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The terminology and notation used in this paper are introduced in the following

papers: [7], [16], [21], [24], [4], [25], [6], [15], [9], [19], [8], [14], [5], [3], [1], [20],

[17], [2], [12], [18], [10], [13], [23], [22], and [11].

1. Preliminaries

Let R be a non empty poset. One can verify that there exists an order sorted

set of R which is binary relation yielding.

Let R be a non empty poset, let A, B be many sorted sets indexed by the

carrier of R, and let I1 be a many sorted relation between A and B. We say

that I1 is os-compatible if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let s1, s2 be elements of the carrier of R. Suppose s1 ¬ s2. Let x, y be

sets. If x ∈ A(s1) and y ∈ B(s1), then 〈〈x, y〉〉 ∈ I1(s1) iff 〈〈x, y〉〉 ∈ I1(s2).

Let R be a non empty poset and let A, B be many sorted sets indexed by

the carrier of R. A many sorted relation between A and B is said to be an order

sorted relation of A, B if:

(Def. 2) It is os-compatible.

The following proposition is true

(1) Let R be a non empty poset, A, B be many sorted sets indexed by the

carrier of R, and O1 be a many sorted relation between A and B. If O1 is

os-compatible, then O1 is an order sorted set of R.
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Let R be a non empty poset and let A be a many sorted set indexed by the

carrier of R. An order sorted relation of A is an order sorted relation of A, A.

Let S be an order sorted signature and let U1 be an order sorted algebra of

S. A many sorted relation indexed by U1 is said to be an order sorted relation

of U1 if:

(Def. 3) It is os-compatible.

Let S be an order sorted signature and let U1 be an order sorted algebra

of S. One can check that there exists an order sorted relation of U1 which is

equivalence.

Let S be an order sorted signature and let U1 be a non-empty order sorted

algebra of S. Note that there exists an equivalence order sorted relation of U1

which is MSCongruence-like.

Let S be an order sorted signature and let U1 be a non-empty order sor-

ted algebra of S. An order sorted congruence of U1 is a MSCongruence-like

equivalence order sorted relation of U1.

Let R be a non empty poset. The functor PathRelR yields an equivalence

relation of the carrier of R and is defined by the condition (Def. 4).

(Def. 4) Let x, y be sets. Then 〈〈x, y〉〉 ∈ PathRelR if and only if the following

conditions are satisfied:

(i) x ∈ the carrier of R,

(ii) y ∈ the carrier of R, and

(iii) there exists a finite sequence p of elements of the carrier of R such that

1 < len p and p(1) = x and p(len p) = y and for every natural number

n such that 2 ¬ n and n ¬ len p holds 〈〈p(n), p(n − 1)〉〉 ∈ the internal

relation of R or 〈〈p(n− 1), p(n)〉〉 ∈ the internal relation of R.

One can prove the following proposition

(2) For every non empty poset R and for all elements s1, s2 of the carrier of

R such that s1 ¬ s2 holds 〈〈s1, s2〉〉 ∈ PathRelR.

Let R be a non empty poset and let s1, s2 be elements of the carrier of R.

The predicate s1
∼= s2 is defined as follows:

(Def. 5) 〈〈s1, s2〉〉 ∈ PathRelR.

Let us notice that the predicate s1
∼= s2 is reflexive and symmetric.

One can prove the following proposition

(3) For every non empty poset R and for all elements s1, s2, s3 of the carrier

of R such that s1
∼= s2 and s2

∼= s3 holds s1
∼= s3.

Let R be a non empty poset. The functor ComponentsR yields a non empty

family of subsets of the carrier of R and is defined by:

(Def. 6) ComponentsR = Classes PathRelR.

Let R be a non empty poset. Note that every element of ComponentsR is

non empty.
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Let R be a non empty poset. A subset of R is called a component of R if:

(Def. 7) It ∈ ComponentsR.

Let R be a non empty poset and let s1 be an element of the carrier of R.

The functor ·CSp s1 yielding a component of R is defined by:

(Def. 8) ·CSp s1 = [s1]PathRelR.

The following two propositions are true:

(4) For every non empty poset R and for every element s1 of the carrier of

R holds s1 ∈ ·CSp s1.

(5) For every non empty poset R and for all elements s1, s2 of the carrier of

R such that s1 ¬ s2 holds ·CSp s1 = ·CSp s2.

Let R be a non empty poset, let A be a many sorted set indexed by the

carrier of R, and let C be a component of R. A-carrier of C is defined as follows:

(Def. 9) A-carrier of C =
⋃
{A(s); s ranges over elements of the carrier of R:

s ∈ C}.

We now state the proposition

(6) Let R be a non empty poset, A be a many sorted set indexed by the

carrier of R, s be an element of the carrier of R, and x be a set. If x ∈ A(s),

then x ∈ A-carrier of ·CSp s.

Let R be a non empty poset. We say that R is locally directed if and only

if:

(Def. 10) Every component of R is directed.

The following three propositions are true:

(7) For every discrete non empty poset R and for all elements x, y of the

carrier of R such that 〈〈x, y〉〉 ∈ PathRelR holds x = y.

(8) Let R be a discrete non empty poset and C be a component of R. Then

there exists an element x of the carrier of R such that C = {x}.

(9) Every discrete non empty poset is locally directed.

Let us observe that there exists a non empty poset which is locally directed.

One can verify that there exists an order sorted signature which is locally

directed.

Let us observe that every non empty poset which is discrete is also locally

directed.

Let S be a locally directed non empty poset. Note that every component of

S is directed.

One can prove the following proposition

(10) ∅ is an equivalence relation of ∅.

Let S be a locally directed order sorted signature, let A be an order sorted

algebra of S, let E be an equivalence order sorted relation of A, and let C be a
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component of S. The functor CompClass(E, C) yielding an equivalence relation

of (the sorts of A)-carrier of C is defined as follows:

(Def. 11) For all sets x, y holds 〈〈x, y〉〉 ∈ CompClass(E, C) iff there exists an

element s1 of the carrier of S such that s1 ∈ C and 〈〈x, y〉〉 ∈ E(s1).

Let S be a locally directed order sorted signature, let A be an order sorted

algebra of S, let E be an equivalence order sorted relation of A, and let s1 be

an element of the carrier of S. The functor OSClass(E, s1) yielding a subset of

ClassesCompClass(E, ·CSp s1) is defined by:

(Def. 12) For every set z holds z ∈ OSClass(E, s1) iff there exists a set x such that

x ∈ (the sorts of A)(s1) and z = [x]CompClass(E,·CSp s1).

Let S be a locally directed order sorted signature, let A be a non-empty

order sorted algebra of S, let E be an equivalence order sorted relation of A,

and let s1 be an element of the carrier of S. One can verify that OSClass(E, s1)

is non empty.

The following proposition is true

(11) Let S be a locally directed order sorted signature, A be an order sorted

algebra of S, E be an equivalence order sorted relation of A, and s1,

s2 be elements of the carrier of S. If s1 ¬ s2, then OSClass(E, s1) ⊆

OSClass(E, s2).

Let S be a locally directed order sorted signature, let A be an order sorted

algebra of S, and let E be an equivalence order sorted relation of A. The functor

OSClassE yields an order sorted set of S and is defined as follows:

(Def. 13) For every element s1 of the carrier of S holds (OSClassE)(s1) =

OSClass(E, s1).

Let S be a locally directed order sorted signature, let A be a non-empty

order sorted algebra of S, and let E be an equivalence order sorted relation of

A. One can check that OSClassE is non-empty.

Let S be a locally directed order sorted signature, let U1 be a non-empty

order sorted algebra of S, let E be an equivalence order sorted relation of U1,

let s be an element of the carrier of S, and let x be an element of (the sorts

of U1)(s). The functor OSClass(E, x) yields an element of OSClass(E, s) and is

defined by:

(Def. 14) OSClass(E, x) = [x]CompClass(E,·CSp s).

One can prove the following three propositions:

(12) Let R be a locally directed non empty poset and x, y be elements of the

carrier of R. Given an element z of the carrier of R such that z ¬ x and

z ¬ y. Then there exists an element u of R such that x ¬ u and y ¬ u.

(13) Let S be a locally directed order sorted signature, U1 be a non-empty

order sorted algebra of S, E be an equivalence order sorted relation of U1,
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s be an element of the carrier of S, and x, y be elements of (the sorts of

U1)(s). Then OSClass(E, x) = OSClass(E, y) if and only if 〈〈x, y〉〉 ∈ E(s).

(14) Let S be a locally directed order sorted signature, U1 be a non-empty

order sorted algebra of S, E be an equivalence order sorted relation of U1,

s1, s2 be elements of the carrier of S, and x be an element of (the sorts of

U1)(s1). Suppose s1 ¬ s2. Let y be an element of (the sorts of U1)(s2). If

y = x, then OSClass(E, x) = OSClass(E, y).

2. Order Sorted Quotient Algebra

In the sequel S denotes a locally directed order sorted signature and o de-

notes an element of the operation symbols of S.

Let us consider S, o, let A be a non-empty order sorted algebra of S, let R

be an order sorted congruence of A, and let x be an element of Args(o,A). The

functor Rosx yields an element of
∏

(OSClassR ·Arity(o)) and is defined by the

condition (Def. 15).

(Def. 15) Let n be a natural number. Suppose n ∈ domArity(o). Then there exi-

sts an element y of (the sorts of A)(Arity(o)n) such that y = x(n) and

(Rosx)(n) = OSClass(R, y).

Let us consider S, o, let A be a non-empty order sorted algebra of S, and let

R be an order sorted congruence of A. The functor OSQuotRes(R, o) yielding a

function from ((the sorts of A) · (the result sort of S))(o) into (OSClassR · the

result sort of S)(o) is defined as follows:

(Def. 16) For every element x of (the sorts of A)(the result sort of o) holds

(OSQuotRes(R, o))(x) = OSClass(R, x).

The functor OSQuotArgs(R, o) yielding a function from ((the sorts of A)# · the

arity of S)(o) into ((OSClassR)# · the arity of S)(o) is defined by:

(Def. 17) For every element x of Args(o,A) holds (OSQuotArgs(R, o))(x) = Rosx.

Let us consider S, let A be a non-empty order sorted algebra of S, and let

R be an order sorted congruence of A. The functor OSQuotResR yields a many

sorted function from (the sorts of A) · (the result sort of S) into OSClassR · the

result sort of S and is defined by:

(Def. 18) For every operation symbol o of S holds (OSQuotResR)(o) =

OSQuotRes(R, o).

The functor OSQuotArgsR yields a many sorted function from (the sorts of

A)# · the arity of S into (OSClassR)# · the arity of S and is defined as follows:

(Def. 19) For every operation symbol o of S holds (OSQuotArgsR)(o) =

OSQuotArgs(R, o).

One can prove the following proposition
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(15) Let A be a non-empty order sorted algebra of S, R be an order sorted

congruence of A, and x be a set. Suppose x ∈ ((OSClassR)# · the arity of

S)(o). Then there exists an element a of Args(o,A) such that x = Rosa.

Let us consider S, o, let A be a non-empty order sorted algebra of S, and

let R be an order sorted congruence of A. The functor OSQuotCharact(R, o)

yielding a function from ((OSClassR)# · the arity of S)(o) into (OSClassR · the

result sort of S)(o) is defined as follows:

(Def. 20) For every element a of Args(o,A) such that Rosa ∈ ((OSClassR)# · the

arity of S)(o) holds (OSQuotCharact(R, o))(Rosa) = (OSQuotRes(R, o) ·

Den(o,A))(a).

Let us consider S, let A be a non-empty order sorted algebra of S, and let

R be an order sorted congruence of A. The functor OSQuotCharactR yielding

a many sorted function from (OSClassR)# · the arity of S into OSClassR · the

result sort of S is defined as follows:

(Def. 21) For every operation symbol o of S holds (OSQuotCharactR)(o) =

OSQuotCharact(R, o).

Let us consider S, let U1 be a non-empty order sorted algebra of S, and let

R be an order sorted congruence of U1. The functor QuotOSAlg(U1, R) yields

an order sorted algebra of S and is defined by:

(Def. 22) QuotOSAlg(U1, R) = 〈OSClassR,OSQuotCharactR〉.

Let us consider S, let U1 be a non-empty order sorted algebra of S, and let

R be an order sorted congruence of U1. One can check that QuotOSAlg(U1, R)

is strict and non-empty.

Let us consider S, let U1 be a non-empty order sorted algebra of S, let R be

an order sorted congruence of U1, and let s be an element of the carrier of S.

The functor OSNatHom(U1, R, s) yielding a function from (the sorts of U1)(s)

into OSClass(R, s) is defined by:

(Def. 23) For every element x of (the sorts of U1)(s) holds (OSNatHom(U1, R, s))(x) =

OSClass(R, x).

Let us consider S, let U1 be a non-empty order sorted algebra of S, and let

R be an order sorted congruence of U1. The functor OSNatHom(U1, R) yielding

a many sorted function from U1 into QuotOSAlg(U1, R) is defined as follows:

(Def. 24) For every element s of the carrier of S holds (OSNatHom(U1, R))(s) =

OSNatHom(U1, R, s).

Next we state two propositions:

(16) Let U1 be a non-empty order sorted algebra of S and R be an order

sorted congruence of U1. Then OSNatHom(U1, R) is an epimorphism of

U1 onto QuotOSAlg(U1, R) and OSNatHom(U1, R) is order-sorted.

(17) Let U1, U2 be non-empty order sorted algebras of S and F be a many

sorted function from U1 into U2. Suppose F is a homomorphism of U1 into
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U2 and order-sorted. Then Congruence(F ) is an order sorted congruence

of U1.

Let us consider S, let U1, U2 be non-empty order sorted algebras of S, and

let F be a many sorted function from U1 into U2. Let us assume that F is a

homomorphism of U1 into U2 and order-sorted. The functor OSCngF yielding

an order sorted congruence of U1 is defined as follows:

(Def. 25) OSCngF = Congruence(F ).

Let us consider S, let U1, U2 be non-empty order sorted algebras of S, let

F be a many sorted function from U1 into U2, and let s be an element of

the carrier of S. Let us assume that F is a homomorphism of U1 into U2 and

order-sorted. The functor OSHomQuot(F, s) yields a function from (the sorts of

QuotOSAlg(U1,OSCngF ))(s) into (the sorts of U2)(s) and is defined as follows:

(Def. 26) For every element x of (the sorts of U1)(s) holds

(OSHomQuot(F, s))(OSClass(OSCngF, x)) = F (s)(x).

Let us consider S, let U1, U2 be non-empty order sorted algebras of S, and

let F be a many sorted function from U1 into U2. The functor OSHomQuotF

yields a many sorted function from QuotOSAlg(U1,OSCngF ) into U2 and is

defined by:

(Def. 27) For every element s of the carrier of S holds (OSHomQuotF )(s) =

OSHomQuot(F, s).

The following three propositions are true:

(18) Let U1, U2 be non-empty order sorted algebras of S and F be a many

sorted function from U1 into U2. Suppose F is a homomorphism of U1

into U2 and order-sorted. Then OSHomQuotF is a monomorphism of

QuotOSAlg(U1,OSCngF ) into U2 and OSHomQuotF is order-sorted.

(19) Let U1, U2 be non-empty order sorted algebras of S and F be a many

sorted function from U1 into U2. Suppose F is an epimorphism of U1

onto U2 and order-sorted. Then OSHomQuotF is an isomorphism of

QuotOSAlg(U1,OSCngF ) and U2.

(20) Let U1, U2 be non-empty order sorted algebras of S and F be a many

sorted function from U1 into U2. Suppose F is an epimorphism of U1

onto U2 and order-sorted. Then QuotOSAlg(U1,OSCngF ) and U2 are

isomorphic.

Let S be an order sorted signature, let U1 be a non-empty order sorted

algebra of S, and let R be an equivalence order sorted relation of U1. We say

that R is monotone if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let o1, o2 be operation symbols of S. Suppose o1 ¬ o2. Let x1 be an ele-

ment of Args(o1, U1) and x2 be an element of Args(o2, U1). Suppose that

for every natural number y such that y ∈ domx1 holds 〈〈x1(y), x2(y)〉〉 ∈
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R(Arity(o2)y). Then 〈〈(Den(o1, U1))(x1), (Den(o2, U1))(x2)〉〉 ∈ R(the re-

sult sort of o2).

One can prove the following two propositions:

(21) Let S be an order sorted signature and U1 be a non-empty order sorted

algebra of S. Then [[the sorts of U1, the sorts of U1]] is an order sorted

congruence of U1.

(22) Let S be an order sorted signature, U1 be a non-empty order sorted

algebra of S, and R be an order sorted congruence of U1. If R = [[the sorts

of U1, the sorts of U1]], then R is monotone.

Let S be an order sorted signature and let U1 be a non-empty order sorted

algebra of S. One can verify that there exists an order sorted congruence of U1

which is monotone.

Let S be an order sorted signature and let U1 be a non-empty order sorted

algebra of S. Note that there exists an equivalence order sorted relation of U1

which is monotone.

The following proposition is true

(23) Let S be an order sorted signature and U1 be a non-empty order sorted

algebra of S. Then every monotone equivalence order sorted relation of U1

is MSCongruence-like.

Let S be an order sorted signature and let U1 be a non-empty order sorted

algebra of S. Observe that every equivalence order sorted relation of U1 which

is monotone is also MSCongruence-like.

We now state the proposition

(24) Let S be an order sorted signature and U1 be a monotone non-empty

order sorted algebra of S. Then every order sorted congruence of U1 is

monotone.

Let S be an order sorted signature and let U1 be a monotone non-empty

order sorted algebra of S. Observe that every order sorted congruence of U1 is

monotone.

Let us consider S, let U1 be a non-empty order sorted algebra of S, and let

R be a monotone order sorted congruence of U1. Note that QuotOSAlg(U1, R)

is monotone.

We now state two propositions:

(25) Let given S, U1 be a non-empty order sorted algebra of S, and R be

a monotone order sorted congruence of U1. Then QuotOSAlg(U1, R) is a

monotone order sorted algebra of S.

(26) Let U1 be a non-empty order sorted algebra of S, U2 be a monotone non-

empty order sorted algebra of S, and F be a many sorted function from

U1 into U2. Suppose F is a homomorphism of U1 into U2 and order-sorted.

Then OSCngF is monotone.
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Let us consider S, let U1, U2 be non-empty order sorted algebras of S, let F

be a many sorted function from U1 into U2, let R be an order sorted congruence

of U1, and let s be an element of the carrier of S. Let us assume that F is a

homomorphism of U1 into U2 and order-sorted and R ⊆ OSCngF. The functor

OSHomQuot(F, R, s) yields a function from (the sorts of QuotOSAlg(U1, R))(s)

into (the sorts of U2)(s) and is defined as follows:

(Def. 29) For every element x of (the sorts of U1)(s) holds

(OSHomQuot(F, R, s))(OSClass(R, x)) = F (s)(x).

Let us consider S, let U1, U2 be non-empty order sorted algebras of S,

let F be a many sorted function from U1 into U2, and let R be an order sorted

congruence of U1. The functor OSHomQuot(F, R) yields a many sorted function

from QuotOSAlg(U1, R) into U2 and is defined as follows:

(Def. 30) For every element s of the carrier of S holds (OSHomQuot(F, R))(s) =

OSHomQuot(F, R, s).

Next we state the proposition

(27) Let U1, U2 be non-empty order sorted algebras of S, F be a many

sorted function from U1 into U2, and R be an order sorted congruence

of U1. Suppose F is a homomorphism of U1 into U2 and order-sorted

and R ⊆ OSCngF. Then OSHomQuot(F, R) is a homomorphism of

QuotOSAlg(U1, R) into U2 and OSHomQuot(F, R) is order-sorted.
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