if and only if:

(Def. 19) The internal relation of O is asymmetric in the carrier of O.

One can prove the following two propositions:

(30) If O is Asymmetric, then O is SubAsymmetric.

(31) TrivAsymOrthoRelStr is Asymmetric.

Let us mention that every non empty orthorelational structure which is
Asymmetric is also SubAsymmetric.

One can check that TrivAsymOrthoRelStr is Asymmetric.
Let us observe that there exists a non empty orthorelational structure which

is Asymmetric and strict.
Let us consider O. We say that O is SubTransitive if and only if:

(Def. 20) The internal relation of O is a transitive binary relation on the carrier
of O.

Let us consider O. We say that O is Transitive if and only if:

(Def. 21) The internal relation of O is transitive in the carrier of O.

Next we state two propositions:

(32) If O is Transitive, then O is SubTransitive.

(33) TrivOrthoRelStr is Transitive.

Let us observe that every non empty orthorelational structure which is
Transitive is also SubTransitive.

Let us observe that TrivOrthoRelStr is Transitive.
Let us observe that there exists a non empty orthorelational structure which

is ReFlexive, Symmetric, Antisymmetric, Transitive, and strict.
Next we state the proposition

(34) TrivAsymOrthoRelStr is Transitive.

Let us mention that TrivAsymOrthoRelStr is IrreFlexive, Asymmetric, and
Transitive.

Let us observe that there exists a non empty orthorelational structure which
is IrreFlexive, Asymmetric, Transitive, and strict.

Next we state four propositions:

(35) If O is SubSymmetric and SubTransitive, then O is SubReFlexive.

(36) If O is SubIrreFlexive and SubTransitive, then O is SubAsymmetric.

(37) If O is SubAsymmetric, then O is SubIrreFlexive.

(38) If O is ReFlexive and SubSymmetric, then O is Symmetric.
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One can check that every non empty orthorelational structure which is Re-
Flexive and SubSymmetric is also Symmetric.

Next we state the proposition

(39) If O is ReFlexive and SubAntisymmetric, then O is Antisymmetric.

Let us note that every non empty orthorelational structure which is ReFle-
xive and SubAntisymmetric is also Antisymmetric.

The following proposition is true

(40) If O is ReFlexive and SubTransitive, then O is Transitive.

Let us note that every non empty orthorelational structure which is ReFle-
xive and SubTransitive is also Transitive.

One can prove the following proposition

(41) If O is IrreFlexive and SubTransitive, then O is Transitive.

Let us observe that every non empty orthorelational structure which is Irre-
Flexive and SubTransitive is also Transitive.

Next we state the proposition

(42) If O is IrreFlexive and SubAsymmetric, then O is Asymmetric.

Let us note that every non empty orthorelational structure which is IrreFle-
xive and SubAsymmetric is also Asymmetric.

2. Basic Poset Notions

Let us consider O. We say that O is SubQuasiOrdered if and only if:

(Def. 22) O is SubReFlexive and SubTransitive.

We introduce O is SubQuasiordered, O is SubPreOrdered, O is SubPreordered,
and O is Subpreordered as synonyms of O is SubQuasiOrdered.

Let us consider O. We say that O is QuasiOrdered if and only if:

(Def. 23) O is ReFlexive and Transitive.

We introduce O is Quasiordered, O is PreOrdered, and O is Preordered as
synonyms of O is QuasiOrdered.

The following proposition is true

(43) If O is QuasiOrdered, then O is SubQuasiOrdered.

Let us observe that every non empty orthorelational structure which is Qu-
asiOrdered is also SubQuasiOrdered.

Let us note that TrivOrthoRelStr is QuasiOrdered.
Let us consider O. We say that O is QuasiPure if and only if:

(Def. 24) O is Dneg and QuasiOrdered.

Let us mention that there exists a non empty orthorelational structure which
is QuasiPure, Dneg, QuasiOrdered, and strict.

Let us note that TrivOrthoRelStr is QuasiPure.
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A QuasiPureOrthoRelStr is a QuasiPure non empty orthorelational struc-
ture.

Let us consider O. We say that O is SubPartialOrdered if and only if:

(Def. 25) O is ReFlexive, SubAntisymmetric, and SubTransitive.

We introduce O is SubPartialordered as a synonym of O is SubPartialOrdered.
Let us consider O. We say that O is PartialOrdered if and only if:

(Def. 26) O is ReFlexive, Antisymmetric, and Transitive.

We introduce O is Partialordered as a synonym of O is PartialOrdered.
We now state the proposition

(44) O is SubPartialOrdered iff O is PartialOrdered.

Let us note that every non empty orthorelational structure which is SubPar-
tialOrdered is also PartialOrdered and every non empty orthorelational struc-
ture which is PartialOrdered is also SubPartialOrdered.

Let us observe that every non empty orthorelational structure which is Par-
tialOrdered is also ReFlexive, Antisymmetric, and Transitive and every non
empty orthorelational structure which is ReFlexive, Antisymmetric, and Trans-
itive is also PartialOrdered.

Let us consider O. We say that O is Pure if and only if:

(Def. 27) O is Dneg and PartialOrdered.

Let us mention that there exists a non empty orthorelational structure which
is Pure, Dneg, PartialOrdered, and strict.

One can check that TrivOrthoRelStr is Pure.
A PureOrthoRelStr is a Pure non empty orthorelational structure.
Let us consider O. We say that O is SubStrictPartialOrdered if and only if:

(Def. 28) O is SubAsymmetric and SubTransitive.

Let us consider O. We say that O is StrictPartialOrdered if and only if:

(Def. 29) O is Asymmetric and Transitive.

We introduce O is Strictpartialordered, O is StrictOrdered, and O is Strictor-
dered as synonyms of O is StrictPartialOrdered.

The following proposition is true

(45) If O is StrictPartialOrdered, then O is SubStrictPartialOrdered.

Let us note that every non empty orthorelational structure which is Strict-
PartialOrdered is also SubStrictPartialOrdered.

One can prove the following proposition

(46) If O is SubStrictPartialOrdered, then O is SubIrreFlexive.

Let us note that every non empty orthorelational structure which is Sub-
StrictPartialOrdered is also SubIrreFlexive.

Next we state the proposition
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(47) If O is IrreFlexive and SubStrictPartialOrdered, then O is StrictPartia-
lOrdered.

Let us mention that every non empty orthorelational structure which is
IrreFlexive and SubStrictPartialOrdered is also StrictPartialOrdered.

We now state the proposition

(48) If O is StrictPartialOrdered, then O is IrreFlexive.

Let us note that every non empty orthorelational structure which is Strict-
PartialOrdered is also IrreFlexive.

One can check that TrivAsymOrthoRelStr is IrreFlexive and StrictPartia-
lOrdered.

Let us mention that there exists a non empty strict orthorelational structure
which is IrreFlexive and StrictPartialOrdered.

In the sequel P1 denotes a PartialOrdered non empty orthorelational struc-
ture and Q1 denotes a QuasiOrdered non empty orthorelational structure.

We now state the proposition

(49) If Q1 is SubAntisymmetric, then Q1 is PartialOrdered.

Let P1 be a PartialOrdered non empty orthorelational structure. Note that
the internal relation of P1 is ordering.

One can prove the following proposition

(50) P1 is a poset.

Let us note that every non empty orthorelational structure which is Partia-
lOrdered is also reflexive, transitive, and antisymmetric.

Let P2, P3 be PartialOrdered non empty orthorelational structures and let
f be a map from P2 into P3. We say that f is Antitone on P2, P3 if and only if:

(Def. 30) f is antitone.

Let P1 be a PartialOrdered non empty orthorelational structure and let f

be a map from P1 into P1. We say that f is Antitone on P1 if and only if:

(Def. 31) f is Antitone on P1, P1.

Let P2, P3 be PartialOrdered non empty orthorelational structures and let
f be a map from P2 into P3. We say that f is Antitone if and only if:

(Def. 32) f is Antitone on P2, P3.

Let P1 be a PartialOrdered non empty orthorelational structure. Note that
there exists a map from P1 into P1 which is Antitone.

Let us consider P1 and let f be a unary operation on the carrier of P1. We
say that f is Orderinvolutive if and only if:

(Def. 33) f is a DNeg map from P1 into P1 and an Antitone map from P1 into P1.

Let us consider P1. We say that P1 is OrderInvolutive if and only if:

(Def. 34) There exists a map f from P1 into P1 such that f = the complement
operation of P1 and f is Orderinvolutive.
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Next we state the proposition

(51) The complement operation of TrivOrthoRelStr is Orderinvolutive.

Let us observe that TrivOrthoRelStr is OrderInvolutive.
One can check that there exists a PartialOrdered non empty orthorelational

structure which is OrderInvolutive and Pure.
A PreOrthoPoset is an OrderInvolutive Pure PartialOrdered non empty or-

thorelational structure.
Let us consider P1 and let f be a unary operation on the carrier of P1. We

say that f is QuasiOrthoComplement on P1 if and only if:

(Def. 35) f is Orderinvolutive and for every element y of P1 holds sup {y, f(y)}
exists in P1 and inf {y, f(y)} exists in P1.

Let us consider P1. We say that P1 is QuasiOrthocomplemented if and only
if:

(Def. 36) There exists a map f from P1 into P1 such that f = the complement
operation of P1 and f is QuasiOrthoComplement on P1.

Next we state the proposition

(52) TrivOrthoRelStr is QuasiOrthocomplemented.

Let us consider P1 and let f be a unary operation on the carrier of P1. We
say that f is OrthoComplement on P1 if and only if the conditions (Def. 37) are
satisfied.

(Def. 37)(i) f is Orderinvolutive, and
(ii) for every element y of P1 holds sup {y, f(y)} exists in P1 and inf
{y, f(y)} exists in P1 and

⊔
P1
{y, f(y)} is a maximum of the carrier of P1

and d−eP1{y, f(y)} is a minimum of the carrier of P1.

We introduce f is OCompl on P1 as a synonym of f is OrthoComplement on
P1.

Let us consider P1. We say that P1 is Orthocomplemented if and only if:

(Def. 38) There exists a map f from P1 into P1 such that f = the complement
operation of P1 and f is OrthoComplement on P1.

We introduce P1 is Ocompl as a synonym of P1 is Orthocomplemented.
Next we state two propositions:

(53) Let f be a unary operation on the carrier of P1. If f is OrthoComplement
on P1, then f is QuasiOrthoComplement on P1.

(54) TrivOrthoRelStr is Orthocomplemented.

One can check that TrivOrthoRelStr is QuasiOrthocomplemented and Or-
thocomplemented.

Let us mention that there exists a PartialOrdered non empty orthorelational
structure which is Orthocomplemented and QuasiOrthocomplemented.
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A QuasiOrthoPoset is a QuasiOrthocomplemented PartialOrdered non
empty orthorelational structure. An orthoposet is an Orthocomplemented Par-
tialOrdered non empty orthorelational structure.
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