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The articles [6], [3], [10], [7], [1], [11], [2], [5], [9], [8], and [4] provide the notation
and terminology for this paper.

1. Definition and Axioms of the Subspace of Real Unitary Space

Let V be a real unitary space. A real unitary space is said to be a subspace
of V if it satisfies the conditions (Def. 1).

(Def. 1)(i) The carrier of it ⊆ the carrier of V ,
(ii) the zero of it = the zero of V ,
(iii) the addition of it = (the addition of V )¹[: the carrier of it, the carrier

of it :],
(iv) the external multiplication of it = (the external multiplication of

V )¹[:R, the carrier of it :], and
(v) the scalar product of it = (the scalar product of V )¹[: the carrier of it,

the carrier of it :].
We now state a number of propositions:

1
c© 2003 University of Białystok

ISSN 1426–2630



2 noboru endou et al.

(1) Let V be a real unitary space, W1, W2 be subspaces of V , and x be a
set. If x ∈W1 and W1 is a subspace of W2, then x ∈W2.

(2) For every real unitary space V and for every subspace W of V and for
every set x such that x ∈W holds x ∈ V.

(3) For every real unitary space V and for every subspace W of V holds
every vector of W is a vector of V .

(4) For every real unitary space V and for every subspace W of V holds
0W = 0V .

(5) For every real unitary space V and for all subspaces W1, W2 of V holds
0(W1) = 0(W2).

(6) Let V be a real unitary space, W be a subspace of V , u, v be vectors of
V , and w1, w2 be vectors of W . If w1 = v and w2 = u, then w1+w2 = v+u.

(7) Let V be a real unitary space, W be a subspace of V , v be a vector of V ,
w be a vector of W , and a be a real number. If w = v, then a · w = a · v.

(8) Let V be a real unitary space, W be a subspace of V , v1, v2 be vectors
of V , and w1, w2 be vectors of W . If w1 = v1 and w2 = v2, then (w1|w2) =
(v1|v2).

(9) Let V be a real unitary space, W be a subspace of V , v be a vector of
V , and w be a vector of W . If w = v, then −v = −w.

(10) Let V be a real unitary space, W be a subspace of V , u, v be vectors of
V , and w1, w2 be vectors of W . If w1 = v and w2 = u, then w1−w2 = v−u.

(11) For every real unitary space V and for every subspace W of V holds
0V ∈W.

(12) For every real unitary space V and for all subspaces W1, W2 of V holds
0(W1) ∈W2.

(13) For every real unitary space V and for every subspace W of V holds
0W ∈ V.

(14) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . If u ∈W and v ∈W, then u + v ∈W.

(15) Let V be a real unitary space, W be a subspace of V , v be a vector of
V , and a be a real number. If v ∈W, then a · v ∈W.

(16) For every real unitary space V and for every subspace W of V and for
every vector v of V such that v ∈W holds −v ∈W.

(17) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . If u ∈W and v ∈W, then u− v ∈W.

(18) Let V be a real unitary space, V1 be a subset of the carrier of V , D be
a non empty set, d1 be an element of D, A be a binary operation on D,
M be a function from [:R, D :] into D, and S be a function from [:D, D :]
into R. Suppose that
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(i) V1 = D,

(ii) d1 = 0V ,

(iii) A = (the addition of V )¹[:V1, V1 :],
(iv) M = (the external multiplication of V )¹[:R, V1 :], and
(v) S = (the scalar product of V )¹[:V1, V1 :].

Then 〈D, d1, A, M, S〉 is a subspace of V .

(19) Every real unitary space V is a subspace of V .

(20) For all strict real unitary spaces V , X such that V is a subspace of X

and X is a subspace of V holds V = X.

(21) Let V , X, Y be real unitary spaces. Suppose V is a subspace of X and
X is a subspace of Y . Then V is a subspace of Y .

(22) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose
the carrier of W1 ⊆ the carrier of W2. Then W1 is a subspace of W2.

(23) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose
that for every vector v of V such that v ∈ W1 holds v ∈ W2. Then W1 is
a subspace of W2.

Let V be a real unitary space. Observe that there exists a subspace of V

which is strict.
Next we state several propositions:

(24) Let V be a real unitary space and W1, W2 be strict subspaces of V . If
the carrier of W1 = the carrier of W2, then W1 = W2.

(25) Let V be a real unitary space and W1, W2 be strict subspaces of V . If
for every vector v of V holds v ∈W1 iff v ∈W2, then W1 = W2.

(26) Let V be a strict real unitary space and W be a strict subspace of V . If
the carrier of W = the carrier of V , then W = V.

(27) Let V be a strict real unitary space and W be a strict subspace of V . If
for every vector v of V holds v ∈W iff v ∈ V, then W = V.

(28) Let V be a real unitary space, W be a subspace of V , and V1 be a subset
of the carrier of V . If the carrier of W = V1, then V1 is linearly closed.

(29) Let V be a real unitary space, W be a subspace of V , and V1 be a subset
of the carrier of V . Suppose V1 6= ∅ and V1 is linearly closed. Then there
exists a strict subspace W of V such that V1 = the carrier of W .

2. Definition of Zero Subspace and Improper Subspace of Real
Unitary Space

Let V be a real unitary space. The functor 0V yields a strict subspace of V

and is defined by:

(Def. 2) The carrier of 0V = {0V }.
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Let V be a real unitary space. The functor ΩV yielding a strict subspace of
V is defined by:

(Def. 3) ΩV = the unitary space structure of V .

3. Theorems of Zero Subspace and Improper Subspace

Next we state several propositions:

(30) For every real unitary space V and for every subspace W of V holds
0W = 0V .

(31) For every real unitary space V and for all subspaces W1, W2 of V holds
0(W1) = 0(W2).

(32) For every real unitary space V and for every subspace W of V holds 0W

is a subspace of V .

(33) For every real unitary space V and for every subspace W of V holds 0V

is a subspace of W .

(34) For every real unitary space V and for all subspaces W1, W2 of V holds
0(W1) is a subspace of W2.

(35) Every strict real unitary space V is a subspace of ΩV .

4. The Cosets of Subspace of Real Unitary Space

Let V be a real unitary space, let v be a vector of V , and let W be a subspace
of V . The functor v + W yields a subset of the carrier of V and is defined as
follows:

(Def. 4) v + W = {v + u; u ranges over vectors of V : u ∈W}.
Let V be a real unitary space and let W be a subspace of V . A subset of

the carrier of V is said to be a coset of W if:

(Def. 5) There exists a vector v of V such that it = v + W.

5. Theorems of the Cosets

We now state a number of propositions:

(36) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . Then 0V ∈ v + W if and only if v ∈W.

(37) For every real unitary space V and for every subspace W of V and for
every vector v of V holds v ∈ v + W.

(38) For every real unitary space V and for every subspace W of V holds
0V + W = the carrier of W .



subspaces and cosets of subspace of real . . . 5

(39) For every real unitary space V and for every vector v of V holds v+0V =
{v}.

(40) For every real unitary space V and for every vector v of V holds v+ΩV =
the carrier of V .

(41) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . Then 0V ∈ v + W if and only if v + W = the carrier of W .

(42) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . Then v ∈W if and only if v + W = the carrier of W .

(43) Let V be a real unitary space, W be a subspace of V , v be a vector of
V , and a be a real number. If v ∈W, then a · v + W = the carrier of W .

(44) Let V be a real unitary space, W be a subspace of V , v be a vector of
V , and a be a real number. If a 6= 0 and a · v + W = the carrier of W ,
then v ∈W.

(45) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . Then v ∈W if and only if −v + W = the carrier of W .

(46) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . Then u ∈W if and only if v + W = v + u + W.

(47) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . Then u ∈W if and only if v + W = (v − u) + W.

(48) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . Then v ∈ u + W if and only if u + W = v + W.

(49) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . Then v + W = −v + W if and only if v ∈W.

(50) Let V be a real unitary space, W be a subspace of V , and u, v1, v2 be
vectors of V . If u ∈ v1 + W and u ∈ v2 + W, then v1 + W = v2 + W.

(51) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . If u ∈ v + W and u ∈ −v + W, then v ∈W.

(52) Let V be a real unitary space, W be a subspace of V , v be a vector of
V , and a be a real number. If a 6= 1 and a · v ∈ v + W, then v ∈W.

(53) Let V be a real unitary space, W be a subspace of V , v be a vector of
V , and a be a real number. If v ∈W, then a · v ∈ v + W.

(54) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . Then −v ∈ v + W if and only if v ∈W.

(55) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . Then u + v ∈ v + W if and only if u ∈W.

(56) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . Then v − u ∈ v + W if and only if u ∈W.

(57) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . Then u ∈ v +W if and only if there exists a vector v1 of V such that
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v1 ∈W and u = v + v1.

(58) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . Then u ∈ v +W if and only if there exists a vector v1 of V such that
v1 ∈W and u = v − v1.

(59) Let V be a real unitary space, W be a subspace of V , and v1, v2 be
vectors of V . Then there exists a vector v of V such that v1 ∈ v + W and
v2 ∈ v + W if and only if v1 − v2 ∈W.

(60) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . If v+W = u+W, then there exists a vector v1 of V such that v1 ∈W

and v + v1 = u.

(61) Let V be a real unitary space, W be a subspace of V , and u, v be vectors
of V . If v+W = u+W, then there exists a vector v1 of V such that v1 ∈W

and v − v1 = u.

(62) Let V be a real unitary space, W1, W2 be strict subspaces of V , and v

be a vector of V . Then v + W1 = v + W2 if and only if W1 = W2.

(63) Let V be a real unitary space, W1, W2 be strict subspaces of V , and u,
v be vectors of V . If v + W1 = u + W2, then W1 = W2.

(64) Let V be a real unitary space, W be a subspace of V , and C be a coset
of W . Then C is linearly closed if and only if C = the carrier of W .

(65) Let V be a real unitary space, W1, W2 be strict subspaces of V , C1 be
a coset of W1, and C2 be a coset of W2. If C1 = C2, then W1 = W2.

(66) Let V be a real unitary space, W be a subspace of V , C be a coset of
W , and v be a vector of V . Then {v} is a coset of 0V .

(67) Let V be a real unitary space, W be a subspace of V , V1 be a subset of
the carrier of V , and v be a vector of V . If V1 is a coset of 0V , then there
exists a vector v of V such that V1 = {v}.

(68) For every real unitary space V and for every subspace W of V holds the
carrier of W is a coset of W .

(69) For every real unitary space V holds the carrier of V is a coset of ΩV .

(70) Let V be a real unitary space, W be a subspace of V , and V1 be a subset
of the carrier of V . If V1 is a coset of ΩV , then V1 = the carrier of V .

(71) Let V be a real unitary space, W be a subspace of V , and C be a coset
of W . Then 0V ∈ C if and only if C = the carrier of W .

(72) Let V be a real unitary space, W be a subspace of V , C be a coset of
W , and u be a vector of V . Then u ∈ C if and only if C = u + W.

(73) Let V be a real unitary space, W be a subspace of V , C be a coset of W ,
and u, v be vectors of V . If u ∈ C and v ∈ C, then there exists a vector
v1 of V such that v1 ∈W and u + v1 = v.

(74) Let V be a real unitary space, W be a subspace of V , C be a coset of W ,
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and u, v be vectors of V . If u ∈ C and v ∈ C, then there exists a vector
v1 of V such that v1 ∈W and u− v1 = v.

(75) Let V be a real unitary space, W be a subspace of V , and v1, v2 be
vectors of V . Then there exists a coset C of W such that v1 ∈ C and
v2 ∈ C if and only if v1 − v2 ∈W.

(76) Let V be a real unitary space, W be a subspace of V , u be a vector of
V , and B, C be cosets of W . If u ∈ B and u ∈ C, then B = C.
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The terminology and notation used here are introduced in the following articles:
[7], [3], [10], [11], [2], [1], [13], [12], [6], [9], [5], and [4].

1. Definitions of Sum and Intersection of Subspaces

Let V be a real unitary space and let W1, W2 be subspaces of V . The functor
W1 + W2 yields a strict subspace of V and is defined as follows:

(Def. 1) The carrier of W1 + W2 = {v + u; v ranges over vectors of V , u ranges
over vectors of V : v ∈W1 ∧ u ∈W2}.

Let V be a real unitary space and let W1, W2 be subspaces of V . The functor
W1 ∩W2 yields a strict subspace of V and is defined by:

(Def. 2) The carrier of W1 ∩W2 = (the carrier of W1) ∩ (the carrier of W2).
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2. Theorems of Sum and Intersecton of Subspaces

One can prove the following propositions:

(1) Let V be a real unitary space, W1, W2 be subspaces of V , and x be a
set. Then x ∈ W1 + W2 if and only if there exist vectors v1, v2 of V such
that v1 ∈W1 and v2 ∈W2 and x = v1 + v2.

(2) Let V be a real unitary space, W1, W2 be subspaces of V , and v be a
vector of V . If v ∈W1 or v ∈W2, then v ∈W1 + W2.

(3) Let V be a real unitary space, W1, W2 be subspaces of V , and x be a
set. Then x ∈W1 ∩W2 if and only if x ∈W1 and x ∈W2.

(4) For every real unitary space V and for every strict subspace W of V

holds W + W = W.

(5) For every real unitary space V and for all subspaces W1, W2 of V holds
W1 + W2 = W2 + W1.

(6) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W1 + (W2 + W3) = (W1 + W2) + W3.

(7) Let V be a real unitary space and W1, W2 be subspaces of V . Then W1

is a subspace of W1 + W2 and W2 is a subspace of W1 + W2.

(8) Let V be a real unitary space, W1 be a subspace of V , and W2 be a strict
subspace of V . Then W1 is a subspace of W2 if and only if W1 +W2 = W2.

(9) For every real unitary space V and for every strict subspace W of V

holds 0V + W = W and W + 0V = W.

(10) Let V be a real unitary space. Then 0V + ΩV = the unitary space
structure of V and ΩV + 0V = the unitary space structure of V .

(11) Let V be a real unitary space and W be a subspace of V . Then ΩV +W =
the unitary space structure of V and W +ΩV = the unitary space structure
of V .

(12) For every strict real unitary space V holds ΩV + ΩV = V.

(13) For every real unitary space V and for every strict subspace W of V

holds W ∩W = W.

(14) For every real unitary space V and for all subspaces W1, W2 of V holds
W1 ∩W2 = W2 ∩W1.

(15) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W1 ∩ (W2 ∩W3) = (W1 ∩W2) ∩W3.

(16) Let V be a real unitary space and W1, W2 be subspaces of V . Then
W1 ∩W2 is a subspace of W1 and W1 ∩W2 is a subspace of W2.

(17) Let V be a real unitary space, W2 be a subspace of V , and W1 be a strict
subspace of V . Then W1 is a subspace of W2 if and only if W1∩W2 = W1.
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(18) For every real unitary space V and for every subspace W of V holds
0V ∩W = 0V and W ∩ 0V = 0V .

(19) For every real unitary space V holds 0V ∩ΩV = 0V and ΩV ∩ 0V = 0V .

(20) For every real unitary space V and for every strict subspace W of V

holds ΩV ∩W = W and W ∩ ΩV = W.

(21) For every strict real unitary space V holds ΩV ∩ ΩV = V.

(22) For every real unitary space V and for all subspaces W1, W2 of V holds
W1 ∩W2 is a subspace of W1 + W2.

(23) For every real unitary space V and for every subspace W1 of V and for
every strict subspace W2 of V holds W1 ∩W2 + W2 = W2.

(24) For every real unitary space V and for every subspace W1 of V and for
every strict subspace W2 of V holds W2 ∩ (W2 + W1) = W2.

(25) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W1 ∩W2 + W2 ∩W3 is a subspace of W2 ∩ (W1 + W3).
(26) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a subspace of W2, then W2 ∩ (W1 + W3) = W1 ∩W2 + W2 ∩W3.

(27) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W2 + W1 ∩W3 is a subspace of (W1 + W2) ∩ (W2 + W3).
(28) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a subspace of W2, then W2 + W1 ∩W3 = (W1 + W2) ∩ (W2 + W3).
(29) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a strict subspace of W3, then W1 + W2 ∩W3 = (W1 + W2) ∩W3.

(30) For every real unitary space V and for all strict subspaces W1, W2 of V

holds W1 + W2 = W2 iff W1 ∩W2 = W1.

(31) Let V be a real unitary space, W1 be a subspace of V , and W2, W3

be strict subspaces of V . If W1 is a subspace of W2, then W1 + W3 is a
subspace of W2 + W3.

(32) Let V be a real unitary space and W1, W2 be subspaces of V . Then
there exists a subspace W of V such that the carrier of W = (the carrier
of W1) ∪ (the carrier of W2) if and only if W1 is a subspace of W2 or W2

is a subspace of W1.

3. Introduction of a Set of Subspaces of Real Unitary Space

Let V be a real unitary space. The functor Subspaces V yielding a set is
defined as follows:

(Def. 3) For every set x holds x ∈ Subspaces V iff x is a strict subspace of V .

Let V be a real unitary space. Observe that Subspaces V is non empty.
The following proposition is true
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(33) For every strict real unitary space V holds V ∈ Subspaces V.

4. Definition of the Direct Sum and Linear Complement of
Subspaces

Let V be a real unitary space and let W1, W2 be subspaces of V . We say
that V is the direct sum of W1 and W2 if and only if:

(Def. 4) The unitary space structure of V = W1 + W2 and W1 ∩W2 = 0V .

Let V be a real unitary space and let W be a subspace of V . A subspace of
V is called a linear complement of W if:

(Def. 5) V is the direct sum of it and W .

Let V be a real unitary space and let W be a subspace of V . Observe that
there exists a linear complement of W which is strict.

Next we state two propositions:

(34) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose
V is the direct sum of W1 and W2. Then W2 is a linear complement of
W1.

(35) Let V be a real unitary space, W be a subspace of V , and L be a linear
complement of W . Then V is the direct sum of L and W and the direct
sum of W and L.

5. Theorems Concerning the Sum, Linear Complement and Coset
of Subspace

The following propositions are true:

(36) Let V be a real unitary space, W be a subspace of V , and L be a linear
complement of W . Then W + L = the unitary space structure of V and
L + W = the unitary space structure of V .

(37) Let V be a real unitary space, W be a subspace of V , and L be a linear
complement of W . Then W ∩ L = 0V and L ∩W = 0V .

(38) Let V be a real unitary space and W1, W2 be subspaces of V . If V is the
direct sum of W1 and W2, then V is the direct sum of W2 and W1.

(39) Every real unitary space V is the direct sum of 0V and ΩV and the direct
sum of ΩV and 0V .

(40) Let V be a real unitary space, W be a subspace of V , and L be a linear
complement of W . Then W is a linear complement of L.

(41) For every real unitary space V holds 0V is a linear complement of ΩV

and ΩV is a linear complement of 0V .
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(42) Let V be a real unitary space, W1, W2 be subspaces of V , C1 be a coset
of W1, and C2 be a coset of W2. If C1 meets C2, then C1 ∩ C2 is a coset
of W1 ∩W2.

(43) Let V be a real unitary space and W1, W2 be subspaces of V . Then V is
the direct sum of W1 and W2 if and only if for every coset C1 of W1 and for
every coset C2 of W2 there exists a vector v of V such that C1∩C2 = {v}.

6. Decomposition of a Vector of Real Unitary Space

Next we state three propositions:

(44) Let V be a real unitary space and W1, W2 be subspaces of V . Then
W1 +W2 = the unitary space structure of V if and only if for every vector
v of V there exist vectors v1, v2 of V such that v1 ∈W1 and v2 ∈W2 and
v = v1 + v2.

(45) Let V be a real unitary space, W1, W2 be subspaces of V , and v, v1, v2,
u1, u2 be vectors of V . Suppose V is the direct sum of W1 and W2 and
v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and v2 ∈ W2 and
u2 ∈W2. Then v1 = u1 and v2 = u2.

(46) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose
that

(i) V = W1 + W2, and
(ii) there exists a vector v of V such that for all vectors v1, v2, u1, u2 of

V such that v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and
v2 ∈W2 and u2 ∈W2 holds v1 = u1 and v2 = u2.

Then V is the direct sum of W1 and W2.

Let V be a real unitary space, let v be a vector of V , and let W1, W2 be
subspaces of V . Let us assume that V is the direct sum of W1 and W2. The
functor v〈〈W1,W2〉〉 yielding an element of [: the carrier of V , the carrier of V :] is
defined as follows:

(Def. 6) v = (v〈〈W1,W2〉〉)1 +(v〈〈W1,W2〉〉)2 and (v〈〈W1,W2〉〉)1 ∈W1 and (v〈〈W1,W2〉〉)2 ∈
W2.

We now state several propositions:

(47) Let V be a real unitary space, v be a vector of V , and W1, W2 be
subspaces of V . If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉)1 =
(v〈〈W2,W1〉〉)2.

(48) Let V be a real unitary space, v be a vector of V , and W1, W2 be
subspaces of V . If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉)2 =
(v〈〈W2,W1〉〉)1.
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(49) Let V be a real unitary space, W be a subspace of V , L be a linear
complement of W , v be a vector of V , and t be an element of [: the carrier
of V , the carrier of V :]. If t1 + t2 = v and t1 ∈ W and t2 ∈ L, then
t = v〈〈W,L〉〉.

(50) Let V be a real unitary space, W be a subspace of V , L be a linear
complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1+(v〈〈W,L〉〉)2 = v.

(51) Let V be a real unitary space, W be a subspace of V , L be a linear
complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 ∈ W and

(v〈〈W,L〉〉)2 ∈ L.

(52) Let V be a real unitary space, W be a subspace of V , L be a linear
complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 = (v〈〈L,W〉〉)2.

(53) Let V be a real unitary space, W be a subspace of V , L be a linear
complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)2 = (v〈〈L,W〉〉)1.

7. Introduction of Operations on Set of Subspaces

Let V be a real unitary space. The functor SubJoin V yields a binary ope-
ration on Subspaces V and is defined by:

(Def. 7) For all elements A1, A2 of Subspaces V and for all subspaces W1, W2 of V

such that A1 = W1 and A2 = W2 holds (SubJoin V )(A1, A2) = W1 + W2.

Let V be a real unitary space. The functor SubMeet V yielding a binary
operation on Subspaces V is defined as follows:

(Def. 8) For all elements A1, A2 of Subspaces V and for all subspaces W1, W2 of V

such that A1 = W1 and A2 = W2 holds (SubMeet V )(A1, A2) = W1 ∩W2.

8. Theorems of Functions SubJoin, SubMeet

We now state the proposition

(54) For every real unitary space V holds 〈Subspaces V, SubJoin V,

SubMeet V 〉 is a lattice.

Let V be a real unitary space. Note that 〈Subspaces V, SubJoin V, SubMeet V 〉
is lattice-like.

The following propositions are true:

(55) For every real unitary space V holds 〈Subspaces V, SubJoin V,

SubMeet V 〉 is lower-bounded.

(56) For every real unitary space V holds 〈Subspaces V, SubJoin V,

SubMeet V 〉 is upper-bounded.



operations on subspaces in real unitary space 15

(57) For every real unitary space V holds 〈Subspaces V, SubJoin V,

SubMeet V 〉 is a bound lattice.

(58) For every real unitary space V holds 〈Subspaces V, SubJoin V,

SubMeet V 〉 is modular.

(59) For every real unitary space V holds 〈Subspaces V, SubJoin V,

SubMeet V 〉 is complemented.

Let V be a real unitary space.
Observe that 〈Subspaces V, SubJoin V, SubMeet V 〉 is lower-bounded, upper-

bounded, modular, and complemented.
One can prove the following proposition

(60) Let V be a real unitary space and W1, W2, W3 be strict subspaces of V .
If W1 is a subspace of W2, then W1 ∩W3 is a subspace of W2 ∩W3.

9. Auxiliary Theorems in Real Unitary Space

We now state three propositions:

(61) Let V be a real unitary space and W be a strict subspace of V . Suppose
that for every vector v of V holds v ∈ W. Then W = the unitary space
structure of V .

(62) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . Then there exists a coset C of W such that v ∈ C.

(63) Let V be a real unitary space, W be a subspace of V , v be a vector of
V , and x be a set. Then x ∈ v + W if and only if there exists a vector u

of V such that u ∈W and x = v + u.
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Summary. In this article, we mainly discuss linear combination of vectors
in Real Unitary Space and dimension of the space. As the result, we obtain some
theorems that are similar to those in Real Linear Space.

MML Identifier: RUSUB 3.

The articles [11], [5], [16], [2], [17], [1], [3], [4], [15], [10], [6], [14], [13], [9], [12],
[8], and [7] provide the terminology and notation for this paper.

1. Definition and Fundamental Properties of Linear Combination

Let V be a real unitary space and let A be a subset of the carrier of V . The
functor Lin(A) yielding a strict subspace of V is defined by:

(Def. 1) The carrier of Lin(A) = {∑ l : l ranges over linear combinations of A}.
We now state a number of propositions:

(1) Let V be a real unitary space, A be a subset of the carrier of V , and x

be a set. Then x ∈ Lin(A) if and only if there exists a linear combination
l of A such that x =

∑
l.

(2) Let V be a real unitary space, A be a subset of the carrier of V , and x

be a set. If x ∈ A, then x ∈ Lin(A).
(3) For every real unitary space V holds Lin(∅the carrier of V ) = 0V .

(4) For every real unitary space V and for every subset A of the carrier of
V such that Lin(A) = 0V holds A = ∅ or A = {0V }.
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(5) Let V be a real unitary space, W be a strict subspace of V , and A be a
subset of the carrier of V . If A = the carrier of W , then Lin(A) = W.

(6) Let V be a strict real unitary space and A be a subset of the carrier of
V . If A = the carrier of V , then Lin(A) = V.

(7) Let V be a real unitary space and A, B be subsets of the carrier of V .
If A ⊆ B, then Lin(A) is a subspace of Lin(B).

(8) Let V be a strict real unitary space and A, B be subsets of the carrier
of V . If Lin(A) = V and A ⊆ B, then Lin(B) = V.

(9) For every real unitary space V and for all subsets A, B of the carrier of
V holds Lin(A ∪B) = Lin(A) + Lin(B).

(10) For every real unitary space V and for all subsets A, B of the carrier of
V holds Lin(A ∩B) is a subspace of Lin(A) ∩ Lin(B).

(11) Let V be a real unitary space and A be a subset of the carrier of V .
Suppose A is linearly independent. Then there exists a subset B of the
carrier of V such that A ⊆ B and B is linearly independent and Lin(B) =
the unitary space structure of V .

(12) Let V be a real unitary space and A be a subset of the carrier of V .
Suppose Lin(A) = V. Then there exists a subset B of the carrier of V such
that B ⊆ A and B is linearly independent and Lin(B) = V.

2. Definition of the Basis of Real Unitary Space

Let V be a real unitary space. A subset of the carrier of V is said to be a
basis of V if:

(Def. 2) It is linearly independent and Lin(it) = the unitary space structure of
V .

One can prove the following three propositions:

(13) Let V be a strict real unitary space and A be a subset of the carrier of
V . If A is linearly independent, then there exists a basis I of V such that
A ⊆ I.

(14) Let V be a real unitary space and A be a subset of the carrier of V . If
Lin(A) = V, then there exists a basis I of V such that I ⊆ A.

(15) Let V be a real unitary space and A be a subset of V . If A is linearly
independent, then there exists a basis I of V such that A ⊆ I.
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3. Some Theorems of Lin, Sum, Carrier

We now state a number of propositions:

(16) Let V be a real unitary space, L be a linear combination of V , A be
a subset of V , and F be a finite sequence of elements of the carrier of
V . Suppose rng F ⊆ the carrier of Lin(A). Then there exists a linear
combination K of A such that

∑
(L F ) =

∑
K.

(17) Let V be a real unitary space, L be a linear combination of V , and A

be a subset of V . Suppose the support of L ⊆ the carrier of Lin(A). Then
there exists a linear combination K of A such that

∑
L =

∑
K.

(18) Let V be a real unitary space, W be a subspace of V , and L be a linear
combination of V . Suppose the support of L ⊆ the carrier of W . Let K

be a linear combination of W . Suppose K = L¹the carrier of W . Then the
support of L = the support of K and

∑
L =

∑
K.

(19) Let V be a real unitary space, W be a subspace of V , and K be a linear
combination of W . Then there exists a linear combination L of V such
that the support of K = the support of L and

∑
K =

∑
L.

(20) Let V be a real unitary space, W be a subspace of V , and L be a
linear combination of V . Suppose the support of L ⊆ the carrier of W .
Then there exists a linear combination K of W such that the support of
K = the support of L and

∑
K =

∑
L.

(21) For every real unitary space V and for every basis I of V and for every
vector v of V holds v ∈ Lin(I).

(22) Let V be a real unitary space, W be a subspace of V , and A be a subset
of W . Suppose A is linearly independent. Then there exists a subset B of
V such that B is linearly independent and B = A.

(23) Let V be a real unitary space, W be a subspace of V , and A be a subset
of V . Suppose A is linearly independent and A ⊆ the carrier of W . Then
there exists a subset B of W such that B is linearly independent and
B = A.

(24) Let V be a real unitary space, W be a subspace of V , and A be a basis
of W . Then there exists a basis B of V such that A ⊆ B.

(25) Let V be a real unitary space and A be a subset of V . Suppose A is
linearly independent. Let v be a vector of V . If v ∈ A, then for every
subset B of V such that B = A \ {v} holds v /∈ Lin(B).

(26) Let V be a real unitary space, I be a basis of V , and A be a non empty
subset of V . Suppose A misses I. Let B be a subset of V . If B = I ∪ A,

then B is linearly dependent.

(27) Let V be a real unitary space, W be a subspace of V , and A be a subset
of V . If A ⊆ the carrier of W , then Lin(A) is a subspace of W .
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(28) Let V be a real unitary space, W be a subspace of V , A be a subset of
V , and B be a subset of W . If A = B, then Lin(A) = Lin(B).

4. Subspaces of Real Unitary Space Generated by One, Two, or
Three Vectors

We now state a number of propositions:

(29) Let V be a real unitary space, v be a vector of V , and x be a set. Then
x ∈ Lin({v}) if and only if there exists a real number a such that x = a ·v.

(30) For every real unitary space V and for every vector v of V holds v ∈
Lin({v}).

(31) Let V be a real unitary space, v, w be vectors of V , and x be a set. Then
x ∈ v + Lin({w}) if and only if there exists a real number a such that
x = v + a · w.

(32) Let V be a real unitary space, w1, w2 be vectors of V , and x be a set.
Then x ∈ Lin({w1, w2}) if and only if there exist real numbers a, b such
that x = a · w1 + b · w2.

(33) For every real unitary space V and for all vectors w1, w2 of V holds
w1 ∈ Lin({w1, w2}) and w2 ∈ Lin({w1, w2}).

(34) Let V be a real unitary space, v, w1, w2 be vectors of V , and x be a set.
Then x ∈ v + Lin({w1, w2}) if and only if there exist real numbers a, b

such that x = v + a · w1 + b · w2.

(35) Let V be a real unitary space, v1, v2, v3 be vectors of V , and x be a set.
Then x ∈ Lin({v1, v2, v3}) if and only if there exist real numbers a, b, c

such that x = a · v1 + b · v2 + c · v3.

(36) For every real unitary space V and for all vectors w1, w2, w3 of V

holds w1 ∈ Lin({w1, w2, w3}) and w2 ∈ Lin({w1, w2, w3}) and w3 ∈
Lin({w1, w2, w3}).

(37) Let V be a real unitary space, v, w1, w2, w3 be vectors of V , and x be a
set. Then x ∈ v + Lin({w1, w2, w3}) if and only if there exist real numbers
a, b, c such that x = v + a · w1 + b · w2 + c · w3.

(38) For every real unitary space V and for all vectors v, w of V such that
v ∈ Lin({w}) and v 6= 0V holds Lin({v}) = Lin({w}).

(39) Let V be a real unitary space and v1, v2, w1, w2 be vectors of V . Suppose
v1 6= v2 and {v1, v2} is linearly independent and v1 ∈ Lin({w1, w2}) and
v2 ∈ Lin({w1, w2}). Then Lin({w1, w2}) = Lin({v1, v2}) and {w1, w2} is
linearly independent and w1 6= w2.
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5. Auxiliary Theorems

We now state several propositions:

(40) For every real unitary space V and for every set x holds x ∈ 0V iff
x = 0V .

(41) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a subspace of W3, then W1 ∩W2 is a subspace of W3.

(42) Let V be a real unitary space and W1, W2, W3 be subspaces of V .
Suppose W1 is a subspace of W2 and a subspace of W3. Then W1 is a
subspace of W2 ∩W3.

(43) Let V be a real unitary space and W1, W2, W3 be subspaces of V .
Suppose W1 is a subspace of W3 and W2 is a subspace of W3. Then W1+W2

is a subspace of W3.

(44) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a subspace of W2, then W1 is a subspace of W2 + W3.

(45) Let V be a real unitary space, W1, W2 be subspaces of V , and v be a
vector of V . If W1 is a subspace of W2, then v + W1 ⊆ v + W2.
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Summary. In this article we describe the dimension of real unitary space.
Most of theorems are restricted from real linear space. In the last section, we
introduce affine subset of real unitary space.

MML Identifier: RUSUB 4.

The papers [14], [13], [19], [2], [3], [4], [1], [5], [11], [18], [6], [10], [17], [16], [12],
[15], [9], [8], and [7] provide the terminology and notation for this paper.

1. Finite-dimensional Real Unitary Space

One can prove the following two propositions:

(1) Let V be a real unitary space, A, B be finite subsets of V , and v be a
vector of V . Suppose v ∈ Lin(A∪B) and v /∈ Lin(B). Then there exists a
vector w of V such that w ∈ A and w ∈ Lin(((A ∪B) \ {w}) ∪ {v}).

(2) Let V be a real unitary space and A, B be finite subsets of V . Suppose
the unitary space structure of V = Lin(A) and B is linearly independent.
Then B ¬ A and there exists a finite subset C of V such that C ⊆ A and
C = A − B and the unitary space structure of V = Lin(B ∪ C).

Let V be a real unitary space. We say that V is finite dimensional if and
only if:

(Def. 1) There exists a finite subset of the carrier of V which is a basis of V .
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Let us mention that there exists a real unitary space which is strict and
finite dimensional.

Let V be a real unitary space. Let us observe that V is finite dimensional if
and only if:

(Def. 2) There exists a finite subset of V which is a basis of V .

We now state several propositions:

(3) For every real unitary space V such that V is finite dimensional holds
every basis of V is finite.

(4) Let V be a real unitary space and A be a subset of V . Suppose V is
finite dimensional and A is linearly independent. Then A is finite.

(5) For every real unitary space V and for all bases A, B of V such that V

is finite dimensional holds A = B.

(6) For every real unitary space V holds 0V is finite dimensional.

(7) Let V be a real unitary space and W be a subspace of V . If V is finite
dimensional, then W is finite dimensional.

Let V be a real unitary space. Note that there exists a subspace of V which
is finite dimensional and strict.

Let V be a finite dimensional real unitary space. Observe that every subspace
of V is finite dimensional.

Let V be a finite dimensional real unitary space. Observe that there exists
a subspace of V which is strict.

2. Dimension of Real Unitary Space

Let V be a real unitary space. Let us assume that V is finite dimensional.
The functor dim(V ) yielding a natural number is defined by:

(Def. 3) For every basis I of V holds dim(V ) = I .

One can prove the following propositions:

(8) For every finite dimensional real unitary space V and for every subspace
W of V holds dim(W ) ¬ dim(V ).

(9) Let V be a finite dimensional real unitary space and A be a subset of V .
If A is linearly independent, then A = dim(Lin(A)).

(10) For every finite dimensional real unitary space V holds dim(V ) =
dim(ΩV ).

(11) Let V be a finite dimensional real unitary space and W be a subspace
of V . Then dim(V ) = dim(W ) if and only if ΩV = ΩW .

(12) For every finite dimensional real unitary space V holds dim(V ) = 0 iff
ΩV = 0V .
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(13) Let V be a finite dimensional real unitary space. Then dim(V ) = 1 if and
only if there exists a vector v of V such that v 6= 0V and ΩV = Lin({v}).

(14) Let V be a finite dimensional real unitary space. Then dim(V ) = 2 if
and only if there exist vectors u, v of V such that u 6= v and {u, v} is
linearly independent and ΩV = Lin({u, v}).

(15) For every finite dimensional real unitary space V and for all subspaces
W1, W2 of V holds dim(W1 +W2)+dim(W1∩W2) = dim(W1)+dim(W2).

(16) For every finite dimensional real unitary space V and for all subspaces
W1, W2 of V holds dim(W1 ∩W2)  (dim(W1) + dim(W2))− dim(V ).

(17) Let V be a finite dimensional real unitary space and W1, W2 be subspaces
of V . If V is the direct sum of W1 and W2, then dim(V ) = dim(W1) +
dim(W2).

3. Fixed-dimensional Subspace Family

We now state the proposition

(18) Let V be a finite dimensional real unitary space, W be a subspace of V ,
and n be a natural number. Then n ¬ dim(V ) if and only if there exists
a strict subspace W of V such that dim(W ) = n.

Let V be a finite dimensional real unitary space and let n be a natural
number. The functor Subn(V ) yields a set and is defined as follows:

(Def. 4) For every set x holds x ∈ Subn(V ) iff there exists a strict subspace W

of V such that W = x and dim(W ) = n.

Next we state three propositions:

(19) Let V be a finite dimensional real unitary space and n be a natural
number. If n ¬ dim(V ), then Subn(V ) is non empty.

(20) For every finite dimensional real unitary space V and for every natural
number n such that dim(V ) < n holds Subn(V ) = ∅.

(21) Let V be a finite dimensional real unitary space, W be a subspace of V ,
and n be a natural number. Then Subn(W ) ⊆ Subn(V ).

4. Affine Set

Let V be a non empty RLS structure and let S be a subset of V . We say
that S is Affine if and only if:

(Def. 5) For all vectors x, y of V and for every real number a such that x ∈ S

and y ∈ S holds (1− a) · x + a · y ∈ S.

One can prove the following propositions:
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(22) For every non empty RLS structure V holds ΩV is Affine and ∅V is
Affine.

(23) For every real linear space-like non empty RLS structure V and for every
vector v of V holds {v} is Affine.

Let V be a non empty RLS structure. Observe that there exists a subset of
V which is non empty and Affine and there exists a subset of V which is empty
and Affine.

Let V be a real linear space and let W be a subspace of V . The functor
Up(W ) yielding a non empty subset of V is defined by:

(Def. 6) Up(W ) = the carrier of W .

Let V be a real unitary space and let W be a subspace of V . The functor
Up(W ) yielding a non empty subset of V is defined by:

(Def. 7) Up(W ) = the carrier of W .

We now state two propositions:

(24) For every real linear space V and for every subspace W of V holds
Up(W ) is Affine and 0V ∈ the carrier of W .

(25) Let V be a real linear space and A be a Affine subset of V . Suppose
0V ∈ A. Let x be a vector of V and a be a real number. If x ∈ A, then
a · x ∈ A.

Let V be a non empty RLS structure and let S be a non empty subset of V .
We say that S is Subspace-like if and only if the conditions (Def. 8) are satisfied.

(Def. 8)(i) The zero of V ∈ S, and
(ii) for all elements x, y of the carrier of V and for every real number a

such that x ∈ S and y ∈ S holds x + y ∈ S and a · x ∈ S.

One can prove the following propositions:

(26) Let V be a real linear space and A be a non empty Affine subset of V .
If 0V ∈ A, then A is Subspace-like and A = the carrier of Lin(A).

(27) For every real linear space V and for every subspace W of V holds
Up(W ) is Subspace-like.

(28) For every real linear space V and for every strict subspace W of V holds
W = Lin(Up(W )).

(29) Let V be a real unitary space and A be a non empty Affine subset of V .
If 0V ∈ A, then A = the carrier of Lin(A).

(30) For every real unitary space V and for every subspace W of V holds
Up(W ) is Subspace-like.

(31) For every real unitary space V and for every strict subspace W of V

holds W = Lin(Up(W )).

Let V be a non empty loop structure, let M be a subset of the carrier of V ,
and let v be an element of the carrier of V . The functor v + M yields a subset
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of V and is defined as follows:

(Def. 9) v + M = {v + u;u ranges over elements of the carrier of V : u ∈M}.
We now state three propositions:

(32) Let V be a real linear space, W be a strict subspace of V , M be a
subset of the carrier of V , and v be a vector of V . If Up(W ) = M, then
v + W = v + M.

(33) Let V be an Abelian add-associative real linear space-like non empty
RLS structure, M be a Affine subset of V , and v be a vector of V . Then
v + M is Affine.

(34) Let V be a real unitary space, W be a strict subspace of V , M be a
subset of the carrier of V , and v be a vector of V . If Up(W ) = M, then
v + W = v + M.

Let V be a non empty loop structure and let M , N be subsets of the carrier
of V . The functor M + N yields a subset of V and is defined as follows:

(Def. 10) M + N = {u + v; u ranges over elements of the carrier of V , v ranges
over elements of the carrier of V : u ∈M ∧ v ∈ N}.

We now state the proposition

(35) For every Abelian non empty loop structure V and for all subsets M , N

of V holds N + M = M + N.

Let V be an Abelian non empty loop structure and let M , N be subsets of
V . Let us observe that the functor M + N is commutative.

Next we state four propositions:

(36) Let V be a non empty loop structure, M be a subset of V , and v be an
element of the carrier of V . Then {v}+ M = v + M.

(37) Let V be an Abelian add-associative real linear space-like non empty
RLS structure, M be a Affine subset of V , and v be a vector of V . Then
{v}+ M is Affine.

(38) For every non empty RLS structure V and for all Affine subsets M , N

of V holds M ∩N is Affine.

(39) Let V be an Abelian add-associative real linear space-like non empty
RLS structure and M , N be Affine subsets of V . Then M + N is Affine.
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Summary. This article describes definitions of sine, cosine, hyperbolic sine
and hyperbolic cosine. Some of their basic properties are discussed.
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The notation and terminology used here are introduced in the following papers:
[9], [4], [10], [1], [8], [2], [3], [5], [7], [11], and [6].

1. Definitions of Trigonometric Functions

We adopt the following convention: x, y denote elements of R, z, z1, z2

denote elements of C, and n denotes a natural number.
The function sinC from C into C is defined by:

(Def. 1) sinC(z) = exp(i·z)−exp(−i·z)
(2+0i)·i .

The function cosC from C into C is defined by:

(Def. 2) cosC(z) = exp(i·z)+exp(−i·z)
2+0i .

The function sinhC from C into C is defined by:

(Def. 3) sinhC(z) = exp z−exp(−z)
2+0i .

The function coshC from C into C is defined by:

(Def. 4) coshC(z) = exp z+exp(−z)
2+0i .
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2. Properties of Trigonometric Functions on Complex Space

We now state a number of propositions:

(1) For every element z of C holds sinCz · sinCz + cosCz · cosCz = 1C.

(2) −sinCz = sinC−z .

(3) cosCz = cosC−z .

(4) sinCz1+z2
= sinCz1

· cosCz2
+ cosCz1

· sinCz2
.

(5) sinCz1−z2
= sinCz1

· cosCz2
− cosCz1

· sinCz2
.

(6) cosCz1+z2
= cosCz1

· cosCz2
− sinCz1

· sinCz2
.

(7) cosCz1−z2
= cosCz1

· cosCz2
+ sinCz1

· sinCz2
.

(8) coshCz · coshCz − sinhCz · sinhCz = 1C.

(9) −sinhCz = sinhC−z .

(10) coshCz = coshC−z .

(11) sinhCz1+z2
= sinhCz1

· coshCz2
+ coshCz1

· sinhCz2
.

(12) sinhCz1−z2
= sinhCz1

· coshCz2
− coshCz1

· sinhCz2
.

(13) coshCz1−z2
= coshCz1

· coshCz2
− sinhCz1

· sinhCz2
.

(14) coshCz1+z2
= coshCz1

· coshCz2
+ sinhCz1

· sinhCz2
.

(15) sinCi·z = i · sinhCz .

(16) cosCi·z = coshCz .

(17) sinhCi·z = i · sinCz .

(18) coshCi·z = cosCz .

(19) For all elements x, y of R holds exp(x + yi) = exp(x) · cos(y) + (exp(x) ·
sin(y))i.

(20) exp(0C) = 1 + 0i.
(21) sinC0C = 0C.

(22) sinhC0C = 0C.

(23) cosC0C = 1 + 0i.
(24) coshC0C = 1 + 0i.
(25) exp z = coshCz + sinhCz .

(26) exp(−z) = coshCz − sinhCz .

(27) exp(z + (2 · π + 0i) · i) = exp z and exp(z + (0 + (2 · π)i)) = exp z.

(28) exp(0 + (2 · π · n)i) = 1 + 0i and exp((2 · π · n + 0i) · i) = 1 + 0i.

(29) exp(0 + (−2 · π · n)i) = 1 + 0i and exp((−2 · π · n + 0i) · i) = 1 + 0i.
(30) exp(0+((2·n+1)·π)i) = −1+0i and exp(((2·n+1)·π+0i)·i) = −1+0i.

(31) exp(0+(−(2 · n + 1) · π)i) = −1+0i and exp((−(2 · n + 1) · π+0i) · i) =
−1 + 0i.

(32) exp(0+((2 ·n+ 1
2) ·π)i) = 0+1i and exp(((2 ·n+ 1

2) ·π +0i) · i) = 0+1i.
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(33) exp(0+(−(2 · n + 1
2) · π)i) = 0+(−1)i and exp((−(2 · n + 1

2) · π+0i)·i) =
0 + (−1)i.

(34) sinCz+(2·n·π+0i) = sinCz .

(35) cosCz+(2·n·π+0i) = cosCz .

(36) exp(i · z) = cosCz +i · sinCz .

(37) exp(−i · z) = cosCz −i · sinCz .

(38) For every element x of R holds sinCx+0i = sin(x) + 0i.
(39) For every element x of R holds cosCx+0i = cos(x) + 0i.

(40) For every element x of R holds sinhCx+0i = sinh(x) + 0i.
(41) For every element x of R holds coshCx+0i = cosh(x) + 0i.
(42) For all elements x, y of R holds x + yi = (x + 0i) + i · (y + 0i).
(43) sinCx+yi = sin(x) · cosh(y) + (cos(x) · sinh(y))i.
(44) sinCx+(−y)i = sin(x) · cosh(y) + (−cos(x) · sinh(y))i.
(45) cosCx+yi = cos(x) · cosh(y) + (−sin(x) · sinh(y))i.
(46) cosCx+(−y)i = cos(x) · cosh(y) + (sin(x) · sinh(y))i.
(47) sinhCx+yi = sinh(x) · cos(y) + (cosh(x) · sin(y))i.
(48) sinhCx+(−y)i = sinh(x) · cos(y) + (−cosh(x) · sin(y))i.
(49) coshCx+yi = cosh(x) · cos(y) + (sinh(x) · sin(y))i.
(50) coshCx+(−y)i = cosh(x) · cos(y) + (−sinh(x) · sin(y))i.
(51) For every natural number n and for every element z of C holds (cosCz +i·

sinCz)n
N = cosC(n+0i)·z +i · sinC(n+0i)·z .

(52) For every natural number n and for every element z of C holds (cosCz −i·
sinCz)n

N = cosC(n+0i)·z −i · sinC(n+0i)·z .

(53) For every natural number n and for every element z of C holds exp(i ·
(n + 0i) · z) = (cosCz +i · sinCz)n

N.

(54) For every natural number n and for every element z of C holds
exp(−i · (n + 0i) · z) = (cosCz −i · sinCz)n

N.

(55) For all elements x, y of R holds 1+(−1)i
2+0i · sinhCx+yi +1+1i

2+0i · sinhCx+(−y)i =
(sinh(x) · cos(y) + cosh(x) · sin(y)) + 0i.

(56) For all elements x, y of R holds 1+(−1)i
2+0i ·coshCx+yi +1+1i

2+0i ·coshCx+(−y)i =
(sinh(x) · sin(y) + cosh(x) · cos(y)) + 0i.

(57) sinhCz · sinhCz =
coshC(2+0i)·z −(1+0i)

2+0i .

(58) coshCz · coshCz =
coshC(2+0i)·z +(1+0i)

2+0i .

(59) sinhC(2+0i)·z = (2 + 0i) · sinhCz · coshCz and coshC(2+0i)·z = (2 + 0i) ·
coshCz · coshCz −(1 + 0i).

(60) sinhCz1
· sinhCz1

− sinhCz2
· sinhCz2

= sinhCz1+z2
· sinhCz1−z2

and
coshCz1

· coshCz1
− coshCz2

· coshCz2
= sinhCz1+z2

· sinhCz1−z2
and
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sinhCz1
· sinhCz1

− sinhCz2
· sinhCz2

= coshCz1
· coshCz1

− coshCz2
· coshCz2

.

(61) coshCz1+z2
· coshCz1−z2

= sinhCz1
· sinhCz1

+ coshCz2
· coshCz2

and
coshCz1+z2

· coshCz1−z2
= coshCz1

· coshCz1
+ sinhCz2

· sinhCz2
and

sinhCz1
· sinhCz1

+ coshCz2
· coshCz2

= coshCz1
· coshCz1

+ sinhCz2
· sinhCz2

.

(62) sinhC(2+0i)·z1
+ sinhC(2+0i)·z2

= (2 + 0i) · sinhCz1+z2
· coshCz1−z2

and
sinhC(2+0i)·z1

− sinhC(2+0i)·z2
= (2 + 0i) · sinhCz1−z2

· coshCz1+z2
.

(63) coshC(2+0i)·z1
+ coshC(2+0i)·z2

= (2 + 0i) · coshCz1+z2
· coshCz1−z2

and
coshC(2+0i)·z1

− coshC(2+0i)·z2
= (2 + 0i) · sinhCz1+z2

· sinhCz1−z2
.
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Summary. In this article we introduce three subjects in real unitary space:
parallelism of subsets, orthogonality of subsets and topology of the space. In
particular, to introduce the topology of real unitary space, we discuss the metric
topology which is induced by the inner product in the space. As the result, we
are able to discuss some topological subjects on real unitary space.
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The articles [8], [12], [3], [5], [4], [11], [10], [9], [6], [7], [2], and [1] provide the
terminology and notation for this paper.

1. Parallelism of Subspaces

Let V be a non empty RLS structure and let M , N be Affine subsets of V .
We say that M is parallel to N if and only if:

(Def. 1) There exists a vector v of V such that M = N + {v}.
One can prove the following propositions:

(1) For every right zeroed non empty RLS structure V holds every Affine
subset M of V is parallel to M .

(2) Let V be an add-associative right zeroed right complementable non
empty RLS structure and M , N be Affine subsets of V . If M is paral-
lel to N , then N is parallel to M .

(3) Let V be an Abelian add-associative right zeroed right complementable
non empty RLS structure and M , L, N be Affine subsets of V . If M is
parallel to L and L is parallel to N , then M is parallel to N .

33
c© 2003 University of Białystok

ISSN 1426–2630



34 noboru endou et al.

Let V be a non empty loop structure and let M , N be subsets of the carrier
of V . The functor M −N yields a subset of V and is defined as follows:

(Def. 2) M − N = {u − v;u ranges over elements of the carrier of V , v ranges
over elements of the carrier of V : u ∈M ∧ v ∈ N}.

Next we state a number of propositions:

(4) For every real linear space V and for all Affine subsets M , N of V holds
M −N is Affine.

(5) For every non empty loop structure V and for all subsets M , N of V

such that M is empty or N is empty holds M + N is empty.

(6) For every non empty loop structure V and for all non empty subsets M ,
N of V holds M + N is non empty.

(7) For every non empty loop structure V and for all subsets M , N of V

such that M is empty or N is empty holds M −N is empty.

(8) For every non empty loop structure V and for all non empty subsets M ,
N of V holds M −N is non empty.

(9) Let V be an Abelian add-associative right zeroed right complementable
non empty loop structure, M , N be subsets of V , and v be an element of
the carrier of V . Then M = N + {v} if and only if M − {v} = N.

(10) Let V be an Abelian add-associative right zeroed right complementable
non empty loop structure, M , N be subsets of V , and v be an element of
the carrier of V . If v ∈ N, then M + {v} ⊆M + N.

(11) Let V be an Abelian add-associative right zeroed right complementable
non empty loop structure, M , N be subsets of V , and v be an element of
the carrier of V . If v ∈ N, then M − {v} ⊆M −N.

(12) For every real linear space V and for every non empty subset M of V

holds 0V ∈M −M.

(13) Let V be a real linear space, M be a non empty Affine subset of V , and
v be a vector of V . If M is Subspace-like and v ∈M, then M + {v} ⊆M.

(14) Let V be a real linear space, M be a non empty Affine subset of V , and
N1, N2 be non empty Affine subsets of V . Suppose N1 is Subspace-like
and N2 is Subspace-like and M is parallel to N1 and parallel to N2. Then
N1 = N2.

(15) Let V be a real linear space, M be a non empty Affine subset of V , and
v be a vector of V . If v ∈M, then 0V ∈M − {v}.

(16) Let V be a real linear space, M be a non empty Affine subset of V , and
v be a vector of V . Suppose v ∈M. Then there exists a non empty Affine
subset N of V such that N = M − {v} and M is parallel to N and N is
Subspace-like.

(17) Let V be a real linear space, M be a non empty Affine subset of V , and
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u, v be vectors of V . If u ∈M and v ∈M, then M − {v} = M − {u}.
(18) For every real linear space V and for every non empty Affine subset M

of V holds M −M =
⋃{M − {v}; v ranges over vectors of V : v ∈M}.

(19) Let V be a real linear space, M be a non empty Affine subset of V , and
v be a vector of V . If v ∈M, then M − {v} =

⋃{M − {u}; u ranges over
vectors of V : u ∈M}.

(20) Let V be a real linear space and M be a non empty Affine subset of V .
Then there exists a non empty Affine subset L of V such that L = M−M

and L is Subspace-like and M is parallel to L.

2. Orthogonality

Let V be a real unitary space and let W be a subspace of V . The functor
Ort Comp W yielding a strict subspace of V is defined by:

(Def. 3) The carrier of Ort Comp W = {v; v ranges over vectors of V :∧
w : vector of V (w ∈W ⇒ w, v are orthogonal)}.

Let V be a real unitary space and let M be a non empty subset of V . The
functor Ort Comp M yielding a strict subspace of V is defined by:

(Def. 4) The carrier of Ort Comp M = {v; v ranges over vectors of V :∧
w : vector of V (w ∈M ⇒ w, v are orthogonal)}.

One can prove the following propositions:

(21) For every real unitary space V and for every subspace W of V holds
0V ∈ Ort Comp W.

(22) For every real unitary space V holds Ort Comp 0V = ΩV .

(23) For every real unitary space V holds Ort Comp ΩV = 0V .

(24) Let V be a real unitary space, W be a subspace of V , and v be a vector
of V . If v 6= 0V , then if v ∈W, then v /∈ Ort Comp W.

(25) For every real unitary space V and for every non empty subset M of V

holds M ⊆ the carrier of Ort Comp Ort Comp M.

(26) Let V be a real unitary space and M , N be non empty subsets of V . If
M ⊆ N, then the carrier of Ort Comp N ⊆ the carrier of Ort Comp M.

(27) Let V be a real unitary space, W be a subspace of V , and M be a
non empty subset of V . If M = the carrier of W , then Ort Comp M =
Ort Comp W.

(28) For every real unitary space V and for every non empty subset M of V

holds Ort Comp M = Ort Comp Ort Comp Ort Comp M.

(29) Let V be a real unitary space and x, y be vectors of V . Then ‖x+y‖2 =
‖x‖2 + 2 · (x|y) + ‖y‖2 and ‖x− y‖2 = (‖x‖2 − 2 · (x|y)) + ‖y‖2.
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(30) Let V be a real unitary space and x, y be vectors of V . If x, y are
orthogonal, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(31) For every real unitary space V and for all vectors x, y of V holds ‖x +
y‖2 + ‖x− y‖2 = 2 · ‖x‖2 + 2 · ‖y‖2.

(32) Let V be a real unitary space and v be a vector of V . Then there exists
a subspace W of V such that the carrier of W = {u; u ranges over vectors
of V : (u|v) = 0}.

3. Topology of Real Unitary Space

The scheme SubFamExU deals with a unitary space structure A and a unary
predicate P, and states that:

There exists a family F of subsets of A such that for every subset
B of the carrier of A holds B ∈ F iff P[B]

for all values of the parameters.
Let V be a real unitary space. The open set family of V yields a family of

subsets of V and is defined by the condition (Def. 5).

(Def. 5) Let M be a subset of the carrier of V . Then M ∈ the open set family of
V if and only if for every point x of V such that x ∈M there exists a real
number r such that r > 0 and Ball(x, r) ⊆M.

Next we state several propositions:

(33) Let V be a real unitary space, v be a point of V , and r, p be real numbers.
If r ¬ p, then Ball(v, r) ⊆ Ball(v, p).

(34) Let V be a real unitary space and v be a point of V . Then there exists
a real number r such that r > 0 and Ball(v, r) ⊆ the carrier of V .

(35) Let V be a real unitary space, v, u be points of V , and r be a real number.
If u ∈ Ball(v, r), then there exists a real number p such that p > 0 and
Ball(u, p) ⊆ Ball(v, r).

(36) Let V be a real unitary space, u, v, w be points of V , and r, p be real
numbers. If v ∈ Ball(u, r) ∩ Ball(w, p), then there exists a real number q

such that Ball(v, q) ⊆ Ball(u, r) and Ball(v, q) ⊆ Ball(w, p).

(37) Let V be a real unitary space, v be a point of V , and r be a real number.
Then Ball(v, r) ∈ the open set family of V .

(38) For every real unitary space V holds the carrier of V ∈ the open set
family of V .

(39) Let V be a real unitary space and M , N be subsets of the carrier of V .
Suppose M ∈ the open set family of V and N ∈ the open set family of V .
Then M ∩N ∈ the open set family of V .
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(40) Let V be a real unitary space and A be a family of subsets of the carrier
of V . Suppose A ⊆ the open set family of V . Then

⋃
A ∈ the open set

family of V .

(41) For every real unitary space V holds 〈the carrier of V , the open set
family of V 〉 is a topological space.

Let V be a real unitary space. The functor TopUnitSpace V yields a topolo-
gical structure and is defined by:

(Def. 6) TopUnitSpace V = 〈the carrier of V , the open set family of V 〉.
Let V be a real unitary space. Note that TopUnitSpace V is topological

space-like.
Let V be a real unitary space. One can verify that TopUnitSpace V is non

empty.
We now state a number of propositions:

(42) For every real unitary space V and for every subset M of TopUnitSpace V

such that M = ΩV holds M is open and closed.

(43) For every real unitary space V and for every subset M of TopUnitSpace V

such that M = ∅V holds M is open and closed.

(44) Let V be a real unitary space, v be a vector of V , and r be a real number.
If the carrier of V = {0V } and r 6= 0, then Sphere(v, r) is empty.

(45) Let V be a real unitary space, v be a vector of V , and r be a real number.
If the carrier of V 6= {0V } and r > 0, then Sphere(v, r) is non empty.

(46) Let V be a real unitary space, v be a vector of V , and r be a real number.
If r = 0, then Ball(v, r) is empty.

(47) Let V be a real unitary space, v be a vector of V , and r be a real number.
If the carrier of V = {0V } and r > 0, then Ball(v, r) = {0V }.

(48) Let V be a real unitary space, v be a vector of V , and r be a real number.
Suppose the carrier of V 6= {0V } and r > 0. Then there exists a vector w

of V such that w 6= v and w ∈ Ball(v, r).

(49) Let V be a real unitary space. Then the carrier of V = the carrier
of TopUnitSpace V and the topology of TopUnitSpace V = the open set
family of V .

(50) Let V be a real unitary space, M be a subset of TopUnitSpace V, r be a
real number, and v be a point of V . If M = Ball(v, r), then M is open.

(51) Let V be a real unitary space and M be a subset of TopUnitSpace V.

Then M is open if and only if for every point v of V such that v ∈ M

there exists a real number r such that r > 0 and Ball(v, r) ⊆M.

(52) Let V be a real unitary space, v1, v2 be points of V , and r1, r2 be real
numbers. Then there exists a point u of V and there exists a real number
r such that Ball(v1, r1) ∪ Ball(v2, r2) ⊆ Ball(u, r).
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(53) Let V be a real unitary space, M be a subset of TopUnitSpace V, v be a
vector of V , and r be a real number. If M = Ball(v, r), then M is closed.

(54) Let V be a real unitary space, M be a subset of TopUnitSpace V, v be
a vector of V , and r be a real number. If M = Sphere(v, r), then M is
closed.
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Summary. We present a formalization of the seminal paper by W. W. Arm-
strong [1] on functional dependencies in relational data bases. The paper is forma-
lized in its entirety including examples and applications. The formalization was
done with a routine effort albeit some new notions were defined which simplified
formulation of some theorems and proofs.

The definitive reference to the theory of relational databases is [15], where
saturated sets are called closed sets. Armstrong’s “axioms” for functional depen-
dencies are still widely taught at all levels of database design, see for instance [13].

MML Identifier: ARMSTRNG.

The articles [21], [10], [28], [11], [24], [30], [32], [31], [18], [3], [9], [7], [26], [22],
[4], [23], [25], [14], [20], [2], [5], [29], [8], [6], [17], [16], [27], [19], and [12] provide
the notation and terminology for this paper.

1. Preliminaries

The following proposition is true

(1) Let B be a set. Suppose B is ∩-closed. Let X be a set and S be a finite
family of subsets of X. If X ∈ B and S ⊆ B, then Intersect(S) ∈ B.

Let us observe that there exists a binary relation which is reflexive, antisym-
metric, transitive, and non empty.

One can prove the following proposition
1This work has been supported by NSERC Grant OGP9207 and Shinshu Endowment Fund.
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(2) Let R be an antisymmetric transitive non empty binary relation and X

be a finite subset of field R. If X 6= ∅, then there exists an element of X

which is maximal w.r.t. X, R.

Let X be a set and let R be a binary relation. The functor MaximalsR(X)
yields a subset of X and is defined by:

(Def. 1) For every set x holds x ∈ MaximalsR(X) iff x is maximal w.r.t. X, R.

Let x, X be sets. We say that x is ∩-irreducible in X if and only if:

(Def. 2) x ∈ X and for all sets z, y such that z ∈ X and y ∈ X and x = z ∩ y

holds x = z or x = y.

We introduce x is ∩-reducible in X as an antonym of x is ∩-irreducible in X.
Let X be a non empty set. The functor ∩-Irreducibles(X) yields a subset of

X and is defined by:

(Def. 3) For every set x holds x ∈ ∩-Irreducibles(X) iff x is ∩-irreducible in X.

The scheme FinIntersect deals with a non empty finite set A and a unary
predicate P, and states that:

For every set x such that x ∈ A holds P[x]
provided the parameters meet the following requirements:
• For every set x such that x is ∩-irreducible in A holds P[x], and
• For all sets x, y such that x ∈ A and y ∈ A and P[x] and P[y]

holds P[x ∩ y].
Next we state the proposition

(3) Let X be a non empty finite set and x be an element of X. Then there
exists a non empty subset A of X such that x =

⋂
A and for every set s

such that s ∈ A holds s is ∩-irreducible in X.

Let X be a set and let B be a family of subsets of X. We say that B is (B1)
if and only if:

(Def. 4) X ∈ B.

Let B be a set. We introduce B is (B2) as a synonym of B is ∩-closed.
Let X be a set. Observe that there exists a family of subsets of X which is

(B1) and (B2).
The following proposition is true

(4) Let X be a set and B be a non empty family of subsets of X. Suppose
B is ∩-closed. Let x be an element of B. Suppose x is ∩-irreducible in
B and x 6= X. Let S be a finite family of subsets of X. If S ⊆ B and
x = Intersect(S), then x ∈ S.

Let X, D be non empty sets and let n be a natural number. Observe that
every function from X into Dn is finite sequence yielding.

Let f be a finite sequence yielding function and let x be a set. Note that
f(x) is finite sequence-like.
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Let n be a natural number and let p, q be n-tuples of Boolean. The functor
p ∧ q yielding a n-tuple of Boolean is defined as follows:

(Def. 5) For every set i such that i ∈ Seg n holds (p ∧ q)(i) = pi ∧ qi.

Let us notice that the functor p ∧ q is commutative.
One can prove the following propositions:

(5) For every natural number n and for every n-tuple p of Boolean holds
(n -BinarySequence(0)) ∧ p = n -BinarySequence(0).

(6) For every natural number n and for every n-tuple p of Boolean holds
¬(n -BinarySequence(0)) ∧ p = p.

(7) For every natural number i holds (i + 1) -BinarySequence(2i) =
〈0, . . . , 0︸ ︷︷ ︸

i

〉 a 〈1〉.

(8) Let n, i be natural numbers. Suppose i < n. Then (n -BinarySequence(2i))
(i+1) = 1 and for every natural number j such that j ∈ Seg n and j 6= i+1
holds (n -BinarySequence(2i))(j) = 0.

2. The Relational Model of Data

We consider DB-relationships as systems
〈 attributes, domains, a relationship 〉,

where the attributes constitute a finite non empty set, the domains constitute
a non-empty many sorted set indexed by the attributes, and the relationship is
a subset of

∏
the domains.

3. Dependency Structures

Let X be a set.

(Def. 6) A binary relation on 2X is said to be a relation on subsets of X.

We introduce dependency set of X as a synonym of a relation on subsets of X.
Let X be a set. Observe that there exists a dependency set of X which is

non empty and finite.
Let X be a set. The functor dependencies(X) yields a dependency set of X

and is defined by:

(Def. 7) dependencies(X) = [: 2X , 2X :].
Let X be a set. Observe that dependencies(X) is non empty. A dependency

of X is an element of dependencies(X).
Let X be a set and let F be a non empty dependency set of X. We see that

the element of F is a dependency of X.
The following three propositions are true:
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(9) For all sets X, x holds x ∈ dependencies(X) iff there exist subsets a, b

of X such that x = 〈〈a, b〉〉.
(10) For all sets X, x and for every dependency set F of X such that x ∈ F

there exist subsets a, b of X such that x = 〈〈a, b〉〉.
(11) For every set X and for every dependency set F of X holds every subset

of F is a dependency set of X.

Let R be a DB-relationship and let A, B be subsets of the attributes of R.
The predicate A→R B is defined by:

(Def. 8) For all elements f , g of the relationship of R such that f¹A = g¹A holds
f¹B = g¹B.

We introduce (A,B) holds in R as a synonym of A→R B.

In the sequel R denotes a DB-relationship and A, B denote subsets of the
attributes of R.

Let us consider R. The functor dependency-structure(R) yields a dependency
set of the attributes of R and is defined as follows:

(Def. 9) dependency-structure(R) = {〈〈A, B〉〉 : A→R B}.
One can prove the following proposition

(12) For every DB-relationship R and for all subsets A, B of the attributes
of R holds 〈〈A, B〉〉 ∈ dependency-structure(R) iff A→R B.

4. Full Families of Dependencies

Let X be a set and let P , Q be dependencies of X. The predicate P  Q is
defined by:

(Def. 10) P1 ⊆ Q1 and Q2 ⊆ P2.

Let us note that the predicate P  Q is reflexive. We introduce Q ¬ P and also
P is at least as informative as Q, as synonyms of P  Q.

The following propositions are true:

(13) For every set X and for all dependencies P , Q of X such that P ¬ Q

and Q ¬ P holds P = Q.

(14) For every set X and for all dependencies P , Q, S of X such that P ¬ Q

and Q ¬ S holds P ¬ S.

Let X be a set and let A, B be subsets of X. Then 〈〈A, B〉〉 is a dependency
of X.

We now state the proposition

(15) For every set X and for all subsets A, B, A′, B′ of X holds 〈〈A, B〉〉  〈〈A′,
B′〉〉 iff A ⊆ A′ and B′ ⊆ B.

Let X be a set. The functor Dependencies-Order X yielding a binary relation
on dependencies(X) is defined as follows:
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(Def. 11) Dependencies-Order X = {〈〈P, Q〉〉;P ranges over dependencies of X, Q

ranges over dependencies of X: P ¬ Q}.
We now state four propositions:

(16) For all sets X, x holds x ∈ Dependencies-Order X iff there exist depen-
dencies P , Q of X such that x = 〈〈P, Q〉〉 and P ¬ Q.

(17) For every set X holds dom Dependencies-Order X = [: 2X , 2X :].
(18) For every set X holds rng Dependencies-Order X = [: 2X , 2X :].
(19) For every set X holds field Dependencies-Order X = [: 2X , 2X :].

Let X be a set. Note that Dependencies-Order X is non empty and
Dependencies-Order X is ordering.
Let X be a set and let F be a dependency set of X. We say that F is (F1)

if and only if:

(Def. 12) For every subset A of X holds 〈〈A, A〉〉 ∈ F.

We introduce F is (DC2) as a synonym of F is (F1). We introduce F is (F2)
and F is (DC1) as synonyms of F is transitive.

The following proposition is true

(20) Let X be a set and F be a dependency set of X. Then F is (F2) if and
only if for all subsets A, B, C of X such that 〈〈A, B〉〉 ∈ F and 〈〈B, C〉〉 ∈ F

holds 〈〈A, C〉〉 ∈ F.

Let X be a set and let F be a dependency set of X. We say that F is (F3)
if and only if:

(Def. 13) For all subsets A, B, A′, B′ of X such that 〈〈A, B〉〉 ∈ F and 〈〈A, B〉〉  〈〈A′,
B′〉〉 holds 〈〈A′, B′〉〉 ∈ F.

We say that F is (F4) if and only if:

(Def. 14) For all subsets A, B, A′, B′ of X such that 〈〈A, B〉〉 ∈ F and 〈〈A′, B′〉〉 ∈ F

holds 〈〈A ∪A′, B ∪B′〉〉 ∈ F.

The following proposition is true

(21) For every set X holds dependencies(X) is (F1), (F2), (F3), and (F4).

Let X be a set. Observe that there exists a dependency set of X which is
(F1), (F2), (F3), (F4), and non empty.

Let X be a set and let F be a dependency set of X. We say that F is full
family if and only if:

(Def. 15) F is (F1), (F2), (F3), and (F4).

Let X be a set. One can verify that there exists a dependency set of X which
is full family.

Let X be a set. A Full family of X is a full family dependency set of X.
We now state the proposition

(22) For every finite set X holds every dependency set of X is finite.
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Let X be a finite set. Observe that there exists a Full family of X which is
finite and every dependency set of X is finite.

Let X be a set. Note that every dependency set of X which is full family is
also (F1), (F2), (F3), and (F4) and every dependency set of X which is (F1),
(F2), (F3), and (F4) is also full family.

Let X be a set and let F be a dependency set of X. We say that F is (DC3)
if and only if:

(Def. 16) For all subsets A, B of X such that B ⊆ A holds 〈〈A, B〉〉 ∈ F.

Let X be a set. Observe that every dependency set of X which is (F1) and
(F3) is also (DC3) and every dependency set of X which is (DC3) and (F2) is
also (F1) and (F3).

Let X be a set. Observe that there exists a dependency set of X which is
(DC3), (F2), (F4), and non empty.

We now state two propositions:

(23) For every set X and for every dependency set F of X such that F is
(DC3) and (F2) holds F is (F1) and (F3).

(24) For every set X and for every dependency set F of X such that F is
(F1) and (F3) holds F is (DC3).

Let X be a set. Observe that every dependency set of X which is (F1) is
also non empty.

The following propositions are true:

(25) For every DB-relationship R holds dependency-structure(R) is full fa-
mily.

(26) Let X be a set and K be a subset of X. Then {〈〈A, B〉〉; A ranges over
subsets of X, B ranges over subsets of X: K ⊆ A ∨ B ⊆ A} is a Full
family of X.

5. Maximal Elements of Full Families

Let X be a set and let F be a dependency set of X. The functor Maximals(F )
yielding a dependency set of X is defined as follows:

(Def. 17) Maximals(F ) = MaximalsDependencies-Order X(F ).
We now state the proposition

(27) For every set X and for every dependency set F of X holds
Maximals(F ) ⊆ F.

Let X be a set, let F be a dependency set of X, and let x, y be sets. The
predicate x↗F y is defined as follows:

(Def. 18) 〈〈x, y〉〉 ∈ Maximals(F ).
One can prove the following two propositions:
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(28) Let X be a finite set, P be a dependency of X, and F be a dependency
set of X. If P ∈ F, then there exist subsets A, B of X such that 〈〈A,

B〉〉 ∈ Maximals(F ) and 〈〈A, B〉〉  P.

(29) Let X be a set, F be a dependency set of X, and A, B be subsets of X.
Then A↗F B if and only if the following conditions are satisfied:

(i) 〈〈A, B〉〉 ∈ F, and
(ii) it is not true that there exist subsets A′, B′ of X such that 〈〈A′, B′〉〉 ∈ F

and 〈〈A, B〉〉 ¬ 〈〈A′, B′〉〉 with A 6= A′ or B 6= B′.
Let X be a set and let M be a dependency set of X. We say that M is (M1)

if and only if:

(Def. 19) For every subset A of X there exist subsets A′, B′ of X such that 〈〈A′,
B′〉〉  〈〈A, A〉〉 and 〈〈A′, B′〉〉 ∈M.

We say that M is (M2) if and only if:

(Def. 20) For all subsets A, B, A′, B′ of X such that 〈〈A, B〉〉 ∈M and 〈〈A′, B′〉〉 ∈M

and 〈〈A, B〉〉  〈〈A′, B′〉〉 holds A = A′ and B = B′.
We say that M is (M3) if and only if:

(Def. 21) For all subsets A, B, A′, B′ of X such that 〈〈A, B〉〉 ∈M and 〈〈A′, B′〉〉 ∈M

and A′ ⊆ B holds B′ ⊆ B.

We now state two propositions:

(30) For every finite non empty set X and for every Full family F of X holds
Maximals(F ) is (M1), (M2), and (M3).

(31) Let X be a finite set and M , F be dependency sets of X. Suppose that
(i) M is (M1), (M2), and (M3), and
(ii) F = {〈〈A, B〉〉;A ranges over subsets of X, B ranges over subsets of X:∨

A′,B′ : subset of X (〈〈A′, B′〉〉  〈〈A, B〉〉 ∧ 〈〈A′, B′〉〉 ∈M)}.
Then M = Maximals(F ) and F is full family and for every Full family G

of X such that M = Maximals(G) holds G = F.

Let X be a non empty finite set and let F be a Full family of X. Note that
Maximals(F ) is non empty.

Next we state the proposition

(32) Let X be a finite set, F be a dependency set of X, and K be a subset
of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B ranges over
subsets of X: K ⊆ A ∨ B ⊆ A}. Then {〈〈K, X〉〉}∪{〈〈A, A〉〉; A ranges over
subsets of X: K 6⊆ A} = Maximals(F ).

6. Saturated Subsets of Attributes

Let X be a set and let F be a dependency set of X.
The functor saturated-subsets(F ) yields a family of subsets of X and is

defined as follows:
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(Def. 22) saturated-subsets(F ) =
{B; B ranges over subsets of X:

∨
A : subset of X A↗F B}.

We introduce closed-attribute-subset(F ) as a synonym of saturated-subsets(F ).
Let X be a set and let F be a finite dependency set of X. Observe that

saturated-subsets(F ) is finite.
Next we state two propositions:

(33) Let X, x be sets and F be a dependency set of X. Then x ∈
saturated-subsets(F ) if and only if there exist subsets B, A of X such
that x = B and A↗F B.

(34) For every finite non empty set X and for every Full family F of X holds
saturated-subsets(F ) is (B1) and (B2).

Let X be a set and let B be a set. The functor (B)-enclosed in X yields a
dependency set of X and is defined as follows:

(Def. 23) (B)-enclosed in X = {〈〈a, b〉〉; a ranges over subsets of X, b ranges over
subsets of X:

∧
c : set (c ∈ B ∧ a ⊆ c ⇒ b ⊆ c)}.

The following three propositions are true:

(35) For every set X and for every family B of subsets of X and for every
dependency set F of X holds (B)-enclosed in X is full family.

(36) For every finite non empty set X and for every family B of subsets of X

holds B ⊆ saturated-subsets((B)-enclosed in X).
(37) Let X be a finite non empty set and B be a family of subsets of X. Sup-

pose B is (B1) and (B2). Then B = saturated-subsets((B)-enclosed in X)
and for every Full family G of X such that B = saturated-subsets(G)
holds G = (B)-enclosed in X.

Let X be a set and let F be a dependency set of X. The functor (F )-enclosure
yielding a family of subsets of X is defined as follows:

(Def. 24) (F )-enclosure = {b; b ranges over subsets of X:
∧

A,B : subset of X (〈〈A,

B〉〉 ∈ F ∧ A ⊆ b ⇒ B ⊆ b)}.
We now state two propositions:

(38) For every finite non empty set X and for every dependency set F of X

holds (F )-enclosure is (B1) and (B2).

(39) Let X be a finite non empty set and F be a dependency set of
X. Then F ⊆ ((F )-enclosure)-enclosed in X and for every depen-
dency set G of X such that F ⊆ G and G is full family holds
((F )-enclosure)-enclosed in X ⊆ G.

Let X be a finite non empty set and let F be a dependency set of X. The
functor dependency-closure(F ) yields a Full family of X and is defined by:

(Def. 25) F ⊆ dependency-closure(F ) and for every dependency set G of X such
that F ⊆ G and G is full family holds dependency-closure(F ) ⊆ G.
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Next we state four propositions:

(40) For every finite non empty set X and for every dependency set F of X

holds dependency-closure(F ) = ((F )-enclosure)-enclosed in X.

(41) Let X be a set, K be a subset of X, and B be a family of subsets of X.
If B = {X} ∪ {A; A ranges over subsets of X: K 6⊆ A}, then B is (B1)
and (B2).

(42) Let X be a finite non empty set, F be a dependency set of X, and K

be a subset of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B

ranges over subsets of X: K ⊆ A ∨ B ⊆ A}. Then {X} ∪ {B; B ranges
over subsets of X: K 6⊆ B} = saturated-subsets(F ).

(43) Let X be a finite set, F be a dependency set of X, and K be a subset
of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B ranges over
subsets of X: K ⊆ A ∨ B ⊆ A}. Then {X} ∪ {B;B ranges over subsets
of X: K 6⊆ B} = saturated-subsets(F ).

Let X, G be sets and let B be a family of subsets of X. We say that G is
generator set of B if and only if:

(Def. 26) G ⊆ B and B = {Intersect(S);S ranges over families of subsets of X:
S ⊆ G}.

We now state four propositions:

(44) For every finite non empty set X holds every family G of subsets of X

is generator set of saturated-subsets((G)-enclosed in X).

(45) Let X be a finite non empty set and F be a Full family of X. Then
there exists a family G of subsets of X such that G is generator set of
saturated-subsets(F ) and F = (G)-enclosed in X.

(46) Let X be a set and B be a non empty finite family of subsets of X. If B

is (B1) and (B2), then ∩-Irreducibles(B) is generator set of B.

(47) Let X, G be sets and B be a non empty finite family of subsets of X. If
B is (B1) and (B2) and G is generator set of B, then ∩-Irreducibles(B) ⊆
G ∪ {X}.

7. Justification of the Axioms

One can prove the following proposition

(48) Let X be a non empty finite set and F be a Full family of X. Then
there exists a DB-relationship R such that the attributes of R = X and
for every element a of X holds (the domains of R)(a) = Z and F =
dependency-structure(R).
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8. Structure of the Family of Candidate Keys

Let X be a set and let F be a dependency set of X.
The functor candidate-keys(F ) yields a family of subsets of X and is defined

by:

(Def. 27) candidate-keys(F ) = {A; A ranges over subsets of X: 〈〈A, X〉〉 ∈
Maximals(F )}.

One can prove the following proposition

(49) Let X be a finite set, F be a dependency set of X, and K be a subset
of X. Suppose F = {〈〈A, B〉〉; A ranges over subsets of X, B ranges over
subsets of X: K ⊆ A ∨ B ⊆ A}. Then candidate-keys(F ) = {K}.

Let X be a set. We introduce X is (C1) as an antonym of X is empty.
Let X be a set. We say that X is without proper subsets if and only if:

(Def. 28) For all sets x, y such that x ∈ X and y ∈ X and x ⊆ y holds x = y.

We introduce X is (C2) as a synonym of X is without proper subsets.
We now state four propositions:

(50) For every DB-relationship R holds
candidate-keys(dependency-structure(R)) is (C1) and (C2).

(51) Let X be a finite set and C be a family of subsets of X. If C is
(C1) and (C2), then there exists a Full family F of X such that C =
candidate-keys(F ).

(52) Let X be a finite set, C be a family of subsets of X, and B be
a set. Suppose C is (C1) and (C2) and B = {b; b ranges over sub-
sets of X:

∧
K : subset of X (K ∈ C ⇒ K 6⊆ b)}. Then C =

candidate-keys((B)-enclosed in X).
(53) Let X be a non empty finite set and C be a family of sub-

sets of X. Suppose C is (C1) and (C2). Then there exists a DB-
relationship R such that the attributes of R = X and C =
candidate-keys(dependency-structure(R)).

9. Applications

Let X be a set and let F be a dependency set of X. We say that F is (DC4)
if and only if:

(Def. 29) For all subsets A, B, C of X such that 〈〈A, B〉〉 ∈ F and 〈〈A, C〉〉 ∈ F

holds 〈〈A, B ∪ C〉〉 ∈ F.

We say that F is (DC5) if and only if:

(Def. 30) For all subsets A, B, C, D of X such that 〈〈A, B〉〉 ∈ F and 〈〈B ∪ C,

D〉〉 ∈ F holds 〈〈A ∪ C, D〉〉 ∈ F.
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We say that F is (DC6) if and only if:

(Def. 31) For all subsets A, B, C of X such that 〈〈A, B〉〉 ∈ F holds 〈〈A∪C, B〉〉 ∈ F.

One can prove the following propositions:

(54) Let X be a set and F be a dependency set of X. Then F is (F1), (F2),
(F3), and (F4) if and only if F is (F2), (DC3), and (F4).

(55) Let X be a set and F be a dependency set of X. Then F is (F1), (F2),
(F3), and (F4) if and only if F is (DC1), (DC3), and (DC4).

(56) Let X be a set and F be a dependency set of X. Then F is (F1), (F2),
(F3), and (F4) if and only if F is (DC2), (DC5), and (DC6).

Let X be a set and let F be a dependency set of X.
The functor characteristic(F ) is defined as follows:

(Def. 32) characteristic(F ) = {A;A ranges over subsets of X:
∨

a,b : subset of X (〈〈a,

b〉〉 ∈ F ∧ a ⊆ A ∧ b 6⊆ A)}.
Next we state several propositions:

(57) Let X, A be sets and F be a dependency set of X. Suppose A ∈
characteristic(F ). Then A is a subset of X and there exist subsets a, b

of X such that 〈〈a, b〉〉 ∈ F and a ⊆ A and b 6⊆ A.

(58) Let X be a set, A be a subset of X, and F be a dependency set of X. If
there exist subsets a, b of X such that 〈〈a, b〉〉 ∈ F and a ⊆ A and b 6⊆ A,

then A ∈ characteristic(F ).

(59) Let X be a finite non empty set and F be a dependency set of X. Then
(i) for all subsets A, B of X holds 〈〈A, B〉〉 ∈ dependency-closure(F )

iff for every subset a of X such that A ⊆ a and B 6⊆ a holds a ∈
characteristic(F ), and

(ii) saturated-subsets(dependency-closure(F )) = 2X \ characteristic(F ).

(60) For every finite non empty set X and for all dependency sets
F , G of X such that characteristic(F ) = characteristic(G) holds
dependency-closure(F ) = dependency-closure(G).

(61) For every non empty finite set X and for every dependency set F of X

holds characteristic(F ) = characteristic(dependency-closure(F )).

Let A be a set, let K be a set, and let F be a dependency set of A. We say
that K is prime implicant of F with no complemented variables if and only if
the conditions (Def. 33) are satisfied.

(Def. 33)(i) For every subset a of A such that K ⊆ a and a 6= A holds a ∈
characteristic(F ), and

(ii) for every set k such that k ⊂ K there exists a subset a of A such that
k ⊆ a and a 6= A and a /∈ characteristic(F ).

The following proposition is true
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(62) Let X be a finite non empty set, F be a dependency set of X, and K be
a subset of X. Then K ∈ candidate-keys(dependency-closure(F )) if and
only if K is prime implicant of F with no complemented variables.
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Summary. Convexity is one of the most important concepts in a study of
analysis. Especially, it has been applied around the optimization problem widely.
Our purpose is to define the concept of convexity of a set on Mizar, and to
develop the generalities of convex analysis. The construction of this article is as
follows: Convexity of the set is defined in the section 1. The section 2 gives the
definition of convex combination which is a kind of the linear combination and
related theorems are proved there. In section 3, we define the convex hull which
is an intersection of all convex sets including a given set. The last section is some
theorems which are necessary to compose this article.

MML Identifier: CONVEX1.

The notation and terminology used in this paper are introduced in the following
articles: [13], [12], [17], [9], [10], [3], [1], [8], [4], [2], [16], [15], [14], [5], [11], [6],
and [7].

1. Convex Sets

Let V be a non empty RLS structure, let M be a subset of V , and let r be
a real number. The functor r ·M yielding a subset of V is defined by:

(Def. 1) r ·M = {r · v; v ranges over elements of the carrier of V : v ∈M}.
Let V be a non empty RLS structure and let M be a subset of V . We say

that M is convex if and only if:

(Def. 2) For all vectors u, v of V and for every real number r such that 0 < r

and r < 1 and u ∈M and v ∈M holds r · u + (1− r) · v ∈M.
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We now state a number of propositions:

(1) Let V be a real linear space-like non empty RLS structure, M be a subset
of V , and r be a real number. If M is convex, then r ·M is convex.

(2) Let V be an Abelian add-associative real linear space-like non empty
RLS structure and M , N be subsets of V . If M is convex and N is convex,
then M + N is convex.

(3) For every real linear space V and for all subsets M , N of V such that
M is convex and N is convex holds M −N is convex.

(4) Let V be a non empty RLS structure and M be a subset of V . Then M

is convex if and only if for every real number r such that 0 < r and r < 1
holds r ·M + (1− r) ·M ⊆M.

(5) Let V be an Abelian non empty RLS structure and M be a subset of V .
Suppose M is convex. Let r be a real number. If 0 < r and r < 1, then
(1− r) ·M + r ·M ⊆M.

(6) Let V be an Abelian add-associative real linear space-like non empty
RLS structure and M , N be subsets of V . Suppose M is convex and N is
convex. Let r be a real number. Then r ·M + (1− r) ·N is convex.

(7) Let V be a real linear space, M be a subset of V , and v be a vector of
V . Then M is convex if and only if v + M is convex.

(8) For every real linear space V holds Up(0V ) is convex.

(9) For every real linear space V holds Up(ΩV ) is convex.

(10) For every non empty RLS structure V and for every subset M of V such
that M = ∅ holds M is convex.

(11) Let V be an Abelian add-associative real linear space-like non empty
RLS structure, M1, M2 be subsets of V , and r1, r2 be real numbers. If M1

is convex and M2 is convex, then r1 ·M1 + r2 ·M2 is convex.

(12) Let V be a real linear space-like non empty RLS structure, M be a subset
of V , and r1, r2 be real numbers. Then (r1 + r2) ·M ⊆ r1 ·M + r2 ·M.

(13) Let V be a real linear space, M be a subset of V , and r1, r2 be real
numbers. If r1  0 and r2  0 and M is convex, then r1 ·M + r2 ·M ⊆
(r1 + r2) ·M.

(14) Let V be an Abelian add-associative real linear space-like non empty RLS
structure, M1, M2, M3 be subsets of V , and r1, r2, r3 be real numbers. If
M1 is convex and M2 is convex and M3 is convex, then r1 ·M1 + r2 ·M2 +
r3 ·M3 is convex.

(15) Let V be a non empty RLS structure and F be a family of subsets of
V . Suppose that for every subset M of V such that M ∈ F holds M is
convex. Then

⋂
F is convex.

(16) For every non empty RLS structure V and for every subset M of V such
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that M is Affine holds M is convex.

Let V be a non empty RLS structure. Observe that there exists a subset of
V which is convex.

Let V be a non empty RLS structure. Note that there exists a subset of V

which is empty and convex.
Let V be a non empty RLS structure. One can check that there exists a

subset of V which is non empty and convex.
The following four propositions are true:

(17) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , v be a vector of V , and r be a real number. If M = {u;u
ranges over vectors of V : (u|v)  r}, then M is convex.

(18) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , v be a vector of V , and r be a real number. If M = {u;u
ranges over vectors of V : (u|v) > r}, then M is convex.

(19) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , v be a vector of V , and r be a real number. If M = {u;u
ranges over vectors of V : (u|v) ¬ r}, then M is convex.

(20) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , v be a vector of V , and r be a real number. If M = {u;u
ranges over vectors of V : (u|v) < r}, then M is convex.

2. Convex Combinations

Let V be a real linear space and let L be a linear combination of V . We say
that L is convex if and only if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequence F of elements of the carrier of V such that
(i) F is one-to-one,
(ii) rng F = the support of L, and
(iii) there exists a finite sequence f of elements of R such that len f = len F

and
∑

f = 1 and for every natural number n such that n ∈ dom f holds
f(n) = L(F (n)) and f(n)  0.

One can prove the following propositions:

(21) Let V be a real linear space and L be a linear combination of V . If L is
convex, then the support of L 6= ∅.

(22) Let V be a real linear space, L be a linear combination of V , and v be
a vector of V . If L is convex and L(v) ¬ 0, then v /∈ the support of L.

(23) For every real linear space V and for every linear combination L of V

such that L is convex holds L 6= 0LCV
.

(24) Let V be a real linear space, v be a vector of V , and L be a linear
combination of {v}. If L is convex, then L(v) = 1 and

∑
L = L(v) · v.



56 noboru endou et al.

(25) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear
combination of {v1, v2}. Suppose v1 6= v2 and L is convex. Then L(v1) +
L(v2) = 1 and L(v1)  0 and L(v2)  0 and

∑
L = L(v1) · v1 + L(v2) · v2.

(26) Let V be a real linear space, v1, v2, v3 be vectors of V , and L be a linear
combination of {v1, v2, v3}. Suppose v1 6= v2 and v2 6= v3 and v3 6= v1 and
L is convex. Then L(v1)+L(v2)+L(v3) = 1 and L(v1)  0 and L(v2)  0
and L(v3)  0 and

∑
L = L(v1) · v1 + L(v2) · v2 + L(v3) · v3.

(27) Let V be a real linear space, v be a vector of V , and L be a linear
combination of V . If L is convex and the support of L = {v}, then L(v) =
1.

(28) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear
combination of V . Suppose L is convex and the support of L = {v1, v2}
and v1 6= v2. Then L(v1) + L(v2) = 1 and L(v1)  0 and L(v2)  0.

(29) Let V be a real linear space, v1, v2, v3 be vectors of V , and L be a linear
combination of V . Suppose L is convex and the support of L = {v1, v2, v3}
and v1 6= v2 and v2 6= v3 and v3 6= v1. Then L(v1)+L(v2)+L(v3) = 1 and
L(v1)  0 and L(v2)  0 and L(v3)  0 and

∑
L = L(v1) · v1 + L(v2) ·

v2 + L(v3) · v3.

3. Convex Hull

In this article we present several logical schemes. The scheme SubFamExRLS
deals with an RLS structure A and a unary predicate P, and states that:

There exists a family F of subsets of A such that for every subset
B of the carrier of A holds B ∈ F iff P[B]

for all values of the parameters.
The scheme SubFamExRLS2 deals with an RLS structure A and a unary

predicate P, and states that:
There exists a family F of subsets of A such that for every subset
B of A holds B ∈ F iff P[B]

for all values of the parameters.
Let V be a non empty RLS structure and let M be a subset of V . The functor

Convex-Family M yields a family of subsets of V and is defined as follows:

(Def. 4) For every subset N of V holds N ∈ Convex-Family M iff N is convex
and M ⊆ N.

Let V be a non empty RLS structure and let M be a subset of V . The
functor conv M yields a convex subset of V and is defined by:

(Def. 5) conv M =
⋂

Convex-Family M.

The following proposition is true
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(30) Let V be a non empty RLS structure, M be a subset of V , and N be a
convex subset of V . If M ⊆ N, then conv M ⊆ N.

4. Miscellaneous

One can prove the following propositions:

(31) Let p be a finite sequence and x, y, z be sets. Suppose p is one-to-one
and rng p = {x, y, z} and x 6= y and y 6= z and z 6= x. Then p = 〈x, y, z〉
or p = 〈x, z, y〉 or p = 〈y, x, z〉 or p = 〈y, z, x〉 or p = 〈z, x, y〉 or p = 〈z, y,

x〉.
(32) For every real linear space-like non empty RLS structure V and for every

subset M of V holds 1 ·M = M.

(33) For every non empty RLS structure V and for every empty subset M of
V and for every real number r holds r ·M = ∅.

(34) For every real linear space V and for every non empty subset M of V

holds 0 ·M = {0V }.
(35) For every right zeroed non empty loop structure V and for every subset

M of V holds M + {0V } = M.

(36) For every add-associative non empty loop structure V and for all subsets
M1, M2, M3 of V holds (M1 + M2) + M3 = M1 + (M2 + M3).

(37) Let V be a real linear space-like non empty RLS structure, M be a subset
of V , and r1, r2 be real numbers. Then r1 · (r2 ·M) = (r1 · r2) ·M.

(38) Let V be a real linear space-like non empty RLS structure, M1, M2 be
subsets of V , and r be a real number. Then r · (M1 +M2) = r ·M1 +r ·M2.

(39) Let V be a non empty RLS structure, M , N be subsets of V , and r be
a real number. If M ⊆ N, then r ·M ⊆ r ·N.

(40) For every non empty loop structure V and for every empty subset M of
V and for every subset N of V holds M + N = ∅.
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Summary. The article presents well known facts about quotient vector
spaces and functionals (see [8]). There are repeated theorems and constructions
with either weaker assumptions or in more general situations (see [11], [7], [10]).
The construction of coefficient functionals and non-degenerate functional in qu-
otient vector space generated by functional in the given vector space are the only
new things which are done.
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The articles [15], [5], [21], [13], [3], [1], [20], [2], [17], [7], [22], [4], [6], [14], [19],
[12], [18], [16], and [9] provide the notation and terminology for this paper.

1. Auxiliary Facts about Double Loops and Vector Spaces

The following proposition is true

(1) Let K be an add-associative right zeroed right complementable left di-
stributive left unital non empty double loop structure and a be an element
of the carrier of K. Then (−1K) · a = −a.

Let K be a double loop structure. The functor StructVectSp(K) yields a
strict vector space structure over K and is defined as follows:

(Def. 1) StructVectSp(K) = 〈the carrier of K, the addition of K, the zero of K,
the multiplication of K〉.

Let K be a non empty double loop structure. Note that StructVectSp(K) is
non empty.

Let K be an Abelian non empty double loop structure. One can verify that
StructVectSp(K) is Abelian.

1This work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and
SPUB-M grant of KBN.
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Let K be an add-associative non empty double loop structure. Note that
StructVectSp(K) is add-associative.

Let K be a right zeroed non empty double loop structure.
Note that StructVectSp(K) is right zeroed.
Let K be a right complementable non empty double loop structure. Observe

that StructVectSp(K) is right complementable.
Let K be an associative left unital distributive non empty double loop struc-

ture. One can check that StructVectSp(K) is vector space-like.
Let K be a non degenerated non empty double loop structure. Note that

StructVectSp(K) is non trivial.
Let K be a non degenerated non empty double loop structure. Note that

there exists a non empty vector space structure over K which is non trivial.
Let K be an add-associative right zeroed right complementable non empty

double loop structure. Observe that there exists a non empty vector space struc-
ture over K which is add-associative, right zeroed, right complementable, and
strict.

Let K be an add-associative right zeroed right complementable associative
left unital distributive non empty double loop structure. One can check that
there exists a non empty vector space structure over K which is add-associative,
right zeroed, right complementable, vector space-like, and strict.

Let K be an Abelian add-associative right zeroed right complementable as-
sociative left unital distributive non degenerated non empty double loop struc-
ture. One can verify that there exists a non empty vector space structure over
K which is Abelian, add-associative, right zeroed, right complementable, vector
space-like, strict, and non trivial.

Next we state a number of propositions:

(2) Let K be an add-associative right zeroed right complementable asso-
ciative left unital distributive non empty double loop structure, a be an
element of the carrier of K, V be an add-associative right zeroed right
complementable vector space-like non empty vector space structure over
K, and v be a vector of V . Then 0K · v = 0V and a · 0V = 0V .

(3) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a vector space over K, S, T be subspaces of V , and v be a vector of V . If
S ∩ T = 0V and v ∈ S and v ∈ T, then v = 0V .

(4) Let K be a field, V be a vector space over K, x be a set, and v be a
vector of V . Then x ∈ Lin({v}) if and only if there exists an element a of
the carrier of K such that x = a · v.

(5) Let K be a field, V be a vector space over K, v be a vector of V , and a,
b be scalars of V . If v 6= 0V and a · v = b · v, then a = b.

(6) Let K be an add-associative right zeroed right complementable associa-
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tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, and W1, W2 be subspaces of V . Suppose V is
the direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v1 ∈ W1

and v2 ∈W2 and v = v1 + v2, then v〈〈W1,W2〉〉 = 〈〈v1, v2〉〉.
(7) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V be
a vector space over K, and W1, W2 be subspaces of V . Suppose V is the
direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v〈〈W1,W2〉〉 = 〈〈v1,

v2〉〉, then v = v1 + v2.

(8) Let K be an add-associative right zeroed right complementable associa-
tive Abelian left unital distributive non empty double loop structure, V be
a vector space over K, and W1, W2 be subspaces of V . Suppose V is the
direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v〈〈W1,W2〉〉 = 〈〈v1,

v2〉〉, then v1 ∈W1 and v2 ∈W2.

(9) Let K be an add-associative right zeroed right complementable associa-
tive Abelian left unital distributive non empty double loop structure, V be
a vector space over K, and W1, W2 be subspaces of V . Suppose V is the
direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v〈〈W1,W2〉〉 = 〈〈v1,

v2〉〉, then v〈〈W2,W1〉〉 = 〈〈v2, v1〉〉.
(10) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, and W1, W2 be subspaces of V . Suppose V is
the direct sum of W1 and W2. Let v be a vector of V . If v ∈ W1, then
v〈〈W1,W2〉〉 = 〈〈v, 0V 〉〉.

(11) Let K be an add-associative right zeroed right complementable associa-
tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, and W1, W2 be subspaces of V . Suppose V is
the direct sum of W1 and W2. Let v be a vector of V . If v ∈ W2, then
v〈〈W1,W2〉〉 = 〈〈0V , v〉〉.

(12) Let K be an add-associative right zeroed right complementable associa-
tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, V1 be a subspace of V , W1 be a subspace of V1,
and v be a vector of V . If v ∈W1, then v is a vector of V1.

(13) Let K be an add-associative right zeroed right complementable associa-
tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, V1, V2, W be subspaces of V , and W1, W2 be
subspaces of W . If W1 = V1 and W2 = V2, then W1 + W2 = V1 + V2.

(14) Let K be a field, V be a vector space over K, W be a subspace of V , v be
a vector of V , and w be a vector of W . If v = w, then Lin({w}) = Lin({v}).
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(15) Let K be a field, V be a vector space over K, v be a vector of V , and X

be a subspace of V . Suppose v /∈ X. Let y be a vector of X +Lin({v}) and
W be a subspace of X +Lin({v}). If v = y and W = X, then X +Lin({v})
is the direct sum of W and Lin({y}).

(16) Let K be a field, V be a vector space over K, v be a vector of V , X be
a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of
X + Lin({v}). If v = y and X = W and v /∈ X, then y〈〈W,Lin({y})〉〉 = 〈〈0W ,

y〉〉.
(17) Let K be a field, V be a vector space over K, v be a vector of V , X be

a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of
X + Lin({v}). Suppose v = y and X = W and v /∈ X. Let w be a vector
of X + Lin({v}). If w ∈ X, then w〈〈W,Lin({y})〉〉 = 〈〈w, 0V 〉〉.

(18) Let K be an add-associative right zeroed right complementable associa-
tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, v be a vector of V , and W1, W2 be subspaces
of V . Then there exist vectors v1, v2 of V such that v〈〈W1,W2〉〉 = 〈〈v1, v2〉〉.

(19) Let K be a field, V be a vector space over K, v be a vector of V , X be
a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of
X + Lin({v}). Suppose v = y and X = W and v /∈ X. Let w be a vector
of X + Lin({v}). Then there exists a vector x of X and there exists an
element r of the carrier of K such that w〈〈W,Lin({y})〉〉 = 〈〈x, r · v〉〉.

(20) Let K be a field, V be a vector space over K, v be a vector of V , X be
a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of
X+Lin({v}). Suppose v = y and X = W and v /∈ X. Let w1, w2 be vectors
of X+Lin({v}), x1, x2 be vectors of X, and r1, r2 be elements of the carrier
of K. If (w1)〈〈W,Lin({y})〉〉 = 〈〈x1, r1 · v〉〉 and (w2)〈〈W,Lin({y})〉〉 = 〈〈x2, r2 · v〉〉,
then (w1 + w2)〈〈W,Lin({y})〉〉 = 〈〈x1 + x2, (r1 + r2) · v〉〉.

(21) Let K be a field, V be a vector space over K, v be a vector of V , X be
a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of
X + Lin({v}). Suppose v = y and X = W and v /∈ X. Let w be a vector
of X + Lin({v}), x be a vector of X, and t, r be elements of the carrier of
K. If w〈〈W,Lin({y})〉〉 = 〈〈x, r · v〉〉, then (t · w)〈〈W,Lin({y})〉〉 = 〈〈t · x, t · r · v〉〉.

2. Quotient Vector Space for Non-Commutative Double Loop

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, and let W be a subspace of V . The functor CosetSet(V,W )
yielding a non empty family of subsets of the carrier of V is defined as follows:
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(Def. 2) CosetSet(V, W ) = {A : A ranges over cosets of W}.
Let K be an add-associative right zeroed right complementable Abelian asso-

ciative left unital distributive non empty double loop structure, let V be a vector
space over K, and let W be a subspace of V . The functor addCoset(V, W ) yields
a binary operation on CosetSet(V, W ) and is defined by:

(Def. 3) For all elements A, B of CosetSet(V,W ) and for all vectors a, b of V such
that A = a+W and B = b+W holds (addCoset(V, W ))(A, B) = a+b+W.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, and let W be a subspace of V . The functor zeroCoset(V, W )
yielding an element of CosetSet(V, W ) is defined as follows:

(Def. 4) zeroCoset(V, W ) = the carrier of W .

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a vec-
tor space over K, and let W be a subspace of V . The functor lmultCoset(V, W )
yields a function from [: the carrier of K, CosetSet(V, W ) :] into CosetSet(V, W )
and is defined by the condition (Def. 5).

(Def. 5) Let z be an element of the carrier of K, A be an element of
CosetSet(V,W ), and a be a vector of V . If A = a + W, then
(lmultCoset(V, W ))(z, A) = z · a + W.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, and let W be a subspace of V . The functor V /W yiel-
ding a strict Abelian add-associative right zeroed right complementable vector
space-like non empty vector space structure over K is defined by the conditions
(Def. 6).

(Def. 6)(i) The carrier of V /W = CosetSet(V,W ),
(ii) the addition of V /W = addCoset(V, W ),
(iii) the zero of V /W = zeroCoset(V, W ), and
(iv) the left multiplication of V /W = lmultCoset(V, W ).

The following propositions are true:

(22) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be a
vector space over K, and W be a subspace of V . Then zeroCoset(V, W ) =
0V + W and 0V /W

= zeroCoset(V, W ).
(23) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V

be a vector space over K, W be a subspace of V , and w be a vector of
V /W . Then w is a coset of W and there exists a vector v of V such that
w = v + W.
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(24) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a vector space over K, W be a subspace of V , and v be a vector of V .
Then v + W is a coset of W and v + W is a vector of V /W .

(25) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a vector space over K, and W be a subspace of V . Then every coset of W

is a vector of V /W .

(26) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a vector space over K, W be a subspace of V , A be a vector of V /W , v be
a vector of V , and a be a scalar of V . If A = v +W, then a ·A = a · v +W.

(27) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a vector space over K, W be a subspace of V , A1, A2 be vectors of V /W ,
and v1, v2 be vectors of V . If A1 = v1 + W and A2 = v2 + W, then
A1 + A2 = v1 + v2 + W.

3. Auxiliary Facts about Functionals

Next we state the proposition

(28) Let K be a field, V be a vector space over K, X be a subspace of V ,
f1 be a linear functional in X, v be a vector of V , and y be a vector of
X +Lin({v}). Suppose v = y and v /∈ X. Let r be an element of the carrier
of K. Then there exists a linear functional p1 in X + Lin({v}) such that
p1¹the carrier of X = f1 and p1(y) = r.

Let K be a right zeroed non empty loop structure and let V be a non empty
vector space structure over K. One can verify that there exists a functional in
V which is additive and 0-preserving.

Let K be an add-associative right zeroed right complementable non empty
double loop structure and let V be a right zeroed non empty vector space struc-
ture over K. Observe that every functional in V which is additive is also 0-
preserving.

Let K be an add-associative right zeroed right complementable associative
left unital distributive non empty double loop structure and let V be an add-
associative right zeroed right complementable vector space-like non empty vector
space structure over K. One can verify that every functional in V which is
homogeneous is also 0-preserving.

Let K be a non empty zero structure and let V be a non empty vector space
structure over K. One can check that 0Functional V is constant.



quotient vector spaces and functionals 65

Let K be a non empty zero structure and let V be a non empty vector space
structure over K. Note that there exists a functional in V which is constant.

Let K be an add-associative right zeroed right complementable non empty
double loop structure, let V be a right zeroed non empty vector space structure
over K, and let f be a 0-preserving functional in V . Let us observe that f is
constant if and only if:

(Def. 7) f = 0Functional V.

Let K be an add-associative right zeroed right complementable non empty
double loop structure and let V be a right zeroed non empty vector space struc-
ture over K. Note that there exists a functional in V which is constant, additive,
and 0-preserving.

Let K be a non empty 1-sorted structure and let V be a non empty vector
space structure over K. One can check that every functional in V which is non
constant is also non trivial.

Let K be a field and let V be a non trivial vector space over K. Observe that
there exists a functional in V which is additive, homogeneous, non constant, and
non trivial.

Let K be a field and let V be a non trivial vector space over K. One can
check that every functional in V which is trivial is also constant.

Let K be a field, let V be a non trivial vector space over K, let v be a
vector of V , and let W be a linear complement of Lin({v}). Let us assume that
v 6= 0V . The functor coeffFunctional(v, W ) yielding a non constant non trivial
linear functional in V is defined as follows:

(Def. 8) (coeffFunctional(v, W ))(v) = 1K and coeffFunctional(v, W )¹the carrier
of W = 0Functional W.

We now state several propositions:

(29) Let K be a field, V be a non trivial vector space over K, and f be a non
constant 0-preserving functional in V . Then there exists a vector v of V

such that v 6= 0V and f(v) 6= 0K .

(30) Let K be a field, V be a non trivial vector space over K, v be a vector
of V , a be a scalar of V , and W be a linear complement of Lin({v}). If
v 6= 0V , then (coeffFunctional(v, W ))(a · v) = a.

(31) Let K be a field, V be a non trivial vector space over K, v, w be vectors
of V , and W be a linear complement of Lin({v}). If v 6= 0V and w ∈ W,

then (coeffFunctional(v,W ))(w) = 0K .

(32) Let K be a field, V be a non trivial vector space over K, v, w be vectors
of V , a be a scalar of V , and W be a linear complement of Lin({v}). If
v 6= 0V and w ∈W, then (coeffFunctional(v, W ))(a · v + w) = a.

(33) Let K be a non empty loop structure, V be a non empty vector space
structure over K, f , g be functionals in V , and v be a vector of V . Then
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(f − g)(v) = f(v)− g(v).
Let K be a field and let V be a non trivial vector space over K. Note that

V is non trivial.

4. Kernel of Additive Functional. Linear Functionals in Quotient
Vector Spaces

Let K be a non empty zero structure, let V be a non empty vector space
structure over K, and let f be a functional in V . The functor ker f yields a
subset of the carrier of V and is defined by:

(Def. 9) ker f = {v; v ranges over vectors of V : f(v) = 0K}.
Let K be a right zeroed non empty loop structure, let V be a non empty

vector space structure over K, and let f be a 0-preserving functional in V . One
can check that ker f is non empty.

One can prove the following proposition

(34) Let K be an add-associative right zeroed right complementable asso-
ciative left unital distributive non empty double loop structure, V be an
add-associative right zeroed right complementable vector space-like non
empty vector space structure over K, and f be a linear functional in V .
Then ker f is linearly closed.

Let K be a non empty zero structure, let V be a non empty vector space
structure over K, and let f be a functional in V . We say that f is degenerated
if and only if:

(Def. 10) ker f 6= {0V }.
Let K be a non degenerated non empty double loop structure and let V be a

non trivial non empty vector space structure over K. One can check that every
functional in V which is non degenerated and 0-preserving is also non constant.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, and let f be a linear functional in V . The functor Ker f

yields a strict non empty subspace of V and is defined as follows:

(Def. 11) The carrier of Ker f = ker f.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, let W be a subspace of V , and let f be an additive functio-
nal in V . Let us assume that the carrier of W ⊆ ker f. The functor f/W yielding
an additive functional in V /W is defined by:

(Def. 12) For every vector A of V /W and for every vector v of V such that A =
v + W holds (f/W )(A) = f(v).

One can prove the following proposition
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(35) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a vector space over K, W be a subspace of V , and f be a linear functional
in V . If the carrier of W ⊆ ker f, then f/W is homogeneous.

Let K be an add-associative right zeroed right complementable Abelian asso-
ciative left unital distributive non empty double loop structure, let V be a vector
space over K, and let f be a linear functional in V . The functor CQFunctional f
yielding a linear functional in V /Ker f is defined as follows:

(Def. 13) CQFunctional f = f/Ker f .

One can prove the following proposition

(36) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be a
vector space over K, f be a linear functional in V , A be a vector of V /Ker f ,
and v be a vector of V . If A = v +Ker f, then CQFunctional f(A) = f(v).

Let K be a field, let V be a non trivial vector space over K, and let f

be a non constant linear functional in V . Observe that CQFunctional f is non
constant.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, and let f be a linear functional in V . One can verify that
CQFunctional f is non degenerated.
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Summary. The main goal of the article is the presentation of the theory
of bilinear functionals in vector spaces. It introduces standard operations on
bilinear functionals and proves their classical properties. It is shown that quotient
functionals are non-degenerate on the left and the right. In the case of symmetric
and alternating bilinear functionals it is shown that the left and right kernels are
equal.

MML Identifier: BILINEAR.

The papers [13], [6], [17], [12], [4], [18], [11], [2], [16], [3], [9], [19], [5], [7], [1],
[15], [14], [10], and [8] provide the notation and terminology for this paper.

1. Two Form on Vector Spaces and Operations on Them

Let K be a 1-sorted structure and let V , W be vector space structures over
K.

(Def. 1) A function from [: the carrier of V , the carrier of W :] into the carrier of
K is said to be a form of V , W .

Let K be a non empty zero structure and let V , W be vector space structures
over K. The functor NulForm(V,W ) yielding a form of V , W is defined by:

(Def. 2) NulForm(V,W ) = [: the carrier of V , the carrier of W :] 7−→ 0K .

Let K be a non empty loop structure, let V , W be non empty vector space
structures over K, and let f , g be forms of V , W . The functor f + g yields a
form of V , W and is defined as follows:

(Def. 3) For every vector v of V and for every vector w of W holds (f + g)(〈〈v,

w〉〉) = f(〈〈v, w〉〉) + g(〈〈v, w〉〉).
1This work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and

SPUB-M grant of KBN.
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Let K be a non empty groupoid, let V , W be non empty vector space
structures over K, let f be a form of V , W , and let a be an element of the
carrier of K. The functor a · f yields a form of V , W and is defined by:

(Def. 4) For every vector v of V and for every vector w of W holds (a · f)(〈〈v,

w〉〉) = a · f(〈〈v, w〉〉).
Let K be a non empty loop structure, let V , W be non empty vector space

structures over K, and let f be a form of V , W . The functor −f yielding a form
of V , W is defined as follows:

(Def. 5) For every vector v of V and for every vector w of W holds (−f)(〈〈v,

w〉〉) = −f(〈〈v, w〉〉).
Let K be an add-associative right zeroed right complementable left distribu-

tive left unital non empty double loop structure, let V , W be non empty vector
space structures over K, and let f be a form of V , W . Then −f is a form of V ,
W and it can be characterized by the condition:

(Def. 6) −f = (−1K) · f.

Let K be a non empty loop structure, let V , W be non empty vector space
structures over K, and let f , g be forms of V , W . The functor f − g yields a
form of V , W and is defined by:

(Def. 7) f − g = f +−g.

Let K be a non empty loop structure, let V , W be non empty vector space
structures over K, and let f , g be forms of V , W . Then f − g is a form of V ,
W and it can be characterized by the condition:

(Def. 8) For every vector v of V and for every vector w of W holds (f − g)(〈〈v,

w〉〉) = f(〈〈v, w〉〉)− g(〈〈v, w〉〉).
Let K be an Abelian non empty loop structure, let V , W be non empty

vector space structures over K, and let f , g be forms of V , W . Let us notice
that the functor f + g is commutative.

Next we state several propositions:

(1) Let K be a non empty zero structure, V , W be non empty vector space
structures over K, v be a vector of V , and w be a vector of W . Then
(NulForm(V, W ))(〈〈v, w〉〉) = 0K .

(2) Let K be a right zeroed non empty loop structure, V , W be non empty
vector space structures over K, and f be a form of V , W . Then f +
NulForm(V, W ) = f.

(3) Let K be an add-associative non empty loop structure, V , W be non
empty vector space structures over K, and f , g, h be forms of V , W . Then
(f + g) + h = f + (g + h).

(4) Let K be an add-associative right zeroed right complementable non
empty loop structure, V , W be non empty vector space structures over
K, and f be a form of V , W . Then f − f = NulForm(V, W ).
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(5) Let K be a right distributive non empty double loop structure, V , W be
non empty vector space structures over K, a be an element of the carrier
of K, and f , g be forms of V , W . Then a · (f + g) = a · f + a · g.

(6) Let K be a left distributive non empty double loop structure, V , W be
non empty vector space structures over K, a, b be elements of the carrier
of K, and f be a form of V , W . Then (a + b) · f = a · f + b · f.

(7) Let K be an associative non empty double loop structure, V , W be non
empty vector space structures over K, a, b be elements of the carrier of
K, and f be a form of V , W . Then (a · b) · f = a · (b · f).

(8) Let K be a left unital non empty double loop structure, V , W be non
empty vector space structures over K, and f be a form of V , W . Then
1K · f = f.

2. Functional Generated by Two Form when the One of
Arguments is Fixed

Let K be a non empty 1-sorted structure, let V , W be non empty vector
space structures over K, let f be a form of V , W , and let v be a vector of V .
The functor f(v, ·) yielding a functional in W is defined as follows:

(Def. 9) f(v, ·) = (curry f)(v).
Let K be a non empty 1-sorted structure, let V , W be non empty vector

space structures over K, let f be a form of V , W , and let w be a vector of W .
The functor f(·, w) yields a functional in V and is defined by:

(Def. 10) f(·, w) = (curry′ f)(w).
The following propositions are true:

(9) Let K be a non empty 1-sorted structure, V , W be non empty vector
space structures over K, f be a form of V , W , and v be a vector of V .
Then dom f(v, ·) = the carrier of W and rng f(v, ·) ⊆ the carrier of K and
for every vector w of W holds (f(v, ·))(w) = f(〈〈v, w〉〉).

(10) Let K be a non empty 1-sorted structure, V , W be non empty vector
space structures over K, f be a form of V , W , and w be a vector of W .
Then dom f(·, w) = the carrier of V and rng f(·, w) ⊆ the carrier of K

and for every vector v of V holds (f(·, w))(v) = f(〈〈v, w〉〉).
(11) Let K be a non empty zero structure, V , W be non empty vector space

structures over K, f be a form of V , W , and v be a vector of V . Then
NulForm(V, W )(v, ·) = 0Functional W.

(12) Let K be a non empty zero structure, V , W be non empty vector space
structures over K, f be a form of V , W , and w be a vector of W . Then
NulForm(V, W )(·, w) = 0Functional V.
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(13) Let K be a non empty loop structure, V , W be non empty vector space
structures over K, f , g be forms of V , W , and w be a vector of W . Then
(f + g)(·, w) = f(·, w) + g(·, w).

(14) Let K be a non empty loop structure, V , W be non empty vector space
structures over K, f , g be forms of V , W , and v be a vector of V . Then
(f + g)(v, ·) = f(v, ·) + g(v, ·).

(15) Let K be a non empty double loop structure, V , W be non empty vector
space structures over K, f be a form of V , W , a be an element of the carrier
of K, and w be a vector of W . Then (a · f)(·, w) = a · f(·, w).

(16) Let K be a non empty double loop structure, V , W be non empty vector
space structures over K, f be a form of V , W , a be an element of the carrier
of K, and v be a vector of V . Then (a · f)(v, ·) = a · f(v, ·).

(17) Let K be a non empty loop structure, V , W be non empty vector space
structures over K, f be a form of V , W , and w be a vector of W . Then
(−f)(·, w) = −f(·, w).

(18) Let K be a non empty loop structure, V , W be non empty vector space
structures over K, f be a form of V , W , and v be a vector of V . Then
(−f)(v, ·) = −f(v, ·).

(19) Let K be a non empty loop structure, V , W be non empty vector space
structures over K, f , g be forms of V , W , and w be a vector of W . Then
(f − g)(·, w) = f(·, w)− g(·, w).

(20) Let K be a non empty loop structure, V , W be non empty vector space
structures over K, f , g be forms of V , W , and v be a vector of V . Then
(f − g)(v, ·) = f(v, ·)− g(v, ·).

3. Two Form Generated by Functionals

Let K be a non empty groupoid, let V , W be non empty vector space
structures over K, let f be a functional in V , and let g be a functional in W .
The functor f ⊗ g yields a form of V , W and is defined as follows:

(Def. 11) For every vector v of V and for every vector w of W holds f ⊗ g(〈〈v,

w〉〉) = f(v) · g(w).
One can prove the following propositions:

(21) Let K be an add-associative right zeroed right complementable right
distributive non empty double loop structure, V , W be non empty vector
space structures over K, f be a functional in V , v be a vector of V , and
w be a vector of W . Then f ⊗ (0Functional W )(〈〈v, w〉〉) = 0K .

(22) Let K be an add-associative right zeroed right complementable left di-
stributive non empty double loop structure, V , W be non empty vector
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space structures over K, g be a functional in W , v be a vector of V , and
w be a vector of W . Then (0Functional V )⊗ g(〈〈v, w〉〉) = 0K .

(23) Let K be an add-associative right zeroed right complementable ri-
ght distributive non empty double loop structure, V , W be non empty
vector space structures over K, and f be a functional in V . Then
f ⊗ (0Functional W ) = NulForm(V, W ).

(24) Let K be an add-associative right zeroed right complementable left
distributive non empty double loop structure, V , W be non empty
vector space structures over K, and g be a functional in W . Then
(0Functional V )⊗ g = NulForm(V, W ).

(25) Let K be a non empty groupoid, V , W be non empty vector space
structures over K, f be a functional in V , g be a functional in W , and v

be a vector of V . Then (f ⊗ g)(v, ·) = f(v) · g.

(26) Let K be a commutative non empty groupoid, V , W be non empty
vector space structures over K, f be a functional in V , g be a functional
in W , and w be a vector of W . Then (f ⊗ g)(·, w) = g(w) · f.

4. Bilinear Forms and their Properties

Let K be a non empty loop structure, let V , W be non empty vector space
structures over K, and let f be a form of V , W . We say that f is additive wrt.
second argument if and only if:

(Def. 12) For every vector v of V holds f(v, ·) is additive.

We say that f is additive wrt. first argument if and only if:

(Def. 13) For every vector w of W holds f(·, w) is additive.

Let K be a non empty groupoid, let V , W be non empty vector space
structures over K, and let f be a form of V , W . We say that f is homogeneous
wrt. second argument if and only if:

(Def. 14) For every vector v of V holds f(v, ·) is homogeneous.

We say that f is homogeneous wrt. first argument if and only if:

(Def. 15) For every vector w of W holds f(·, w) is homogeneous.

Let K be a right zeroed non empty loop structure and let V , W be non
empty vector space structures over K. Note that NulForm(V, W ) is additive
wrt. second argument and NulForm(V, W ) is additive wrt. first argument.

Let K be a right zeroed non empty loop structure and let V , W be non
empty vector space structures over K. Note that there exists a form of V , W

which is additive wrt. second argument and additive wrt. first argument.
Let K be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure and let V , W be non empty vector
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space structures over K. Observe that NulForm(V, W ) is homogeneous wrt. se-
cond argument and NulForm(V, W ) is homogeneous wrt. first argument.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure and let V , W be non empty vector
space structures over K. One can verify that there exists a form of V , W which
is additive wrt. second argument, homogeneous wrt. second argument, additive
wrt. first argument, and homogeneous wrt. first argument.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure and let V , W be non empty vector space
structures over K. A bilinear form of V , W is an additive wrt. first argument
homogeneous wrt. first argument additive wrt. second argument homogeneous
wrt. second argument form of V , W .

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, let f be an additive wrt. second argument form of V , W ,
and let v be a vector of V . Note that f(v, ·) is additive.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, let f be an additive wrt. first argument form of V , W , and
let w be a vector of W . One can check that f(·, w) is additive.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, let f be a homogeneous wrt. second argument form of V , W ,
and let v be a vector of V . Note that f(v, ·) is homogeneous.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, let f be a homogeneous wrt. first argument form of V , W ,
and let w be a vector of W . One can verify that f(·, w) is homogeneous.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, let f be a functional in V , and let g be an additive functional
in W . One can check that f ⊗ g is additive wrt. second argument.

Let K be an add-associative right zeroed right complementable commutative
right distributive non empty double loop structure, let V , W be non empty
vector space structures over K, let f be an additive functional in V , and let g

be a functional in W . Note that f ⊗ g is additive wrt. first argument.
Let K be an add-associative right zeroed right complementable commutative

associative right distributive non empty double loop structure, let V , W be non
empty vector space structures over K, let f be a functional in V , and let g be
a homogeneous functional in W . Note that f ⊗ g is homogeneous wrt. second
argument.

Let K be an add-associative right zeroed right complementable commutative
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associative right distributive non empty double loop structure, let V , W be non
empty vector space structures over K, let f be a homogeneous functional in
V , and let g be a functional in W . Note that f ⊗ g is homogeneous wrt. first
argument.

Let K be a non degenerated non empty double loop structure, let V be a non
trivial non empty vector space structure over K, let W be a non empty vector
space structure over K, let f be a functional in V , and let g be a functional in
W . One can verify that f ⊗ g is non trivial.

Let K be a non degenerated non empty double loop structure, let V be a non
empty vector space structure over K, let W be a non trivial non empty vector
space structure over K, let f be a functional in V , and let g be a functional in
W . One can verify that f ⊗ g is non trivial.

Let K be a field, let V , W be non trivial vector spaces over K, let f be a non
constant 0-preserving functional in V , and let g be a non constant 0-preserving
functional in W . Observe that f ⊗ g is non constant.

Let K be a field and let V , W be non trivial vector spaces over K. Observe
that there exists a form of V , W which is non trivial, non constant, additive
wrt. second argument, homogeneous wrt. second argument, additive wrt. first
argument, and homogeneous wrt. first argument.

Let K be an Abelian add-associative right zeroed non empty loop structure,
let V , W be non empty vector space structures over K, and let f , g be additive
wrt. first argument forms of V , W . Observe that f + g is additive wrt. first
argument.

Let K be an Abelian add-associative right zeroed non empty loop structure,
let V , W be non empty vector space structures over K, and let f , g be additive
wrt. second argument forms of V , W . Observe that f +g is additive wrt. second
argument.

Let K be a right distributive right zeroed non empty double loop structure,
let V , W be non empty vector space structures over K, let f be an additive
wrt. first argument form of V , W , and let a be an element of the carrier of K.
Observe that a · f is additive wrt. first argument.

Let K be a right distributive right zeroed non empty double loop structure,
let V , W be non empty vector space structures over K, let f be an additive
wrt. second argument form of V , W , and let a be an element of the carrier of
K. Observe that a · f is additive wrt. second argument.

Let K be an Abelian add-associative right zeroed right complementable non
empty loop structure, let V , W be non empty vector space structures over K,
and let f be an additive wrt. first argument form of V , W . One can verify that
−f is additive wrt. first argument.

Let K be an Abelian add-associative right zeroed right complementable non
empty loop structure, let V , W be non empty vector space structures over K,
and let f be an additive wrt. second argument form of V , W . One can check
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that −f is additive wrt. second argument.
Let K be an Abelian add-associative right zeroed right complementable non

empty loop structure, let V , W be non empty vector space structures over K,
and let f , g be additive wrt. first argument forms of V , W . Observe that f − g

is additive wrt. first argument.
Let K be an Abelian add-associative right zeroed right complementable non

empty loop structure, let V , W be non empty vector space structures over K,
and let f , g be additive wrt. second argument forms of V , W . Note that f − g

is additive wrt. second argument.
Let K be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure, let V , W be non empty vector space
structures over K, and let f , g be homogeneous wrt. first argument forms of V ,
W . One can verify that f + g is homogeneous wrt. first argument.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, and let f , g be homogeneous wrt. second argument forms of
V , W . Note that f + g is homogeneous wrt. second argument.

Let K be an add-associative right zeroed right complementable associative
commutative right distributive non empty double loop structure, let V , W be
non empty vector space structures over K, let f be a homogeneous wrt. first
argument form of V , W , and let a be an element of the carrier of K. One can
check that a · f is homogeneous wrt. first argument.

Let K be an add-associative right zeroed right complementable associative
commutative right distributive non empty double loop structure, let V , W be
non empty vector space structures over K, let f be a homogeneous wrt. second
argument form of V , W , and let a be an element of the carrier of K. One can
check that a · f is homogeneous wrt. second argument.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, and let f be a homogeneous wrt. first argument form of V ,
W . One can verify that −f is homogeneous wrt. first argument.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, and let f be a homogeneous wrt. second argument form of
V , W . Note that −f is homogeneous wrt. second argument.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, and let f , g be homogeneous wrt. first argument forms of V ,
W . One can check that f − g is homogeneous wrt. first argument.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V , W be non empty vector space
structures over K, and let f , g be homogeneous wrt. second argument forms of
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V , W . One can check that f − g is homogeneous wrt. second argument.
We now state a number of propositions:

(27) Let K be a non empty loop structure, V , W be non empty vector space
structures over K, v, u be vectors of V , w be a vector of W , and f be a form
of V , W . If f is additive wrt. first argument, then f(〈〈v + u, w〉〉) = f(〈〈v,

w〉〉) + f(〈〈u, w〉〉).
(28) Let K be a non empty loop structure, V , W be non empty vector space

structures over K, v be a vector of V , u, w be vectors of W , and f be a form
of V , W . If f is additive wrt. second argument, then f(〈〈v, u+w〉〉) = f(〈〈v,

u〉〉) + f(〈〈v, w〉〉).
(29) Let K be a right zeroed non empty loop structure, V , W be non empty

vector space structures over K, v, u be vectors of V , w, t be vectors of W ,
and f be an additive wrt. first argument additive wrt. second argument
form of V , W . Then f(〈〈v + u, w + t〉〉) = f(〈〈v, w〉〉) + f(〈〈v, t〉〉) + (f(〈〈u,

w〉〉) + f(〈〈u, t〉〉)).
(30) Let K be an add-associative right zeroed right complementable non

empty double loop structure, V , W be right zeroed non empty vector
space structures over K, f be an additive wrt. second argument form of
V , W , and v be a vector of V . Then f(〈〈v, 0W 〉〉) = 0K .

(31) Let K be an add-associative right zeroed right complementable non
empty double loop structure, V , W be right zeroed non empty vector
space structures over K, f be an additive wrt. first argument form of V ,
W , and w be a vector of W . Then f(〈〈0V , w〉〉) = 0K .

(32) Let K be a non empty groupoid, V , W be non empty vector space
structures over K, v be a vector of V , w be a vector of W , a be an
element of the carrier of K, and f be a form of V , W . If f is homogeneous
wrt. first argument, then f(〈〈a · v, w〉〉) = a · f(〈〈v, w〉〉).

(33) Let K be a non empty groupoid, V , W be non empty vector space
structures over K, v be a vector of V , w be a vector of W , a be an
element of the carrier of K, and f be a form of V , W . If f is homogeneous
wrt. second argument, then f(〈〈v, a · w〉〉) = a · f(〈〈v, w〉〉).

(34) Let K be an add-associative right zeroed right complementable associa-
tive left unital distributive non empty double loop structure, V , W be
add-associative right zeroed right complementable vector space-like non
empty vector space structures over K, f be a homogeneous wrt. first ar-
gument form of V , W , and w be a vector of W . Then f(〈〈0V , w〉〉) = 0K .

(35) Let K be an add-associative right zeroed right complementable associa-
tive left unital distributive non empty double loop structure, V , W be
add-associative right zeroed right complementable vector space-like non
empty vector space structures over K, f be a homogeneous wrt. second
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argument form of V , W , and v be a vector of V . Then f(〈〈v, 0W 〉〉) = 0K .

(36) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V , W

be vector spaces over K, v, u be vectors of V , w be a vector of W , and f

be an additive wrt. first argument homogeneous wrt. first argument form
of V , W . Then f(〈〈v − u, w〉〉) = f(〈〈v, w〉〉)− f(〈〈u, w〉〉).

(37) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V , W

be vector spaces over K, v be a vector of V , w, t be vectors of W , and f

be an additive wrt. second argument homogeneous wrt. second argument
form of V , W . Then f(〈〈v, w − t〉〉) = f(〈〈v, w〉〉)− f(〈〈v, t〉〉).

(38) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V , W

be vector spaces over K, v, u be vectors of V , w, t be vectors of W , and
f be a bilinear form of V , W . Then f(〈〈v− u, w− t〉〉) = f(〈〈v, w〉〉)− f(〈〈v,

t〉〉)− (f(〈〈u, w〉〉)− f(〈〈u, t〉〉)).
(39) Let K be an add-associative right zeroed right complementable associa-

tive left unital distributive non empty double loop structure, V , W be
add-associative right zeroed right complementable vector space-like non
empty vector space structures over K, v, u be vectors of V , w, t be vec-
tors of W , a, b be elements of the carrier of K, and f be a bilinear form of
V , W . Then f(〈〈v + a · u, w + b · t〉〉) = f(〈〈v, w〉〉) + b · f(〈〈v, t〉〉) + (a · f(〈〈u,

w〉〉) + a · (b · f(〈〈u, t〉〉))).
(40) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V , W

be vector spaces over K, v, u be vectors of V , w, t be vectors of W , a, b

be elements of the carrier of K, and f be a bilinear form of V , W . Then
f(〈〈v−a ·u, w−b ·t〉〉) = f(〈〈v, w〉〉)−b ·f(〈〈v, t〉〉)−(a ·f(〈〈u, w〉〉)−a ·(b ·f(〈〈u,

t〉〉))).
(41) Let K be an add-associative right zeroed right complementable non

empty double loop structure, V , W be right zeroed non empty vector
space structures over K, and f be a form of V , W . Suppose f is additive
wrt. second argument and additive wrt. first argument. Then f is constant
if and only if for every vector v of V and for every vector w of W holds
f(〈〈v, w〉〉) = 0K .

5. Left and Right Kernel of Form. Kernel of “Diagonal”

Let K be a zero structure, let V , W be non empty vector space structures
over K, and let f be a form of V , W . The functor leftker f yields a subset of
the carrier of V and is defined as follows:
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(Def. 16) leftker f = {v; v ranges over vectors of V :
∧

w : vector of W f(〈〈v, w〉〉) =
0K}.

Let K be a zero structure, let V , W be non empty vector space structures
over K, and let f be a form of V , W . The functor rightker f yielding a subset
of the carrier of W is defined by:

(Def. 17) rightker f = {w; w ranges over vectors of W :
∧

v : vector of V f(〈〈v, w〉〉) =
0K}.

Let K be a zero structure, let V be a non empty vector space structure over
K, and let f be a form of V , V . The functor diagker f yielding a subset of the
carrier of V is defined by:

(Def. 18) diagker f = {v; v ranges over vectors of V : f(〈〈v, v〉〉) = 0K}.
Let K be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure, let V be a right zeroed non empty
vector space structure over K, let W be a non empty vector space structure
over K, and let f be an additive wrt. first argument form of V , W . Note that
leftker f is non empty.

Let K be an add-associative right zeroed right complementable associative
left unital distributive non empty double loop structure, let V be an add-
associative right zeroed right complementable vector space-like non empty vector
space structure over K, let W be a non empty vector space structure over K,
and let f be a homogeneous wrt. first argument form of V , W . Observe that
leftker f is non empty.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V be a non empty vector space
structure over K, let W be a right zeroed non empty vector space structure
over K, and let f be an additive wrt. second argument form of V , W . One can
verify that rightker f is non empty.

Let K be an add-associative right zeroed right complementable associative
left unital distributive non empty double loop structure, let V be a non empty
vector space structure over K, let W be an add-associative right zeroed right
complementable vector space-like non empty vector space structure over K, and
let f be a homogeneous wrt. second argument form of V , W . One can check
that rightker f is non empty.

Let K be an add-associative right zeroed right complementable non empty
double loop structure, let V be a right zeroed non empty vector space structure
over K, and let f be an additive wrt. second argument form of V , V . Note that
diagker f is non empty.

Let K be an add-associative right zeroed right complementable non empty
double loop structure, let V be a right zeroed non empty vector space structure
over K, and let f be an additive wrt. first argument form of V , V . Note that
diagker f is non empty.
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Let K be an add-associative right zeroed right complementable associative
left unital distributive non empty double loop structure, let V be an add-
associative right zeroed right complementable vector space-like non empty vector
space structure over K, and let f be a homogeneous wrt. second argument form
of V , V . One can check that diagker f is non empty.

Let K be an add-associative right zeroed right complementable associative
left unital distributive non empty double loop structure, let V be an add-
associative right zeroed right complementable vector space-like non empty vector
space structure over K, and let f be a homogeneous wrt. first argument form
of V , V . One can check that diagker f is non empty.

We now state three propositions:

(42) Let K be a zero structure, V be a non empty vector space structure over
K, and f be a form of V , V . Then leftker f ⊆ diagker f and rightker f ⊆
diagker f.

(43) Let K be an add-associative right zeroed right complementable right
distributive non empty double loop structure, V , W be non empty vector
space structures over K, and f be an additive wrt. first argument ho-
mogeneous wrt. first argument form of V , W . Then leftker f is linearly
closed.

(44) Let K be an add-associative right zeroed right complementable right
distributive non empty double loop structure, V , W be non empty vector
space structures over K, and f be an additive wrt. second argument ho-
mogeneous wrt. second argument form of V , W . Then rightker f is linearly
closed.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, let W be a non empty vector space structure over K, and
let f be an additive wrt. first argument homogeneous wrt. first argument form of
V , W . The functor LKer f yielding a strict non empty subspace of V is defined
by:

(Def. 19) The carrier of LKer f = leftker f.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
non empty vector space structure over K, let W be a vector space over K, and
let f be an additive wrt. second argument homogeneous wrt. second argument
form of V , W . The functor RKer f yielding a strict non empty subspace of W

is defined by:

(Def. 20) The carrier of RKer f = rightker f.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
vector space over K, let W be a non empty vector space structure over K, and
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let f be an additive wrt. first argument homogeneous wrt. first argument form
of V , W . The functor LQForm(f) yields an additive wrt. first argument homo-
geneous wrt. first argument form of V /LKer f , W and is defined by the condition
(Def. 21).

(Def. 21) Let A be a vector of V /LKer f , w be a vector of W , and v be a vector of
V . If A = v + LKer f, then (LQForm(f))(〈〈A, w〉〉) = f(〈〈v, w〉〉).

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
non empty vector space structure over K, let W be a vector space over K, and
let f be an additive wrt. second argument homogeneous wrt. second argument
form of V , W . The functor RQForm(f) yielding an additive wrt. second argu-
ment homogeneous wrt. second argument form of V , W /RKer f is defined by the
condition (Def. 22).

(Def. 22) Let A be a vector of W /RKer f , v be a vector of V , and w be a vector of
W . If A = w + RKer f, then (RQForm(f))(〈〈v, A〉〉) = f(〈〈v, w〉〉).

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V , W

be vector spaces over K, and let f be a bilinear form of V , W . Note that
LQForm(f) is additive wrt. second argument and homogeneous wrt. second ar-
gument and RQForm(f) is additive wrt. first argument and homogeneous wrt.
first argument.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V , W

be vector spaces over K, and let f be a bilinear form of V , W . The functor
QForm(f) yields a bilinear form of V /LKer f , W /RKer f and is defined by the
condition (Def. 23).

(Def. 23) Let A be a vector of V /LKer f , B be a vector of W /RKer f , v be a vector
of V , and w be a vector of W . If A = v + LKer f and B = w + RKer f,

then (QForm(f))(〈〈A, B〉〉) = f(〈〈v, w〉〉).
One can prove the following propositions:

(45) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a vector space over K, W be a non empty vector space structure over K,
and f be an additive wrt. first argument homogeneous wrt. first argument
form of V , W . Then rightker f = rightker(LQForm(f)).

(46) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V be
a non empty vector space structure over K, W be a vector space over
K, and f be an additive wrt. second argument homogeneous wrt. second
argument form of V , W . Then leftker f = leftker(RQForm(f)).
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(47) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V ,
W be vector spaces over K, and f be a bilinear form of V , W . Then
RKer f = RKer(LQForm(f)).

(48) Let K be an add-associative right zeroed right complementable Abelian
associative left unital distributive non empty double loop structure, V ,
W be vector spaces over K, and f be a bilinear form of V , W . Then
LKer f = LKer(RQForm(f)).

(49) Let K be an add-associative right zeroed right complementable Abe-
lian associative left unital distributive non empty double loop struc-
ture, V , W be vector spaces over K, and f be a bilinear form of
V , W . Then QForm(f) = RQForm(LQForm(f)) and QForm(f) =
LQForm(RQForm(f)).

(50) Let K be an add-associative right zeroed right complementable Abe-
lian associative left unital distributive non empty double loop struc-
ture, V , W be vector spaces over K, and f be a bilinear form of
V , W . Then leftker(QForm(f)) = leftker(RQForm(LQForm(f))) and
rightker(QForm(f)) = rightker(RQForm(LQForm(f))) and leftker(QForm
(f)) = leftker(LQForm(RQForm(f))) and rightker(QForm(f)) =
rightker(LQForm(RQForm(f))).

(51) Let K be an add-associative right zeroed right complementable distri-
butive non empty double loop structure, V , W be non empty vector space
structures over K, f be a functional in V , and g be a functional in W .
Then ker f ⊆ leftker(f ⊗ g).

(52) Let K be an add-associative right zeroed right complementable associa-
tive commutative left unital field-like distributive non empty double loop
structure, V , W be non empty vector space structures over K, f be a
functional in V , and g be a functional in W . If g 6= 0Functional W, then
leftker(f ⊗ g) = ker f.

(53) Let K be an add-associative right zeroed right complementable distri-
butive non empty double loop structure, V , W be non empty vector space
structures over K, f be a functional in V , and g be a functional in W .
Then ker g ⊆ rightker(f ⊗ g).

(54) Let K be an add-associative right zeroed right complementable associa-
tive commutative left unital field-like distributive non empty double loop
structure, V , W be non empty vector space structures over K, f be a
functional in V , and g be a functional in W . If f 6= 0Functional V, then
rightker(f ⊗ g) = ker g.

(55) Let K be an add-associative right zeroed right complementable com-
mutative Abelian associative left unital distributive field-like non empty
double loop structure, V be a vector space over K, W be a non empty
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vector space structure over K, f be a linear functional in V , and g be
a functional in W . If g 6= 0Functional W, then LKer(f ⊗ g) = Ker f and
LQForm(f ⊗ g) = (CQFunctional f)⊗ g.

(56) Let K be an add-associative right zeroed right complementable com-
mutative Abelian associative left unital distributive field-like non empty
double loop structure, V be a non empty vector space structure over K,
W be a vector space over K, f be a functional in V , and g be a linear
functional in W . If f 6= 0Functional V, then RKer(f ⊗ g) = Ker g and
RQForm(f ⊗ g) = f ⊗ (CQFunctional g).

(57) Let K be a field, V , W be non trivial vector spaces over K, f be a non
constant linear functional in V , and g be a non constant linear functional
in W . Then QForm(f ⊗ g) = (CQFunctional f)⊗ (CQFunctional g).

Let K be a zero structure, let V , W be non empty vector space structures
over K, and let f be a form of V , W . We say that f is degenerated on left if
and only if:

(Def. 24) leftker f 6= {0V }.
We say that f is degenerated on right if and only if:

(Def. 25) rightker f 6= {0W }.
Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a
vector space over K, let W be a right zeroed non empty vector space structure
over K, and let f be an additive wrt. first argument homogeneous wrt. first
argument form of V , W . Note that LQForm(f) is non degenerated on left.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V be a
right zeroed non empty vector space structure over K, let W be a vector space
over K, and let f be an additive wrt. second argument homogeneous wrt. second
argument form of V , W . Note that RQForm(f) is non degenerated on right.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V , W

be vector spaces over K, and let f be a bilinear form of V , W . Observe that
QForm(f) is non degenerated on left and non degenerated on right.

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure, let V , W be
vector spaces over K, and let f be a bilinear form of V , W . One can verify that
RQForm(LQForm(f)) is non degenerated on left and non degenerated on right
and LQForm(RQForm(f)) is non degenerated on left and non degenerated on
right.

Let K be a field, let V , W be non trivial vector spaces over K, and let f be
a non constant bilinear form of V , W . Note that QForm(f) is non constant.
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6. Bilinear Symmetric and Alternating Forms

Let K be a 1-sorted structure, let V be a vector space structure over K, and
let f be a form of V , V . We say that f is symmetric if and only if:

(Def. 26) For all vectors v, w of V holds f(〈〈v, w〉〉) = f(〈〈w, v〉〉).
Let K be a zero structure, let V be a vector space structure over K, and let

f be a form of V , V . We say that f is alternating if and only if:

(Def. 27) For every vector v of V holds f(〈〈v, v〉〉) = 0K .

Let K be a non empty zero structure and let V be a non empty vector space
structure over K. Observe that NulForm(V, V ) is symmetric and NulForm(V, V )
is alternating.

Let K be a non empty zero structure and let V be a non empty vector space
structure over K. Observe that there exists a form of V , V which is symmetric
and there exists a form of V , V which is alternating.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure and let V be a non empty vector space
structure over K. Note that there exists a form of V , V which is symmetric,
additive wrt. second argument, homogeneous wrt. second argument, additive
wrt. first argument, and homogeneous wrt. first argument and there exists a
form of V , V which is alternating, additive wrt. second argument, homogeneous
wrt. second argument, additive wrt. first argument, and homogeneous wrt. first
argument.

Let K be a field and let V be a non trivial vector space over K. Observe
that there exists a form of V , V which is symmetric, non trivial, non constant,
additive wrt. second argument, homogeneous wrt. second argument, additive
wrt. first argument, and homogeneous wrt. first argument.

Let K be an add-associative right zeroed right complementable non empty
loop structure and let V be a non empty vector space structure over K. Note
that there exists a form of V , V which is alternating, additive wrt. second
argument, and additive wrt. first argument.

Let K be a non empty loop structure, let V be a non empty vector space
structure over K, and let f , g be symmetric forms of V , V . One can check that
f + g is symmetric.

Let K be a non empty double loop structure, let V be a non empty vector
space structure over K, let f be a symmetric form of V , V , and let a be an
element of the carrier of K. One can check that a · f is symmetric.

Let K be a non empty loop structure, let V be a non empty vector space
structure over K, and let f be a symmetric form of V , V . Note that −f is
symmetric.

Let K be a non empty loop structure, let V be a non empty vector space
structure over K, and let f , g be symmetric forms of V , V . Observe that f − g
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is symmetric.
Let K be a right zeroed non empty loop structure, let V be a non empty

vector space structure over K, and let f , g be alternating forms of V , V . One
can check that f + g is alternating.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V be a non empty vector space
structure over K, let f be an alternating form of V , V , and let a be a scalar of
K. One can verify that a · f is alternating.

Let K be an add-associative right zeroed right complementable non empty
loop structure, let V be a non empty vector space structure over K, and let f

be an alternating form of V , V . Note that −f is alternating.
Let K be an add-associative right zeroed right complementable non empty

loop structure, let V be a non empty vector space structure over K, and let f ,
g be alternating forms of V , V . Observe that f − g is alternating.

One can prove the following two propositions:

(58) Let K be an add-associative right zeroed right complementable right
distributive non empty double loop structure, V be a non empty vector
space structure over K, and f be a symmetric bilinear form of V , V . Then
leftker f = rightker f.

(59) Let K be an add-associative right zeroed right complementable non
empty loop structure, V be a non empty vector space structure over
K, f be an alternating additive wrt. first argument additive wrt. se-
cond argument form of V , V , and v, w be vectors of V . Then f(〈〈v,

w〉〉) = −f(〈〈w, v〉〉).
Let K be a Fanoian field, let V be a non empty vector space structure over

K, and let f be an additive wrt. first argument additive wrt. second argument
form of V , V . Let us observe that f is alternating if and only if:

(Def. 28) For all vectors v, w of V holds f(〈〈v, w〉〉) = −f(〈〈w, v〉〉).
Next we state the proposition

(60) Let K be an add-associative right zeroed right complementable right
distributive non empty double loop structure, V be a non empty vector
space structure over K, and f be an alternating bilinear form of V , V .
Then leftker f = rightker f.
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Summary. In the article we present antilinear functionals, sesquilinear
and hermitan forms. We prove Schwarz and Minkowski inequalities, and Paral-
lelogram Law for non-negative hermitan form. The proof of Schwarz inequality
is based on [14]. The incorrect proof of this fact can be found in [11]. The con-
struction of scalar product in quotient vector space from non-negative hermitan
functions is the main result of the article.
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The notation and terminology used in this paper have been introduced in the
following articles: [16], [5], [20], [6], [15], [3], [1], [19], [10], [21], [4], [17], [2], [7],
[18], [12], [13], [9], and [8].

1. Auxiliary Facts about Complex Numbers

The following propositions are true:

(1) For every element a of C such that a = a holds =(a) = 0.

(2) For every element a of C such that a 6= 0C holds |<(a)
|a| + −=(a)

|a| i| = 1 and

<((<(a)
|a| + −=(a)

|a| i) · a) = |a| and =((<(a)
|a| + −=(a)

|a| i) · a) = 0.

(3) For every element a of C there exists an element b of C such that |b| = 1
and <(b · a) = |a| and =(b · a) = 0.

(4) For every element a of C holds a · a = |a|2 + 0i.

1This work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and
SPUB-M grant of KBN.
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(5) For every element a of the carrier of CF such that a = a holds =(a) = 0.

(6) iCF = (i)−1.

(7) iCF · iCF = 1CF .

(8) Let a be an element of the carrier of CF. Suppose a 6= 0CF . Then |<(a)
|a| +

−=(a)
|a| iCF | = 1 and <((<(a)

|a| + −=(a)
|a| iCF) · a) = |a| and =((<(a)

|a| + −=(a)
|a| iCF) ·

a) = 0.

(9) Let a be an element of the carrier of CF. Then there exists an element b

of the carrier of CF such that |b| = 1 and <(b · a) = |a| and =(b · a) = 0.

(10) For all elements a, b of the carrier of CF holds <(a − b) = <(a) − <(b)
and =(a− b) = =(a)−=(b).

(11) For all elements a, b of the carrier of CF such that =(a) = 0 holds
<(a · b) = <(a) · <(b) and =(a · b) = <(a) · =(b).

(12) For all elements a, b of the carrier of CF such that =(a) = 0 and =(b) = 0
holds =(a · b) = 0.

(13) For every element a of the carrier of CF holds <(a) = <(a).
(14) For every element a of the carrier of CF such that =(a) = 0 holds a = a.

(15) For all real numbers r, s holds (r + 0iCF) · (s + 0iCF) = r · s + 0iCF .

(16) For every element a of the carrier of CF holds a · a = |a|2 + 0iCF .

(17) For every element a of the carrier of CF such that 0 ¬ <(a) and =(a) = 0
holds |a| = <(a).

(18) For every element a of the carrier of CF holds <(a) + <(a) = 2 · <(a).

2. Antilinear Functionals in Complex Vector Spaces

Let V be a non empty vector space structure over CF and let f be a functional
in V . We say that f is complex-homogeneous if and only if:

(Def. 1) For every vector v of V and for every scalar a of V holds f(a·v) = a ·f(v).
Let V be a non empty vector space structure over CF. Observe that

0Functional V is complex-homogeneous.
Let V be an add-associative right zeroed right complementable vector space-

like non empty vector space structure over CF. One can verify that every func-
tional in V which is complex-homogeneous is also 0-preserving.

Let V be a non empty vector space structure over CF. One can check that
there exists a functional in V which is additive, complex-homogeneous, and
0-preserving.

Let V be a non empty vector space structure over CF. An antilinear func-
tional of V is an additive complex-homogeneous functional in V .

Let V be a non empty vector space structure over CF and let f , g be complex-
homogeneous functionals in V . Observe that f + g is complex-homogeneous.
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Let V be a non empty vector space structure over CF and let f be a complex-
homogeneous functional in V . One can verify that −f is complex-homogeneous.

Let V be a non empty vector space structure over CF, let a be a scalar of V ,
and let f be a complex-homogeneous functional in V . One can verify that a · f
is complex-homogeneous.

Let V be a non empty vector space structure over CF and let f , g be
complex-homogeneous functionals in V . One can check that f − g is complex-
homogeneous.

Let V be a non empty vector space structure over CF and let f be a functional
in V . The functor f yields a functional in V and is defined by:

(Def. 2) For every vector v of V holds f (v) = f(v) .

Let V be a non empty vector space structure over CF and let f be an additive
functional in V . Note that f is additive.

Let V be a non empty vector space structure over CF and let f be a homo-
geneous functional in V . Note that f is complex-homogeneous.

Let V be a non empty vector space structure over CF and let f be a complex-
homogeneous functional in V . Note that f is homogeneous.

Let V be a non trivial vector space over CF and let f be a non constant
functional in V . One can check that f is non constant.

Let V be a non trivial vector space over CF. One can check that there exists
a functional in V which is additive, complex-homogeneous, non constant, and
non trivial.

The following propositions are true:

(19) For every non empty vector space structure V over CF and for every
functional f in V holds f = f.

(20) For every non empty vector space structure V over CF holds
0Functional V = 0Functional V.

(21) For every non empty vector space structure V over CF and for all func-
tionals f , g in V holds f + g = f + g .

(22) For every non empty vector space structure V over CF and for every
functional f in V holds −f = −f .

(23) Let V be a non empty vector space structure over CF, f be a functional
in V , and a be a scalar of V . Then a · f = a · f .

(24) For every non empty vector space structure V over CF and for all func-
tionals f , g in V holds f − g = f − g .

(25) Let V be a non empty vector space structure over CF, f be a functional
in V , and v be a vector of V . Then f(v) = 0CF if and only if f (v) = 0CF .

(26) For every non empty vector space structure V over CF and for every
functional f in V holds ker f = ker f .
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(27) Let V be an add-associative right zeroed right complementable vector
space-like non empty vector space structure over CF and f be an antilinear
functional of V . Then ker f is linearly closed.

(28) Let V be a vector space over CF, W be a subspace of V , and f be
an antilinear functional of V . If the carrier of W ⊆ ker f , then f/W is
complex-homogeneous.

Let V be a vector space over CF and let f be an antilinear functional of
V . The functor QcFunctional f yields an antilinear functional of V /Ker f and is
defined as follows:

(Def. 3) QcFunctional f = f/Ker f .

We now state the proposition

(29) Let V be a vector space over CF, f be an antilinear functional of V , A

be a vector of V /Ker f , and v be a vector of V . If A = v + Ker f , then
(QcFunctional f)(A) = f(v).

Let V be a non trivial vector space over CF and let f be a non constant
antilinear functional of V . One can check that QcFunctional f is non constant.

Let V be a vector space over CF and let f be an antilinear functional of V .
Observe that QcFunctional f is non degenerated.

3. Sesquilinear Forms in Complex Vector Spaces

Let V , W be non empty vector space structures over CF and let f be a form
of V , W . We say that f is complex-homogeneous wrt. second argument if and
only if:

(Def. 4) For every vector v of V holds f(v, ·) is complex-homogeneous.

We now state the proposition

(30) Let V , W be non empty vector space structures over CF, v be a vector
of V , w be a vector of W , a be an element of the carrier of CF, and f be a
form of V , W . Suppose f is complex-homogeneous wrt. second argument.
Then f(〈〈v, a · w〉〉) = a · f(〈〈v, w〉〉).

Let V be a non empty vector space structure over CF and let f be a form
of V , V . We say that f is hermitan if and only if:

(Def. 5) For all vectors v, u of V holds f(〈〈v, u〉〉) = f(〈〈u, v〉〉) .
We say that f is diagonal real valued if and only if:

(Def. 6) For every vector v of V holds =(f(〈〈v, v〉〉)) = 0.

We say that f is diagonal plus-real valued if and only if:

(Def. 7) For every vector v of V holds 0 ¬ <(f(〈〈v, v〉〉)).
Let V , W be non empty vector space structures over CF. Observe that

NulForm(V,W ) is complex-homogeneous wrt. second argument.
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Let V be a non empty vector space structure over CF. Observe that
NulForm(V, V ) is hermitan and NulForm(V, V ) is diagonal plus-real valued.

Let V be a non empty vector space structure over CF. Observe that every
form of V , V which is hermitan is also diagonal real valued.

Let V be a non empty vector space structure over CF. One can check that
there exists a form of V , V which is diagonal plus-real valued, hermitan, diago-
nal real valued, additive wrt. first argument, homogeneous wrt. first argument,
additive wrt. second argument, and complex-homogeneous wrt. second argu-
ment.

Let V , W be non empty vector space structures over CF. One can check that
there exists a form of V , W which is additive wrt. first argument, homogeneous
wrt. first argument, additive wrt. second argument, and complex-homogeneous
wrt. second argument.

Let V , W be non empty vector space structures over CF. A sesquilinear form
of V , W is an additive wrt. first argument homogeneous wrt. first argument ad-
ditive wrt. second argument complex-homogeneous wrt. second argument form
of V , W .

Let V be a non empty vector space structure over CF. One can check that
every form of V , V which is hermitan and additive wrt. second argument is also
additive wrt. first argument.

Let V be a non empty vector space structure over CF. Observe that every
form of V , V which is hermitan and additive wrt. first argument is also additive
wrt. second argument.

Let V be a non empty vector space structure over CF. Observe that every
form of V , V which is hermitan and homogeneous wrt. first argument is also
complex-homogeneous wrt. second argument.

Let V be a non empty vector space structure over CF. Note that every form
of V , V which is hermitan and complex-homogeneous wrt. second argument is
also homogeneous wrt. first argument.

Let V be a non empty vector space structure over CF. A hermitan form of
V is a hermitan additive wrt. first argument homogeneous wrt. first argument
form of V , V .

Let V , W be non empty vector space structures over CF, let f be a functional
in V , and let g be a complex-homogeneous functional in W . Note that f ⊗ g is
complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF, let f be a complex-
homogeneous wrt. second argument form of V , W , and let v be a vector of V .
One can verify that f(v, ·) is complex-homogeneous.

Let V , W be non empty vector space structures over CF and let f , g be
complex-homogeneous wrt. second argument forms of V , W . One can verify
that f + g is complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF, let f be a complex-
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homogeneous wrt. second argument form of V , W , and let a be a scalar of V .
Observe that a · f is complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF and let f be a
complex-homogeneous wrt. second argument form of V , W . One can check that
−f is complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF and let f , g be
complex-homogeneous wrt. second argument forms of V , W . Observe that f−g

is complex-homogeneous wrt. second argument.
Let V , W be non trivial vector spaces over CF. Observe that there exists

a form of V , W which is additive wrt. first argument, homogeneous wrt. first
argument, additive wrt. second argument, complex-homogeneous wrt. second
argument, non constant, and non trivial.

Let V , W be non empty vector space structures over CF and let f be a form
of V , W . The functor f yielding a form of V , W is defined by:

(Def. 8) For every vector v of V and for every vector w of W holds f (〈〈v, w〉〉) =
f(〈〈v, w〉〉) .

Let V , W be non empty vector space structures over CF and let f be an
additive wrt. second argument form of V , W . Note that f is additive wrt. second
argument.

Let V , W be non empty vector space structures over CF and let f be an
additive wrt. first argument form of V , W . Note that f is additive wrt. first
argument.

Let V , W be non empty vector space structures over CF and let f be a
homogeneous wrt. second argument form of V , W . One can check that f is
complex-homogeneous wrt. second argument.

Let V , W be non empty vector space structures over CF and let f be a
complex-homogeneous wrt. second argument form of V , W . Note that f is
homogeneous wrt. second argument.

Let V , W be non trivial vector spaces over CF and let f be a non constant
form of V , W . One can verify that f is non constant.

The following proposition is true

(31) Let V be a non empty vector space structure over CF, f be a functional
in V , and v be a vector of V . Then f ⊗ f (〈〈v, v〉〉) = |f(v)|2 + 0iCF .

Let V be a non empty vector space structure over CF and let f be a functional
in V . One can verify that f ⊗ f is diagonal plus-real valued, hermitan, and
diagonal real valued.

Let V be a non trivial vector space over CF. Note that there exists a form of
V , V which is diagonal plus-real valued, hermitan, diagonal real valued, addi-
tive wrt. first argument, homogeneous wrt. first argument, additive wrt. second
argument, complex-homogeneous wrt. second argument, non constant, and non
trivial.
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We now state a number of propositions:

(32) For all non empty vector space structures V , W over CF and for every
form f of V , W holds f = f.

(33) For all non empty vector space structures V , W over CF holds
NulForm(V,W ) = NulForm(V,W ).

(34) For all non empty vector space structures V , W over CF and for all forms
f , g of V , W holds f + g = f + g .

(35) For all non empty vector space structures V , W over CF and for every
form f of V , W holds −f = −f .

(36) Let V , W be non empty vector space structures over CF, f be a form of
V , W , and a be an element of CF. Then a · f = a · f .

(37) For all non empty vector space structures V , W over CF and for all forms
f , g of V , W holds f − g = f − g .

(38) Let V , W be vector spaces over CF, v be a vector of V , w, t be vectors of
W , and f be an additive wrt. second argument complex-homogeneous wrt.
second argument form of V , W . Then f(〈〈v, w − t〉〉) = f(〈〈v, w〉〉) − f(〈〈v,

t〉〉).
(39) Let V , W be vector spaces over CF, v, u be vectors of V , w, t be vectors

of W , and f be a sesquilinear form of V , W . Then f(〈〈v−u, w−t〉〉) = f(〈〈v,

w〉〉)− f(〈〈v, t〉〉)− (f(〈〈u, w〉〉)− f(〈〈u, t〉〉)).
(40) Let V , W be add-associative right zeroed right complementable vector

space-like non empty vector space structures over CF, v, u be vectors of
V , w, t be vectors of W , a, b be elements of the carrier of CF, and f

be a sesquilinear form of V , W . Then f(〈〈v + a · u, w + b · t〉〉) = f(〈〈v,

w〉〉) + b · f(〈〈v, t〉〉) + (a · f(〈〈u, w〉〉) + a · (b · f(〈〈u, t〉〉))).
(41) Let V , W be vector spaces over CF, v, u be vectors of V , w, t be vectors

of W , a, b be elements of the carrier of CF, and f be a sesquilinear form
of V , W . Then f(〈〈v−a ·u, w− b · t〉〉) = f(〈〈v, w〉〉)− b ·f(〈〈v, t〉〉)− (a ·f(〈〈u,

w〉〉)− a · (b · f(〈〈u, t〉〉))).
(42) Let V be an add-associative right zeroed right complementable vector

space-like non empty vector space structure over CF, f be a complex-
homogeneous wrt. second argument form of V , V , and v be a vector of V .
Then f(〈〈v, 0V 〉〉) = 0CF .

(43) Let V be a vector space over CF, v, w be vectors of V , and f be a
hermitan form of V . Then f(〈〈v, w〉〉)+f(〈〈v, w〉〉)+f(〈〈v, w〉〉)+f(〈〈v, w〉〉) =
((f(〈〈v + w, v + w〉〉) − f(〈〈v − w, v − w〉〉)) + iCF · f(〈〈v + iCF · w, v + iCF ·
w〉〉))− iCF · f(〈〈v − iCF · w, v − iCF · w〉〉).

Let V be a non empty vector space structure over CF, let f be a form of
V , V , and let v be a vector of V . The functor ||v||2f yields a real number and is
defined as follows:
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(Def. 9) ||v||2f = <(f(〈〈v, v〉〉)).
The following propositions are true:

(44) Let V be an add-associative right zeroed right complementable vector
space-like non empty vector space structure over CF, f be a diagonal plus-
real valued diagonal real valued form of V , V , and v be a vector of V . Then
|f(〈〈v, v〉〉)| = <(f(〈〈v, v〉〉)) and ||v||2f = |f(〈〈v, v〉〉)|.

(45) Let V be a vector space over CF, v, w be vectors of V , f be a sesquilinear
form of V , V , r be a real number, and a be an element of the carrier of
CF. Suppose |a| = 1 and <(a · f(〈〈w, v〉〉)) = |f(〈〈w, v〉〉)| and =(a · f(〈〈w,

v〉〉)) = 0. Then f(〈〈v − (r + 0iCF) · a · w, v − (r + 0iCF) · a · w〉〉) = (f(〈〈v,

v〉〉)−(r+0iCF)·(a·f(〈〈w, v〉〉))−(r+0iCF)·(a ·f(〈〈v, w〉〉)))+(r2+0iCF)·f(〈〈w,

w〉〉).
(46) Let V be a vector space over CF, v, w be vectors of V , f be a diagonal

plus-real valued hermitan form of V , r be a real number, and a be an
element of the carrier of CF. Suppose |a| = 1 and <(a · f(〈〈w, v〉〉)) =
|f(〈〈w, v〉〉)| and =(a · f(〈〈w, v〉〉)) = 0. Then <(f(〈〈v − (r + 0iCF) · a · w,

v − (r + 0iCF) · a · w〉〉)) = (||v||2f − 2 · |f(〈〈w, v〉〉)| · r) + ||w||2f · r2 and
0 ¬ (||v||2f − 2 · |f(〈〈w, v〉〉)| · r) + ||w||2f · r2.

(47) Let V be a vector space over CF, v, w be vectors of V , and f be a
diagonal plus-real valued hermitan form of V . If ||w||2f = 0, then |f(〈〈w,

v〉〉)| = 0.

(48) Let V be a vector space over CF, v, w be vectors of V , and f be a diagonal
plus-real valued hermitan form of V . Then |f(〈〈v, w〉〉)|2 ¬ ||v||2f · ||w||2f .

(49) Let V be a vector space over CF, f be a diagonal plus-real valued her-
mitan form of V , and v, w be vectors of V . Then |f(〈〈v, w〉〉)|2 ¬ |f(〈〈v,

v〉〉)| · |f(〈〈w, w〉〉)|.
(50) Let V be a vector space over CF, f be a diagonal plus-real valued

hermitan form of V , and v, w be vectors of V . Then ||v + w||2f ¬
(
√
||v||2f +

√
||w||2f )2.

(51) Let V be a vector space over CF, f be a diagonal plus-real valued her-
mitan form of V , and v, w be vectors of V . Then |f(〈〈v + w, v + w〉〉)| ¬
(
√
|f(〈〈v, v〉〉)|+

√
|f(〈〈w, w〉〉)|)2.

(52) Let V be a vector space over CF, f be a hermitan form of V , and v, w be
elements of the carrier of V . Then ||v+w||2f +||v−w||2f = 2·||v||2f +2·||w||2f .

(53) Let V be a vector space over CF, f be a diagonal plus-real valued hermi-
tan form of V , and v, w be elements of the carrier of V . Then |f(〈〈v + w,

v + w〉〉)|+ |f(〈〈v − w, v − w〉〉)| = 2 · |f(〈〈v, v〉〉)|+ 2 · |f(〈〈w, w〉〉)|.
Let V be a non empty vector space structure over CF and let f be a form

of V , V . The functor || · ||f yields a RFunctional of V and is defined as follows:
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(Def. 10) For every element v of the carrier of V holds (|| · ||f )(v) =
√
||v||2f .

Let V be a vector space over CF and let f be a diagonal plus-real valued
hermitan form of V . Then || · ||f is a Semi-Norm of V .

4. Kernel of Hermitan Forms and Hermitan Forms in Quotient
Vector Spaces

Let V be an add-associative right zeroed right complementable vector
space-like non empty vector space structure over CF and let f be a complex-
homogeneous wrt. second argument form of V , V . Note that diagker f is non
empty.

We now state several propositions:

(54) Let V be a vector space over CF and f be a diagonal plus-real valued
hermitan form of V . Then diagker f is linearly closed.

(55) For every vector space V over CF and for every diagonal plus-real valued
hermitan form f of V holds diagker f = leftker f.

(56) For every vector space V over CF and for every diagonal plus-real valued
hermitan form f of V holds diagker f = rightker f.

(57) For every non empty vector space structure V over CF and for every
form f of V , V holds diagker f = diagker f .

(58) For all non empty vector space structures V , W over CF and for every
form f of V , W holds leftker f = leftker f and rightker f = rightker f .

(59) For every vector space V over CF and for every diagonal plus-real valued
hermitan form f of V holds LKer f = RKer f .

(60) Let V be a vector space over CF, f be a diagonal plus-real valued diagonal
real valued form of V , V , and v be a vector of V . If <(f(〈〈v, v〉〉)) = 0, then
f(〈〈v, v〉〉) = 0CF .

(61) Let V be a vector space over CF, f be a diagonal plus-real valued her-
mitan form of V , and v be a vector of V . Suppose <(f(〈〈v, v〉〉)) = 0 and f

is non degenerated on left and non degenerated on right. Then v = 0V .

Let V be a non empty vector space structure over CF, let W be a vector space
over CF, and let f be an additive wrt. second argument complex-homogeneous
wrt. second argument form of V , W . The functor RQForm∗(f) yielding an ad-
ditive wrt. second argument complex-homogeneous wrt. second argument form
of V , W /RKer f is defined as follows:

(Def. 11) RQForm∗(f) = RQForm(f ) .
We now state the proposition

(62) Let V be a non empty vector space structure over CF, W be a vec-
tor space over CF, f be an additive wrt. second argument complex-
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homogeneous wrt. second argument form of V , W , v be a vector of V ,
and w be a vector of W . Then (RQForm∗(f))(〈〈v, w + RKer f 〉〉) = f(〈〈v,

w〉〉).
Let V , W be vector spaces over CF and let f be a sesquilinear form of

V , W . Note that LQForm(f) is additive wrt. second argument and complex-
homogeneous wrt. second argument and RQForm∗(f) is additive wrt. first ar-
gument and homogeneous wrt. first argument.

Let V , W be vector spaces over CF and let f be a sesquilinear form of V ,
W . The functor QForm∗ f yields a sesquilinear form of V /LKer f , W /RKer f and
is defined by the condition (Def. 12).

(Def. 12) Let A be a vector of V /LKer f , B be a vector of W /RKer f , v be a vector

of V , and w be a vector of W . If A = v + LKer f and B = w + RKer f ,

then (QForm∗ f)(〈〈A, B〉〉) = f(〈〈v, w〉〉).
Let V , W be non trivial vector spaces over CF and let f be a non constant

sesquilinear form of V , W . Observe that QForm∗ f is non constant.
Let V be a right zeroed non empty vector space structure over CF, let W

be a vector space over CF, and let f be an additive wrt. second argument
complex-homogeneous wrt. second argument form of V , W . One can verify that
RQForm∗(f) is non degenerated on right.

One can prove the following propositions:

(63) Let V be a non empty vector space structure over CF, W be a vec-
tor space over CF, and f be an additive wrt. second argument complex-
homogeneous wrt. second argument form of V , W . Then leftker f =
leftker(RQForm∗(f)).

(64) For all vector spaces V , W over CF and for every sesquilinear form f of
V , W holds RKer f = RKer LQForm(f) .

(65) For all vector spaces V , W over CF and for every sesquilinear form f of
V , W holds LKer f = LKer(RQForm∗(f)).

(66) For all vector spaces V , W over CF and for every sesquilinear form
f of V , W holds QForm∗ f = RQForm∗(LQForm(f)) and QForm∗ f =
LQForm(RQForm∗(f)).

(67) Let V , W be vector spaces over CF and f be a sesquilinear form of
V , W . Then leftker(QForm∗ f) = leftker(RQForm∗(LQForm(f))) and
rightker(QForm∗ f) = rightker(RQForm∗(LQForm(f))) and
leftker(QForm∗ f) = leftker(LQForm(RQForm∗(f))) and
rightker(QForm∗ f) = rightker(LQForm(RQForm∗(f))).

Let V , W be vector spaces over CF and let f be a sesquilinear form of
V , W . Note that RQForm∗(LQForm(f)) is non degenerated on left and non
degenerated on right and LQForm(RQForm∗(f)) is non degenerated on left and
non degenerated on right.
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Let V , W be vector spaces over CF and let f be a sesquilinear form of V , W .
Note that QForm∗ f is non degenerated on left and non degenerated on right.

5. Scalar Product in Quotient Vector Space Generated by
Non-Negative Hermitan Form

Let V be a non empty vector space structure over CF and let f be a form
of V , V . We say that f is positive diagonal valued if and only if:

(Def. 13) For every vector v of V such that v 6= 0V holds 0 < <(f(〈〈v, v〉〉)).
Let V be a right zeroed non empty vector space structure over CF. Note

that every form of V , V which is positive diagonal valued and additive wrt. first
argument is also diagonal plus-real valued.

Let V be a right zeroed non empty vector space structure over CF. One can
verify that every form of V , V which is positive diagonal valued and additive
wrt. second argument is also diagonal plus-real valued.

Let V be a vector space over CF and let f be a diagonal plus-real valued her-
mitan form of V . The functor 〈·|·〉f yields a diagonal plus-real valued hermitan
form of V /LKer f and is defined as follows:

(Def. 14) 〈·|·〉f = QForm∗ f.

Next we state three propositions:

(68) Let V be a vector space over CF, f be a diagonal plus-real valued her-
mitan form of V , A, B be vectors of V /LKer f , and v, w be vectors of V . If
A = v + LKer f and B = w + LKer f, then (〈·|·〉f )(〈〈A, B〉〉) = f(〈〈v, w〉〉).

(69) For every vector space V over CF and for every diagonal plus-real valued
hermitan form f of V holds leftker(〈·|·〉f ) = leftker(QForm∗ f).

(70) For every vector space V over CF and for every diagonal plus-real valued
hermitan form f of V holds rightker(〈·|·〉f ) = rightker(QForm∗ f).

Let V be a vector space over CF and let f be a diagonal plus-real valued her-
mitan form of V . Observe that 〈·|·〉f is non degenerated on left, non degenerated
on right, and positive diagonal valued.

Let V be a non trivial vector space over CF and let f be a diagonal plus-real
valued non constant hermitan form of V . Note that 〈·|·〉f is non constant.
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The Class of Series-Parallel Graphs. Part I

Krzysztof Retel
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Summary. The paper introduces some preliminary notions concerning
the graph theory according to [20]. We define Necklace n as a graph with vertex
{1, 2, 3, . . . , n} and edge set {(1, 2), (2, 3), . . . , (n− 1, n)}. The goal of the article
is to prove that Necklace n and Complement of Necklace n are isomorphic for
n = 0, 1, 4.

MML Identifier: NECKLACE.

The terminology and notation used in this paper are introduced in the following
papers: [23], [22], [25], [12], [1], [15], [5], [11], [2], [24], [26], [28], [18], [6], [7], [21],
[13], [19], [27], [8], [9], [10], [17], [3], [4], [14], and [16].

1. Preliminaries

We adopt the following rules: n is a natural number and x1, x2, x3, x4, x5,
y1, y2, y3 are sets.

Let x1, x2, x3, x4, x5 be sets. We say that x1, x2, x3, x4, x5 are mutually
different if and only if:

(Def. 1) x1 6= x2 and x1 6= x3 and x1 6= x4 and x1 6= x5 and x2 6= x3 and x2 6= x4

and x2 6= x5 and x3 6= x4 and x3 6= x5 and x4 6= x5.

Next we state several propositions:

(1) If x1, x2, x3, x4, x5 are mutually different, then card{x1, x2, x3, x4, x5} =
5.

(2) 4 = {0, 1, 2, 3}.
(3) [: {x1, x2, x3}, {y1, y2, y3} :] = {〈〈x1, y1〉〉, 〈〈x1, y2〉〉, 〈〈x1, y3〉〉, 〈〈x2, y1〉〉, 〈〈x2,

y2〉〉, 〈〈x2, y3〉〉, 〈〈x3, y1〉〉, 〈〈x3, y2〉〉, 〈〈x3, y3〉〉}.
(4) For every set x and for every natural number n such that x ∈ n holds x

is a natural number.
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(5) For every non empty natural number x holds 0 ∈ x.

Let us observe that every set which is natural is also cardinal.
Let X be a set. One can check that δX is one-to-one.
Next we state the proposition

(6) For every set X holds 4X = X .

Let R be a trivial binary relation. Observe that dom R is trivial.
Let us observe that every function which is trivial is also one-to-one.
We now state several propositions:

(7) For all functions f , g such that dom f misses dom g holds rng(f+·g) =
rng f ∪ rng g.

(8) For all one-to-one functions f , g such that dom f misses dom g and rng f

misses rng g holds (f+·g)−1 = f−1+·g−1.

(9) For all sets A, a, b holds (A 7−→ a)+·(A 7−→ b) = A 7−→ b.

(10) For all sets a, b holds (a7−→. b)−1 = b7−→. a.

(11) For all sets a, b, c, d such that a = b iff c = d holds [a 7−→ c, b 7−→ d]−1 =
[c 7−→ a, d 7−→ b].

The scheme Convers deals with a non empty set A, a binary relation B, two
unary functors F and G yielding sets, and a unary predicate P, and states that:

B` = {〈〈F(x), G(x)〉〉; x ranges over elements of A : P[x]}
provided the parameters meet the following condition:
• B = {〈〈G(x), F(x)〉〉;x ranges over elements of A : P[x]}.

Next we state the proposition

(12) For all natural numbers i, j, n such that i < j and j ∈ n holds i ∈ n.

2. Auxiliary Concepts

Let R, S be non empty relational structures. We say that S embeds R if and
only if the condition (Def. 2) is satisfied.

(Def. 2) There exists a map f from R into S such that
(i) f is one-to-one, and
(ii) for all elements x, y of the carrier of R holds 〈〈x, y〉〉 ∈ the internal

relation of R iff 〈〈f(x), f(y)〉〉 ∈ the internal relation of S.

Let us note that the predicate S embeds R is reflexive.
One can prove the following proposition

(13) For all non empty relational structures R, S, T such that R embeds S

and S embeds T holds R embeds T .

Let R, S be non empty relational structures. We say that R is equimorphic
to S if and only if:

(Def. 3) R embeds S and S embeds R.
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Let us notice that the predicate R is equimorphic to S is reflexive and symmetric.
The following proposition is true

(14) Let R, S, T be non empty relational structures. Suppose R is equimor-
phic to S and S is equimorphic to T . Then R is equimorphic to T .

Let R be a non empty relational structure. We introduce R is parallel as an
antonym of R is connected.

Let R be a relational structure. We say that R is symmetric if and only if:

(Def. 4) The internal relation of R is symmetric in the carrier of R.

Let R be a relational structure. We say that R is asymmetric if and only if:

(Def. 5) The internal relation of R is asymmetric.

We now state the proposition

(15) Let R be a relational structure. Suppose R is asymmetric. Then the
internal relation of R misses (the internal relation of R)`.

Let R be a relational structure. We say that R is irreflexive if and only if:

(Def. 6) For every set x such that x ∈ the carrier of R holds 〈〈x, x〉〉 /∈ the internal
relation of R.

Let n be a natural number. The functor n -SuccRelStr yielding a strict rela-
tional structure is defined as follows:

(Def. 7) The carrier of n -SuccRelStr = n and the internal relation of
n -SuccRelStr = {〈〈i, i + 1〉〉; i ranges over natural numbers: i + 1 < n}.

The following propositions are true:

(16) For every natural number n holds n -SuccRelStr is asymmetric.

(17) If n > 0, then the internal relation of n -SuccRelStr = n− 1.

Let R be a relational structure. The functor SymRelStr R yielding a strict
relational structure is defined by the conditions (Def. 8).

(Def. 8)(i) The carrier of SymRelStr R = the carrier of R, and
(ii) the internal relation of SymRelStr R = (the internal relation of R)∪(the

internal relation of R)`.

Let R be a relational structure. Note that SymRelStr R is symmetric.
Let us mention that there exists a relational structure which is non empty

and symmetric.
Let R be a symmetric relational structure. One can verify that the internal

relation of R is symmetric.
Let R be a relational structure. The functor ComplRelStr R yielding a strict

relational structure is defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of ComplRelStr R = the carrier of R, and
(ii) the internal relation of ComplRelStr R = (the internal relation of R)c \
4the carrier of R.
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Let R be a non empty relational structure. Observe that ComplRelStr R is
non empty.

Next we state the proposition

(18) Let S, R be relational structures. Suppose S and R are isomorphic. Then
the internal relation of S = the internal relation of R.

3. Necklace n

Let n be a natural number. The functor Necklace n yielding a strict relational
structure is defined as follows:

(Def. 10) Necklace n = SymRelStr n -SuccRelStr .

Let n be a natural number. One can check that Necklace n is symmetric.
We now state two propositions:

(19) The internal relation of Necklace n = {〈〈i, i + 1〉〉; i ranges over natural
numbers: i+1 < n}∪{〈〈i+1, i〉〉; i ranges over natural numbers: i+1 < n}.

(20) Let x be a set. Then x ∈ the internal relation of Necklace n if and only
if there exists a natural number i such that i + 1 < n but x = 〈〈i, i + 1〉〉 or
x = 〈〈i + 1, i〉〉.

Let n be a natural number. Observe that Necklace n is irreflexive.
Next we state the proposition

(21) For every natural number n holds the carrier of Necklace n = n.

Let n be a non empty natural number. Observe that Necklace n is non empty.
Let n be a natural number. Observe that the carrier of Necklace n is finite.
One can prove the following propositions:

(22) For all natural numbers n, i such that i + 1 < n holds 〈〈i, i + 1〉〉 ∈ the
internal relation of Necklace n.

(23) For every natural number n and for every natural number i such that
i ∈ the carrier of Necklace n holds i < n.

(24) For every non empty natural number n holds Necklace n is connected.

(25) For all natural numbers i, j such that 〈〈i, j〉〉 ∈ the internal relation of
Necklace n holds i = j + 1 or j = i + 1.

(26) Let i, j be natural numbers. Suppose i = j + 1 or j = i + 1 but i ∈ the
carrier of Necklace n but j ∈ the carrier of Necklace n. Then 〈〈i, j〉〉 ∈ the
internal relation of Necklace n.

(27) If n > 0, then {〈〈i + 1, i〉〉; i ranges over natural numbers: i + 1 < n} =
n− 1.

(28) If n > 0, then the internal relation of Necklace n = 2 · (n− 1).
(29) Necklace 1 and ComplRelStr Necklace 1 are isomorphic.

(30) Necklace 4 and ComplRelStr Necklace 4 are isomorphic.
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(31) If Necklace n and ComplRelStr Necklace n are isomorphic, then n = 0 or
n = 1 or n = 4.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
[7] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[10] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[13] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[14] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[16] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,

1996.
[17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[18] Shunichi Kobayashi. Predicate calculus for boolean valued functions. Part XII. Formalized

Mathematics, 9(1):221–235, 2001.
[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[20] Stephan Thomasse. On better-quasi-ordering countable series-parallel orders. Transac-

tions of American Mathematical Society, 352(6):2491–2505, 2000.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[28] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1(1):85–89, 1990.

Received November 18, 2002





FORMALIZED MATHEMATICS

Volume 11, Number 1, 2003
University of Białystok

Term Orders

Christoph Schwarzweller
University of Tuebingen

Summary. We continue the formalization of [5] towards Gröbner Bases.
Here we deal with term orders, that is with orders on bags. We introduce the
notions of head term, head coefficient, and head monomial necessary to define
reduction for polynomials.

MML Identifier: TERMORD.

The papers [16], [21], [22], [1], [10], [23], [7], [8], [3], [2], [12], [20], [17], [4], [6],
[9], [11], [24], [14], [13], [18], [19], and [15] provide the terminology and notation
for this paper.

1. Preliminaries

One can check that there exists a loop structure which is non trivial.
Let us mention that there exists a non trivial loop structure which is add-

associative, right complementable, and right zeroed.
Let X be a set and let b be a bag of X. We say that b is non-zero if and only

if:

(Def. 1) b 6= EmptyBag X.

Next we state two propositions:

(1) For every set X and for all bags b1, b2 of X holds b1 | b2 iff there exists
a bag b of X such that b2 = b1 + b.

(2) Let n be an ordinal number, L be an add-associative right complementa-
ble right zeroed unital distributive non empty double loop structure, and
p be a series of n, L. Then 0 (n,L) ∗ p = 0 (n,L).

Let n be an ordinal number, let L be an add-associative right complemen-
table right zeroed unital distributive non empty double loop structure, and let
m1, m2 be monomials of n, L. Note that m1 ∗m2 is monomial-like.
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Let n be an ordinal number, let L be an add-associative right complemen-
table right zeroed distributive non empty double loop structure, and let c1, c2

be constant polynomials of n, L. One can verify that c1 ∗ c2 is constant.
One can prove the following two propositions:

(3) Let n be an ordinal number, L be an add-associative right complementa-
ble right zeroed unital distributive integral domain-like non trivial double
loop structure, b, b′ be bags of n, and a, a′ be non-zero elements of L.
Then Monom(a · a′, b + b′) = Monom(a, b) ∗Monom(a′, b′).

(4) Let n be an ordinal number, L be an add-associative right complemen-
table right zeroed unital distributive integral domain-like non trivial do-
uble loop structure, and a, a′ be elements of L. Then a · a′ (n,L) =
(a (n,L)) ∗ (a′ (n,L)).

2. Term Orders

Let n be an ordinal number. One can verify that there exists a term order
of n which is admissible and connected.

Let n be a natural number. Observe that every admissible term order of n

is well founded.
Let n be an ordinal number, let T be a term order of n, and let b, b′ be bags

of n. The predicate b ¬T b′ is defined by:

(Def. 2) 〈〈b, b′〉〉 ∈ T.

Let n be an ordinal number, let T be a term order of n, and let b, b′ be bags
of n. The predicate b <T b′ is defined by:

(Def. 3) b ¬T b′ and b 6= b′.
Let n be an ordinal number, let T be a term order of n, and let b1, b2 be

bags of n. The functor minT (b1, b2) yields a bag of n and is defined as follows:

(Def. 4) minT (b1, b2) =
{

b1, if b1 ¬T b2,

b2, otherwise.
The functor maxT (b1, b2) yields a bag of n and is defined as follows:

(Def. 5) maxT (b1, b2) =
{

b1, if b2 ¬T b1,

b2, otherwise.
We now state a number of propositions:

(5) Let n be an ordinal number, T be a connected term order of n, and b1,
b2 be bags of n. Then b1 ¬T b2 if and only if b2 6<T b1.

(6) For every ordinal number n and for every term order T of n and for
every bag b of n holds b ¬T b.

(7) Let n be an ordinal number, T be a term order of n, and b1, b2 be bags
of n. If b1 ¬T b2 and b2 ¬T b1, then b1 = b2.
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(8) Let n be an ordinal number, T be a term order of n, and b1, b2, b3 be
bags of n. If b1 ¬T b2 and b2 ¬T b3, then b1 ¬T b3.

(9) For every ordinal number n and for every admissible term order T of n

and for every bag b of n holds EmptyBag n ¬T b.

(10) Let n be an ordinal number, T be an admissible term order of n, and b1,
b2 be bags of n. If b1 | b2, then b1 ¬T b2.

(11) For every ordinal number n and for every term order T of n and for all
bags b1, b2 of n holds minT (b1, b2) = b1 or minT (b1, b2) = b2.

(12) For every ordinal number n and for every term order T of n and for all
bags b1, b2 of n holds maxT (b1, b2) = b1 or maxT (b1, b2) = b2.

(13) Let n be an ordinal number, T be a connected term order of n, and b1,
b2 be bags of n. Then minT (b1, b2) ¬T b1 and minT (b1, b2) ¬T b2.

(14) Let n be an ordinal number, T be a connected term order of n, and b1,
b2 be bags of n. Then b1 ¬T maxT (b1, b2) and b2 ¬T maxT (b1, b2).

(15) Let n be an ordinal number, T be a connected term order of n, and
b1, b2 be bags of n. Then minT (b1, b2) = minT (b2, b1) and maxT (b1, b2) =
maxT (b2, b1).

(16) Let n be an ordinal number, T be a connected term order of n, and b1,
b2 be bags of n. Then minT (b1, b2) = b1 if and only if maxT (b1, b2) = b2.

3. Head Terms, Head Monomials, and Head Coefficients

Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor
HT(p, T ) yields an element of Bags n and is defined as follows:

(Def. 6) Support p = ∅ and HT(p, T ) = EmptyBag n or HT(p, T ) ∈ Support p

and for every bag b of n such that b ∈ Support p holds b ¬T HT(p, T ).
Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor
HC(p, T ) yielding an element of L is defined as follows:

(Def. 7) HC(p, T ) = p(HT(p, T )).
Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor
HM(p, T ) yielding a monomial of n, L is defined by:

(Def. 8) HM(p, T ) = Monom(HC(p, T ), HT(p, T )).
Let n be an ordinal number, let T be a connected term order of n, let L be a

non trivial zero structure, and let p be a non-zero polynomial of n, L. Observe
that HM(p, T ) is non-zero and HC(p, T ) is non-zero.

The following propositions are true:
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(17) Let n be an ordinal number, T be a connected term order of n, L be a non
empty zero structure, and p be a polynomial of n, L. Then HC(p, T ) = 0L

if and only if p = 0 (n,L).
(18) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then
(HM(p, T ))(HT(p, T )) = p(HT(p, T )).

(19) Let n be an ordinal number, T be a connected term order of n, L be a
non trivial zero structure, p be a polynomial of n, L, and b be a bag of n.
If b 6= HT(p, T ), then (HM(p, T ))(b) = 0L.

(20) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then
Support HM(p, T ) ⊆ Support p.

(21) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then
Support HM(p, T ) = ∅ or Support HM(p, T ) = {HT(p, T )}.

(22) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then
term HM(p, T ) = HT(p, T ) and coefficient HM(p, T ) = HC(p, T ).

(23) Let n be an ordinal number, T be a connected term order of n, L be a non
empty zero structure, and m be a monomial of n, L. Then HT(m,T ) =
term m and HC(m,T ) = coefficient m and HM(m,T ) = m.

(24) Let n be an ordinal number, T be a connected term order of n, L be a
non empty zero structure, and c be a constant polynomial of n, L. Then
HT(c, T ) = EmptyBag n and HC(c, T ) = c(EmptyBag n).

(25) Let n be an ordinal number, T be a connected term order of n, L be a non
empty zero structure, and a be an element of L. Then HT(a (n,L), T ) =
EmptyBag n and HC(a (n,L), T ) = a.

(26) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then
HT(HM(p, T ), T ) = HT(p, T ).

(27) Let n be an ordinal number, T be a connected term order of n, L

be a non trivial zero structure, and p be a polynomial of n, L. Then
HC(HM(p, T ), T ) = HC(p, T ).

(28) Let n be an ordinal number, T be a connected term order of n, L

be a non empty zero structure, and p be a polynomial of n, L. Then
HM(HM(p, T ), T ) = HM(p, T ).

(29) Let n be an ordinal number, T be an admissible connected term order of
n, L be an add-associative right complementable left zeroed right zeroed
unital distributive integral domain-like non trivial double loop structure,
and p, q be non-zero polynomials of n, L. Then HT(p, T ) + HT(q, T ) ∈
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Support(p ∗ q).

(30) Let n be an ordinal number, L be an add-associative right complementa-
ble right zeroed unital distributive non empty double loop structure, and
p, q be polynomials of n, L. Then Support(p ∗ q) ⊆ {s + t; s ranges over
elements of Bags n, t ranges over elements of Bags n : s ∈ Support p ∧ t ∈
Support q}.

(31) Let n be an ordinal number, T be an admissible connected term order
of n, L be an add-associative right complementable right zeroed unital
distributive integral domain-like non trivial double loop structure, and p, q

be non-zero polynomials of n, L. Then HT(p∗q, T ) = HT(p, T )+HT(q, T ).

(32) Let n be an ordinal number, T be an admissible connected term order
of n, L be an add-associative right complementable right zeroed unital
distributive integral domain-like non trivial double loop structure, and p,
q be non-zero polynomials of n, L. Then HC(p∗q, T ) = HC(p, T )·HC(q, T ).

(33) Let n be an ordinal number, T be an admissible connected term order
of n, L be an add-associative right complementable right zeroed unital
distributive integral domain-like non trivial double loop structure, and p, q

be non-zero polynomials of n, L. Then HM(p∗q, T ) = HM(p, T )∗HM(q, T ).

(34) Let n be an ordinal number, T be an admissible connected term order of
n, L be a right zeroed non empty loop structure, and p, q be polynomials
of n, L. Then HT(p + q, T ) ¬T maxT (HT(p, T ), HT(q, T )).

4. Reductum of a Polynomial

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed non empty loop structure,
and let p be a polynomial of n, L. The functor Red(p, T ) yielding a polynomial
of n, L is defined by:

(Def. 9) Red(p, T ) = p−HM(p, T ).

The following propositions are true:

(35) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed non trivial loop struc-
ture, and p be a polynomial of n, L. Then Support Red(p, T ) ⊆ Support p.

(36) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed non trivial loop
structure, and p be a polynomial of n, L. Then Support Red(p, T ) =
Support p \ {HT(p, T )}.

(37) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed non trivial loop
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structure, and p be a polynomial of n, L. Then Support(HM(p, T ) +
Red(p, T )) = Support p.

(38) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed non trivial loop struc-
ture, and p be a polynomial of n, L. Then HM(p, T ) + Red(p, T ) = p.

(39) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed non trivial loop struc-
ture, and p be a polynomial of n, L. Then (Red(p, T ))(HT(p, T )) = 0L.

(40) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed non trivial loop struc-
ture, p be a polynomial of n, L, and b be a bag of n. If b ∈ Support p and
b 6= HT(p, T ), then (Red(p, T ))(b) = p(b).
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In this article we introduce reduction of polynomials and prove its termination,
its adequateness for ideal congruence as well as the translation lemma used later
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1. Preliminaries

Let n be an ordinal number and let R be a non trivial zero structure. One
can verify that there exists a monomial of n, R which is non-zero.

Let us observe that there exists a field which is non trivial.
Let us note that every left zeroed add-right-cancelable right distributive left

unital commutative associative non empty double loop structure which is field-
like is also integral domain-like.

Let n be an ordinal number, let L be an add-associative right complemen-
table left zeroed right zeroed unital distributive integral domain-like non trivial
double loop structure, and let p, q be non-zero finite-Support series of n, L.
Note that p ∗ q is non-zero.
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2. More on Polynomials and Monomials

The following propositions are true:

(1) Let X be a set, L be an Abelian add-associative right zeroed right com-
plementable non empty loop structure, and p, q be series of X, L. Then
−(p + q) = −p +−q.

(2) For every set X and for every left zeroed non empty loop structure L

and for every series p of X, L holds 0 (X, L) + p = p.

(3) Let X be a set, L be an add-associative right zeroed right comple-
mentable non empty loop structure, and p be a series of X, L. Then
−p + p = 0 (X, L) and p +−p = 0 (X,L).

(4) Let n be a set, L be an add-associative right zeroed right complementable
non empty loop structure, and p be a series of n, L. Then p−0 (n,L) = p.

(5) Let n be an ordinal number, L be an add-associative right complemen-
table right zeroed add-left-cancelable left distributive non empty double
loop structure, and p be a series of n, L. Then 0 (n,L) ∗ p = 0 (n, L).

(6) Let n be an ordinal number, L be an Abelian right zeroed add-associative
right complementable unital distributive associative commutative non
trivial double loop structure, and p, q be polynomials of n, L. Then
−p ∗ q = (−p) ∗ q and −p ∗ q = p ∗ −q.

(7) Let n be an ordinal number, L be an add-associative right complemen-
table right zeroed distributive non empty double loop structure, p be a
polynomial of n, L, m be a monomial of n, L, and b be a bag of n. Then
(m ∗ p)(term m + b) = m(term m) · p(b).

(8) Let X be a set, L be a right zeroed add-left-cancelable left distributive
non empty double loop structure, and p be a series of X, L. Then 0L · p =
0 (X, L).

(9) Let X be a set, L be an add-associative right zeroed right complemen-
table distributive non empty double loop structure, p be a series of X, L,
and a be an element of L. Then −a · p = (−a) · p and −a · p = a · −p.

(10) Let X be a set, L be a left distributive non empty double loop structure,
p be a series of X, L, and a, a′ be elements of L. Then a·p+a′·p = (a+a′)·p.

(11) Let X be a set, L be an associative non empty multiplicative loop with
zero structure, p be a series of X, L, and a, a′ be elements of L. Then
(a · a′) · p = a · (a′ · p).

(12) Let n be an ordinal number, L be an add-associative right zeroed right
complementable unital associative commutative distributive non empty
double loop structure, p, p′ be series of n, L, and a be an element of L.
Then a · (p ∗ p′) = p ∗ (a · p′).
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3. Multiplication of Polynomials with Bags

Let n be an ordinal number, let b be a bag of n, let L be a non empty zero
structure, and let p be a series of n, L. The functor b ∗ p yielding a series of n,
L is defined as follows:

(Def. 1) For every bag b′ of n such that b | b′ holds (b ∗ p)(b′) = p(b′ −′ b) and for
every bag b′ of n such that b - b′ holds (b ∗ p)(b′) = 0L.

Let n be an ordinal number, let b be a bag of n, let L be a non empty
zero structure, and let p be a finite-Support series of n, L. Note that b ∗ p is
finite-Support.

We now state a number of propositions:

(13) Let n be an ordinal number, b, b′ be bags of n, L be a non empty zero
structure, and p be a series of n, L. Then (b ∗ p)(b′ + b) = p(b′).

(14) Let n be an ordinal number, L be a non empty zero structure, p be a
polynomial of n, L, and b be a bag of n. Then Support(b ∗ p) ⊆ {b + b′; b′

ranges over elements of Bags n : b′ ∈ Support p}.
(15) Let n be an ordinal number, T be a connected admissible term order of

n, L be a non trivial zero structure, p be a non-zero polynomial of n, L,
and b be a bag of n. Then HT(b ∗ p, T ) = b + HT(p, T ).

(16) Let n be an ordinal number, T be a connected admissible term order of
n, L be a non empty zero structure, p be a polynomial of n, L, and b, b′

be bags of n. If b′ ∈ Support(b ∗ p), then b′ ¬T b + HT(p, T ).

(17) Let n be an ordinal number, T be a connected term order of n, L be a non
empty zero structure, and p be a series of n, L. Then EmptyBag n∗p = p.

(18) Let n be an ordinal number, T be a connected term order of n, L be a
non empty zero structure, p be a series of n, L, and b1, b2 be bags of n.
Then (b1 + b2) ∗ p = b1 ∗ (b2 ∗ p).

(19) Let n be an ordinal number, L be an add-associative right zeroed right
complementable distributive non trivial double loop structure, p be a poly-
nomial of n, L, and a be an element of L. Then Support(a ·p) ⊆ Support p.

(20) Let n be an ordinal number, L be an integral domain-like non trivial
double loop structure, p be a polynomial of n, L, and a be a non-zero
element of L. Then Support p ⊆ Support(a · p).

(21) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right zeroed right complementable distributive integral
domain-like non trivial double loop structure, p be a polynomial of n, L,
and a be a non-zero element of L. Then HT(a · p, T ) = HT(p, T ).

(22) Let n be an ordinal number, L be an add-associative right comple-
mentable right zeroed distributive non trivial double loop structure, p
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be a series of n, L, b be a bag of n, and a be an element of L. Then
a · (b ∗ p) = Monom(a, b) ∗ p.

(23) Let n be an ordinal number, T be a connected admissible term order
of n, L be an add-associative right complementable right zeroed unital
distributive integral domain-like non trivial double loop structure, p be
a non-zero polynomial of n, L, q be a polynomial of n, L, and m be a
non-zero monomial of n, L. If HT(p, T ) ∈ Support q, then HT(m ∗ p, T ) ∈
Support(m ∗ q).

4. Orders on Polynomials

Let n be an ordinal number and let T be a connected term order of n.
Observe that 〈Bags n, T 〉 is connected.

Let n be a natural number and let T be an admissible term order of n. Note
that 〈Bags n, T 〉 is well founded.

Let n be an ordinal number, let T be a connected term order of n, let L be
a non empty zero structure, and let p, q be polynomials of n, L. The predicate
p ¬T q is defined as follows:

(Def. 2) 〈〈Support p, Support q〉〉 ∈ FinOrd〈Bags n, T 〉.
Let n be an ordinal number, let T be a connected term order of n, let L be

a non empty zero structure, and let p, q be polynomials of n, L. The predicate
p <T q is defined as follows:

(Def. 3) p ¬T q and Support p 6= Support q.

Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor
Support(p, T ) yielding an element of Fin (the carrier of 〈Bags n, T 〉) is defined
by:

(Def. 4) Support(p, T ) = Support p.

Next we state a number of propositions:

(24) Let n be an ordinal number, T be a connected term order of n, L be a
non trivial zero structure, and p be a non-zero polynomial of n, L. Then
PosetMax Support(p, T ) = HT(p, T ).

(25) Let n be an ordinal number, T be a connected term order of n, L be a
non empty loop structure, and p be a polynomial of n, L. Then p ¬T p.

(26) Let n be an ordinal number, T be a connected term order of n, L be a
non empty loop structure, and p, q be polynomials of n, L. Then p ¬T q

and q ¬T p if and only if Support p = Support q.

(27) Let n be an ordinal number, T be a connected term order of n, L be a
non empty loop structure, and p, q, r be polynomials of n, L. If p ¬T q

and q ¬T r, then p ¬T r.
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(28) Let n be an ordinal number, T be a connected term order of n, L be a
non empty loop structure, and p, q be polynomials of n, L. Then p ¬T q

or q ¬T p.

(29) Let n be an ordinal number, T be a connected term order of n, L be a
non empty loop structure, and p, q be polynomials of n, L. Then p ¬T q

if and only if q 6<T p.

(30) Let n be an ordinal number, T be a connected term order of n, L be a non
empty zero structure, and p be a polynomial of n, L. Then 0 (n,L) ¬T p.

(31) Let n be a natural number, T be an admissible connected term order
of n, L be an add-associative right complementable right zeroed unital
distributive non trivial double loop structure, and P be a non empty subset
of Polynom-Ring(n,L). Then there exists a polynomial p of n, L such that
p ∈ P and for every polynomial q of n, L such that q ∈ P holds p ¬T q.

(32) Let n be an ordinal number, T be a connected admissible term order of
n, L be an add-associative right complementable right zeroed non trivial
loop structure, and p, q be polynomials of n, L. Then p <T q if and only
if one of the following conditions is satisfied:

(i) p = 0 (n,L) and q 6= 0 (n,L), or
(ii) HT(p, T ) <T HT(q, T ), or
(iii) HT(p, T ) = HT(q, T ) and Red(p, T ) <T Red(q, T ).

(33) Let n be an ordinal number, T be a connected admissible term order of
n, L be an add-associative right complementable right zeroed non trivial
loop structure, and p be a non-zero polynomial of n, L. Then Red(p, T ) <T

HM(p, T ).
(34) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial loop struc-
ture, and p be a polynomial of n, L. Then HM(p, T ) ¬T p.

(35) Let n be an ordinal number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed non trivial loop
structure, and p be a non-zero polynomial of n, L. Then Red(p, T ) <T p.

5. Polynomial Reduction

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, let f , p, g be
polynomials of n, L, and let b be a bag of n. We say that f reduces to g, p, b,
T if and only if:

(Def. 5) f 6= 0 (n, L) and p 6= 0 (n,L) and b ∈ Support f and there exists a bag
s of n such that s + HT(p, T ) = b and g = f − f(b)

HC(p,T ) · (s ∗ p).
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Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let f , p,
g be polynomials of n, L. We say that f reduces to g, p, T if and only if:

(Def. 6) There exists a bag b of n such that f reduces to g, p, b, T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, let f , g be
polynomials of n, L, and let P be a subset of Polynom-Ring(n,L). We say that
f reduces to g, P , T if and only if:

(Def. 7) There exists a polynomial p of n, L such that p ∈ P and f reduces to g,
p, T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let f , p

be polynomials of n, L. We say that f is reducible wrt p, T if and only if:

(Def. 8) There exists a polynomial g of n, L such that f reduces to g, p, T .

We introduce f is irreducible wrt p, T and f is in normal form wrt p, T as
antonyms of f is reducible wrt p, T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, let f be a
polynomial of n, L, and let P be a subset of Polynom-Ring(n,L). We say that
f is reducible wrt P , T if and only if:

(Def. 9) There exists a polynomial g of n, L such that f reduces to g, P , T .

We introduce f is irreducible wrt P , T and f is in normal form wrt P , T as
antonyms of f is reducible wrt P , T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let f , p,
g be polynomials of n, L. We say that f top reduces to g, p, T if and only if:

(Def. 10) f reduces to g, p, HT(f, T ), T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let f , p

be polynomials of n, L. We say that f is top reducible wrt p, T if and only if:

(Def. 11) There exists a polynomial g of n, L such that f top reduces to g, p, T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, let f be a
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polynomial of n, L, and let P be a subset of Polynom-Ring(n,L). We say that
f is top reducible wrt P , T if and only if:

(Def. 12) There exists a polynomial p of n, L such that p ∈ P and f is top reducible
wrt p, T .

Next we state several propositions:

(36) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
f be a polynomial of n, L, and p be a non-zero polynomial of n, L. Then
f is reducible wrt p, T if and only if there exists a bag b of n such that
b ∈ Support f and HT(p, T ) | b.

(37) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
and p be a polynomial of n, L. Then 0 (n,L) is irreducible wrt p, T .

(38) Let n be an ordinal number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, f , p be polynomials of n, L, and m be a non-
zero monomial of n, L. If f reduces to f−m∗p, p, T , then HT(m∗p, T ) ∈
Support f.

(39) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed commutative associa-
tive well unital distributive field-like non degenerated non empty double
loop structure, f , p, g be polynomials of n, L, and b be a bag of n. If f

reduces to g, p, b, T , then b /∈ Support g.

(40) Let n be an ordinal number, T be a connected admissible term order
of n, L be an add-associative right complementable right zeroed commu-
tative associative well unital distributive field-like non trivial double loop
structure, f , p, g be polynomials of n, L, and b, b′ be bags of n. Suppose
b <T b′. If f reduces to g, p, b, T , then b′ ∈ Support g iff b′ ∈ Support f.

(41) Let n be an ordinal number, T be a connected admissible term order
of n, L be an add-associative right complementable right zeroed commu-
tative associative well unital distributive field-like non trivial double loop
structure, f , p, g be polynomials of n, L, and b, b′ be bags of n. If b <T b′,
then if f reduces to g, p, b, T , then f(b′) = g(b′).

(42) Let n be an ordinal number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive field-like non degenerated non empty
double loop structure, and f , p, g be polynomials of n, L. Suppose f
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reduces to g, p, T . Let b be a bag of n. If b ∈ Support g, then b ¬T

HT(f, T ).
(43) Let n be an ordinal number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, and f , p, g be polynomials of n, L. If f

reduces to g, p, T , then g <T f.

6. Polynomial Reduction Relation

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let P be
a subset of Polynom-Ring(n,L). The functor PolyRedRel(P, T ) yields a rela-
tion between (the carrier of Polynom-Ring(n,L)) \ {0 (n,L)} and the carrier of
Polynom-Ring(n,L) and is defined by:

(Def. 13) For all polynomials p, q of n, L holds 〈〈p, q〉〉 ∈ PolyRedRel(P, T ) iff p

reduces to q, P , T .

Next we state the proposition

(44) Let n be an ordinal number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, f , g be polynomials of n, L, and P be
a subset of Polynom-Ring(n,L). If PolyRedRel(P, T ) reduces f to g, then
g ¬T f but g = 0 (n, L) or HT(g, T ) ¬T HT(f, T ).

Let n be a natural number, let T be a connected admissible term order
of n, let L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated non
empty double loop structure, and let P be a subset of Polynom-Ring(n,L). One
can verify that PolyRedRel(P, T ) is strongly-normalizing.

One can prove the following propositions:

(45) Let n be a natural number, T be an admissible connected term order of
n, L be an add-associative right complementable left zeroed right zeroed
commutative associative well unital distributive Abelian field-like non tri-
vial double loop structure, P be a subset of Polynom-Ring(n,L), and f ,
h be polynomials of n, L. If f ∈ P, then PolyRedRel(P, T ) reduces h ∗ f

to 0 (n,L).
(46) Let n be an ordinal number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
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non empty double loop structure, P be a subset of Polynom-Ring(n,L),
f , g be polynomials of n, L, and m be a non-zero monomial of n, L. If f

reduces to g, P , T , then m ∗ f reduces to m ∗ g, P , T .

(47) Let n be an ordinal number, T be a connected admissible term order of n,
L be an Abelian add-associative right complementable right zeroed com-
mutative associative well unital distributive field-like non degenerated non
empty double loop structure, P be a subset of Polynom-Ring(n,L), f , g

be polynomials of n, L, and m be a monomial of n, L. If PolyRedRel(P, T )
reduces f to g, then PolyRedRel(P, T ) reduces m ∗ f to m ∗ g.

(48) Let n be an ordinal number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, P be a subset of Polynom-Ring(n,L), f

be a polynomial of n, L, and m be a monomial of n, L. If PolyRedRel(P, T )
reduces f to 0 (n, L), then PolyRedRel(P, T ) reduces m ∗ f to 0 (n, L).

(49) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive Abelian field-like non trivial double loop
structure, P be a subset of Polynom-Ring(n,L), and f , g, h, h1 be poly-
nomials of n, L. Suppose f − g = h and PolyRedRel(P, T ) reduces h to
h1. Then there exist polynomials f1, g1 of n, L such that f1− g1 = h1 and
PolyRedRel(P, T ) reduces f to f1 and PolyRedRel(P, T ) reduces g to g1.

(50) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive Abelian field-like non trivial double loop
structure, P be a subset of Polynom-Ring(n,L), and f , g be polynomials
of n, L. Suppose PolyRedRel(P, T ) reduces f − g to 0 (n, L). Then f and
g are convergent w.r.t. PolyRedRel(P, T ).

(51) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive Abelian field-like non trivial double loop
structure, P be a subset of Polynom-Ring(n,L), and f , g be polynomials
of n, L. Suppose PolyRedRel(P, T ) reduces f − g to 0 (n, L). Then f and
g are convertible w.r.t. PolyRedRel(P, T ).

Let R be a non empty loop structure, let I be a subset of R, and let a, b be
elements of R. The predicate a ≡ b(mod I) is defined as follows:

(Def. 14) a− b ∈ I.

One can prove the following propositions:

(52) Let R be an add-associative left zeroed right zeroed right complementa-
ble right distributive non empty double loop structure, I be a right ideal
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non empty subset of R, and a be an element of R. Then a ≡ a(mod I).
(53) Let R be an add-associative right zeroed right complementable right

unital right distributive non empty double loop structure, I be a right
ideal non empty subset of R, and a, b be elements of R. If a ≡ b(mod I),
then b ≡ a(mod I).

(54) Let R be an add-associative right zeroed right complementable non
empty loop structure, I be an add closed non empty subset of R, and a, b,
c be elements of R. If a ≡ b(mod I) and b ≡ c(mod I), then a ≡ c(mod I).

(55) Let R be an Abelian add-associative right zeroed right complementable
unital distributive associative non trivial double loop structure, I be an
add closed non empty subset of R, and a, b, c, d be elements of R. If
a ≡ b(mod I) and c ≡ d(mod I), then a + c ≡ b + d(mod I).

(56) Let R be an add-associative right zeroed right complementable commu-
tative distributive non empty double loop structure, I be an add closed
right ideal non empty subset of R, and a, b, c, d be elements of R. If
a ≡ b(mod I) and c ≡ d(mod I), then a · c ≡ b · d(mod I).

(57) Let n be an ordinal number, T be a connected term order of n, L be
an Abelian add-associative right complementable right zeroed commuta-
tive associative well unital distributive field-like non trivial double loop
structure, P be a subset of Polynom-Ring(n, L), and f , g be elements of
Polynom-Ring(n, L). If f and g are convertible w.r.t. PolyRedRel(P, T ),
then f ≡ g(mod P–ideal).

(58) Let n be a natural number, T be an admissible connected term or-
der of n, L be an Abelian add-associative right complementable right
zeroed commutative associative well unital distributive field-like non de-
generated non empty double loop structure, P be a non empty subset
of Polynom-Ring(n,L), and f , g be elements of Polynom-Ring(n,L). If
f ≡ g(mod P–ideal), then f and g are convertible w.r.t. PolyRedRel(P, T ).

(59) Let n be an ordinal number, T be a connected term order of n, L be an
Abelian add-associative right complementable right zeroed commutative
associative well unital distributive field-like non trivial double loop struc-
ture, P be a subset of Polynom-Ring(n, L), and f , g be polynomials of n,
L. If PolyRedRel(P, T ) reduces f to g, then f − g ∈ P–ideal.

(60) Let n be an ordinal number, T be a connected term order of n, L be an
Abelian add-associative right complementable right zeroed commutative
associative well unital distributive field-like non trivial double loop struc-
ture, P be a subset of Polynom-Ring(n,L), and f be a polynomial of n,
L. If PolyRedRel(P, T ) reduces f to 0 (n,L), then f ∈ P–ideal.



polynomial reduction 123

References

[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized
Mathematics, 9(3):565–582, 2001.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[5] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
[6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[8] Thomas Becker and Volker Weispfenning. Gröbner Bases: A Computational Approach to
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Summary. Sequential and concurrent compositions of processes in Petri
nets are introduced. A process is formalized as a set of (possible), so called,
firing sequences. In the definition of the sequential composition the standard
concatenation is used

R1 before R2 = {p1
_ p2 : p1 ∈ R1 ∧ p2 ∈ R2}

The definition of the concurrent composition is more complicated

R1 concur R2 = {q1 ∪ q2 : q1 misses q2 ∧ Seq q1 ∈ R1 ∧ Seq q2 ∈ R2}

For example,

{〈t0〉} concur{〈t1, t2〉} = {〈t0, t1, t2〉, 〈t1, t0, t2〉, 〈t1, t2, t0〉}

The basic properties of the compositions are shown.
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1. Preliminaries

We adopt the following rules: i is a natural number and x, x1, x2, y1, y2 are
sets.

Next we state three propositions:

(1) If i > 0, then {〈〈i, x〉〉} is a finite subsequence.

(2) For every finite subsequence q holds q = ∅ iff Seq q = ∅.
(3) For every finite subsequence q such that q = {〈〈i, x〉〉} holds Seq q = 〈x〉.
Let us observe that every finite subsequence is finite.
We now state several propositions:

(4) For every finite subsequence q such that Seq q = 〈x〉 there exists i such
that q = {〈〈i, x〉〉}.

(5) If {〈〈x1, y1〉〉, 〈〈x2, y2〉〉} is a finite sequence, then x1 = 1 and x2 = 1 and
y1 = y2 or x1 = 1 and x2 = 2 or x1 = 2 and x2 = 1.

(6) 〈x1, x2〉 = {〈〈1, x1〉〉, 〈〈2, x2〉〉}.
(7) For every finite subsequence p holds p = len Seq p.

(8) For all binary relations P , R such that dom P misses dom R holds P

misses R.

(9) For all sets X, Y and for all binary relations P , R such that X misses
Y holds P ¹X misses R¹Y.

(10) For all functions f , g, h such that f ⊆ h and g ⊆ h and f misses g holds
dom f misses dom g.

(11) For every set Y and for every binary relation R holds Y ¹R ⊆ R¹R−1(Y ).
(12) For every set Y and for every function f holds Y ¹f = f¹f−1(Y ).

2. Markings on Petri Nets

Let P be a set. A function is called a marking of P if:

(Def. 1) dom it = P and rng it ⊆ N.

We adopt the following convention: P , p, x denote sets, m1, m2, m3, m4, m

denote markings of P , and i, j, j1, k denote natural numbers.
Let P be a set, let m be a marking of P , and let p be a set. Then m(p) is a

natural number. We introduce the m multitude of p as a synonym of m(p).
The scheme MarkingLambda deals with a set A and a unary functor F

yielding a natural number, and states that:
There exists a marking m of A such that for every p such that
p ∈ A holds the m multitude of p = F(p)

for all values of the parameters.
Let us consider P , m1, m2. Let us observe that m1 = m2 if and only if:
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(Def. 2) For every p such that p ∈ P holds the m1 multitude of p = the m2

multitude of p.

Let us consider P . The functor {}P yielding a marking of P is defined by:

(Def. 3) {}P = P 7−→ 0.

Let P be a set and let m1, m2 be markings of P . The predicate m1 ⊆ m2 is
defined by:

(Def. 4) For every set p such that p ∈ P holds the m1 multitude of p ¬ the m2

multitude of p.

Let us note that the predicate m1 ⊆ m2 is reflexive.
We now state two propositions:

(13) {}P ⊆ m.

(14) If m1 ⊆ m2 and m2 ⊆ m3, then m1 ⊆ m3.

Let P be a set and let m1, m2 be markings of P . The functor m1 +m2 yields
a marking of P and is defined as follows:

(Def. 5) For every set p such that p ∈ P holds the m1 +m2 multitude of p = (the
m1 multitude of p) + (the m2 multitude of p).

Let us notice that the functor m1 + m2 is commutative.
The following proposition is true

(15) m + {}P = m.

Let P be a set and let m1, m2 be markings of P . Let us assume that m2 ⊆ m1.

The functor m1 −m2 yielding a marking of P is defined by:

(Def. 6) For every set p such that p ∈ P holds the m1−m2 multitude of p = (the
m1 multitude of p)− (the m2 multitude of p).

One can prove the following propositions:

(16) m1 ⊆ m1 + m2.

(17) m− {}P = m.

(18) If m1 ⊆ m2 and m2 ⊆ m3, then m3 −m2 ⊆ m3 −m1.

(19) (m1 + m2)−m2 = m1.

(20) If m ⊆ m1 and m1 ⊆ m2, then m1 −m ⊆ m2 −m.

(21) If m1 ⊆ m2, then (m2 + m3)−m1 = (m2 −m1) + m3.

(22) If m1 ⊆ m2 and m2 ⊆ m1, then m1 = m2.

(23) (m1 + m2) + m3 = m1 + (m2 + m3).
(24) If m1 ⊆ m2 and m3 ⊆ m4, then m1 + m3 ⊆ m2 + m4.

(25) If m1 ⊆ m2, then m2 −m1 ⊆ m2.

(26) If m1 ⊆ m2 and m3 ⊆ m4 and m4 ⊆ m1, then m1 −m4 ⊆ m2 −m3.

(27) If m1 ⊆ m2, then m2 = (m2 −m1) + m1.

(28) (m1 + m2)−m1 = m2.

(29) If m2 + m3 ⊆ m1, then m1 −m2 −m3 = m1 − (m2 + m3).



128 grzegorz bancerek et al.

(30) If m3 ⊆ m2 and m2 ⊆ m1, then m1 − (m2 −m3) = (m1 −m2) + m3.

(31) m ∈ NP .

(32) If x ∈ NP , then x is a marking of P .

3. Transitions and Firing

Let us consider P . Transition of P is defined by:

(Def. 7) There exist m1, m2 such that it = 〈〈m1, m2〉〉.
In the sequel t, t1, t2 denote transitions of P .
Let us consider P , t. Then t1 is a marking of P . We introduce Pre t as a

synonym of t1. t2 is a marking of P . We introduce Post t as a synonym of t2.
Let us consider P , m, t. The functor fire(t,m) yielding a marking of P is

defined by:

(Def. 8) fire(t, m) =
{

(m− Pre t) + Post t, if Pre t ⊆ m,

m, otherwise.
The following proposition is true

(33) If Pre t1 +Pre t2 ⊆ m, then fire(t2, fire(t1, m)) = (m−Pre t1−Pre t2)+
Post t1 + Post t2.

Let us consider P , t. The functor fire t yielding a function is defined by:

(Def. 9) dom fire t = NP and for every marking m of P holds (fire t)(m) =
fire(t,m).

Next we state two propositions:

(34) rng fire t ⊆ NP .

(35) fire(t2, fire(t1,m)) = (fire t2 · fire t1)(m).
Let us consider P . A non empty set is called a Petri net over P if:

(Def. 10) For every set x such that x ∈ it holds x is a transition of P .

In the sequel N denotes a Petri net over P .
Let us consider P , N . We see that the element of N is a transition of P .
In the sequel e, e1, e2 denote elements of N .

4. Firing Sequences of Transitions

Let us consider P , N . A firing-sequence of N is an element of N∗.
In the sequel C, C1, C2 are firing-sequences of N .
Let us consider P , N , C. The functor fire C yielding a function is defined

by the condition (Def. 11).

(Def. 11) There exists a function yielding finite sequence F such that fire C =
composeNP F and len F = len C and for every natural number i such that
i ∈ dom C holds F (i) = fire (Ci qua element of N).
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The following propositions are true:

(36) fire (εN ) = idNP .

(37) fire 〈e〉 = fire e.

(38) fire e · idNP = fire e.

(39) fire 〈e1, e2〉 = fire e2 · fire e1.

(40) dom fire C = NP and rng fire C ⊆ NP .

(41) fire (C1
a C2) = fire C2 · fire C1.

(42) fire (C a 〈e〉) = fire e · fire C.

Let us consider P , N , C, m. The functor fire(C, m) yielding a marking of P

is defined as follows:

(Def. 12) fire(C,m) = (fire C)(m).

5. Sequential Composition

Let us consider P , N . A process in N is a subset of N∗.
In the sequel R, R1, R2, R3, P1, P2 denote processes in N .
One can verify that every function which is finite sequence-like is also finite

subsequence-like.
Let us consider P , N , R1, R2. The functor R1 before R2 yields a process in

N and is defined by:

(Def. 13) R1 before R2 = {C1
a C2 : C1 ∈ R1 ∧ C2 ∈ R2}.

Let us consider P , N and let R1, R2 be non empty processes in N . One can
verify that R1 before R2 is non empty.

One can prove the following propositions:

(43) (R1 ∪R2) before R = (R1 before R) ∪ (R2 before R).
(44) R before(R1 ∪R2) = (R before R1) ∪ (R before R2).
(45) {C1}before{C2} = {C1

a C2}.
(46) {C1, C2}before{C} = {C1

a C,C2
a C}.

(47) {C}before{C1, C2} = {C a C1, C
a C2}.

6. Concurrent Composition

Let us consider P , N , R1, R2. The functor R1 concur R2 yielding a process
in N is defined as follows:

(Def. 14) R1 concur R2 = {C :
∨

q1,q2 : finite subsequence (C = q1 ∪ q2 ∧ q1 misses
q2 ∧ Seq q1 ∈ R1 ∧ Seq q2 ∈ R2)}.

Let us observe that the functor R1 concur R2 is commutative.
Next we state four propositions:
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(48) (R1 ∪R2) concur R = (R1 concur R) ∪ (R2 concur R).
(49) {〈e1〉} concur{〈e2〉} = {〈e1, e2〉, 〈e2, e1〉}.
(50) {〈e1〉, 〈e2〉} concur{〈e〉} = {〈e1, e〉, 〈e2, e〉, 〈e, e1〉, 〈e, e2〉}.
(51) (R1 before R2) before R3 = R1 before(R2 before R3).

Let p be a finite subsequence and let i be a natural number. The functor
Shifti p yielding a finite subsequence is defined as follows:

(Def. 15) dom Shifti p = {i+k; k ranges over natural numbers: k ∈ dom p} and for
every natural number j such that j ∈ dom p holds (Shifti p)(i + j) = p(j).

In the sequel q, q1, q2 denote finite subsequences.
One can prove the following propositions:

(52) Shift0 q = q.

(53) Shifti+j q = Shifti Shiftj q.

(54) For every finite sequence p such that p 6= ∅ holds dom Shifti p = {j1 :
i + 1 ¬ j1 ∧ j1 ¬ i + len p}.

(55) For every finite subsequence q holds q = ∅ iff Shifti q = ∅.
(56) Let q be a finite subsequence. Then there exists a finite subsequence s1

such that dom s1 = dom q and rng s1 = dom Shifti q and for every k such
that k ∈ dom q holds s1(k) = i + k and s1 is one-to-one.

(57) For every finite subsequence q holds q = Shifti q .

(58) For every finite sequence p holds dom p = dom Seq Shifti p.

(59) For every finite sequence p such that k ∈ dom p holds
(Sgm dom Shifti p)(k) = i + k.

(60) For every finite sequence p such that k ∈ dom p holds (Seq Shifti p)(k) =
p(k).

(61) For every finite sequence p holds Seq Shifti p = p.

In the sequel p1, p2 are finite sequences.
One can prove the following propositions:

(62) dom(p1 ∪ Shiftlen p1 p2) = Seg(len p1 + len p2).
(63) For every finite sequence p1 and for every finite subsequence p2 such that

len p1 ¬ i holds dom p1 misses dom Shifti p2.

(64) For all finite sequences p1, p2 holds p1
a p2 = p1 ∪ Shiftlen p1 p2.

(65) For every finite sequence p1 and for every finite subsequence p2 such that
i  len p1 holds p1 misses Shifti p2.

(66) (R1 concur R2) concur R3 = R1 concur(R2 concur R3).
(67) R1 before R2 ⊆ R1 concur R2.

(68) If R1 ⊆ P1 and R2 ⊆ P2, then R1 before R2 ⊆ P1 before P2.

(69) If R1 ⊆ P1 and R2 ⊆ P2, then R1 concur R2 ⊆ P1 concur P2.

(70) For all finite subsequences p, q such that q ⊆ p holds Shifti q ⊆ Shifti p.
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(71) For all finite sequences p1, p2 holds Shiftlen p1 p2 ⊆ p1
a p2.

(72) If dom q1 misses dom q2, then dom Shifti q1 misses dom Shifti q2.

(73) For all finite subsequences q, q1, q2 such that q = q1 ∪ q2 and q1 misses
q2 holds Shifti q1 ∪ Shifti q2 = Shifti q.

(74) For every finite subsequence q holds dom Seq q = dom Seq Shifti q.

(75) For every finite subsequence q such that k ∈ dom Seq q there exists j

such that j = (Sgm dom q)(k) and (Sgm dom Shifti q)(k) = i + j.

(76) For every finite subsequence q such that k ∈ dom Seq q holds
(Seq Shifti q)(k) = (Seq q)(k).

(77) For every finite subsequence q holds Seq q = Seq Shifti q.

(78) For every finite subsequence q such that dom q ⊆ Seg k holds
dom Shifti q ⊆ Seg(i + k).

(79) Let p be a finite sequence and q1, q2 be finite subsequences. If q1 ⊆ p,

then there exists a finite subsequence s1 such that s1 = q1 ∪ Shiftlen p q2.

(80) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose
q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that
s1 = q1 ∪ Shiftlen p1 q2 and dom Seq s1 = Seg(len Seq q1 + len Seq q2).

(81) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose
q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that
s1 = q1 ∪ Shiftlen p1 q2 and dom Seq s1 = Seg(len Seq q1 + len Seq q2) and
Seq s1 = Seq q1 ∪ Shiftlen Seq q1 Seq q2.

(82) Let p1, p2 be finite sequences and q1, q2 be finite subsequences. Suppose
q1 ⊆ p1 and q2 ⊆ p2. Then there exists a finite subsequence s1 such that
s1 = q1 ∪ Shiftlen p1 q2 and (Seq q1) a (Seq q2) = Seq s1.

(83) (R1 concur R2) before(P1 concur P2) ⊆ (R1 before P1) concur(R2 before P2).
Let us consider P , N and let R1, R2 be non empty processes in N . Note

that R1 concur R2 is non empty.

7. Neutral Process

Let us consider P and let N be a Petri net over P . The neutral process in
N yields a non empty process in N and is defined as follows:

(Def. 16) The neutral process in N = {εN}.
Let us consider P , let N be a Petri net over P , and let t be an element of

N . The elementary process with t yielding a non empty process in N is defined
as follows:

(Def. 17) The elementary process with t = {〈t〉}.
One can prove the following propositions:

(84) (The neutral process in N) before R = R.
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(85) R before the neutral process in N = R.

(86) (The neutral process in N) concur R = R.
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