The Ordering of Points on a Curve. Part III ${ }^{1}$

Artur Korniłowicz
University of Białystok

MML Identifier: JORDAN17.

The articles [12], [13], [1], [6], [7], [10], [4], [3], [11], [5], [8], [2], and [9] provide the notation and terminology for this paper.

We follow the rules: C, P denote simple closed curves and a, b, c, d, e denote points of \mathcal{E}_{T}^{2}.

We now state several propositions:
(1) Let n be a natural number, a, p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $a \in P$ and P is an arc from p_{1} to p_{2}. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$ and there exists a real number r such that f is a homeomorphism and $f(0)=p_{1}$ and $f(1)=p_{2}$ and $0 \leqslant r$ and $r \leqslant 1$ and $f(r)=a$.
(2) LE (W-min $P, \mathrm{E}-\max P, P)$.
(3) If LE $(a, \mathrm{E}-\max P, P)$, then $a \in \operatorname{UpperArc} P$.
(4) If LE(E-max $P, a, P)$, then $a \in \operatorname{LowerArc} P$.
(5) If LE $(a, \mathrm{~W}-\min P, P)$, then $a \in \operatorname{LowerArc} P$.
(6) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $a \neq b$ and P is an arc from c to d and LE a, b, P, c, d. Then there exists e such that $a \neq e$ and $b \neq e$ and LE a, e, P, c, d and LE e, b, P, c, d.
(7) If $a \in P$, then there exists e such that $a \neq e$ and $\operatorname{LE}(a, e, P)$.
(8) If $a \neq b$ and $\operatorname{LE}(a, b, P)$, then there exists c such that $c \neq a$ and $c \neq b$ and $\mathrm{LE}(a, c, P)$ and $\mathrm{LE}(c, b, P)$.
Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let a, b, c, d be points of $\mathcal{E}_{\mathrm{T}}^{2}$. We say that a, b, c, d are in this order on P if and only if:

[^0](Def. 1) $\mathrm{LE}(a, b, P)$ and $\mathrm{LE}(b, c, P)$ and $\mathrm{LE}(c, d, P)$ or $\mathrm{LE}(b, c, P)$ and $\mathrm{LE}(c, d, P)$ and $\mathrm{LE}(d, a, P)$ or $\mathrm{LE}(c, d, P)$ and $\mathrm{LE}(d, a, P)$ and $\mathrm{LE}(a, b, P)$ or $\mathrm{LE}(d, a, P)$ and $\mathrm{LE}(a, b, P)$ and $\mathrm{LE}(b, c, P)$.
The following propositions are true:
(9) If $a \in P$, then a, a, a, a are in this order on P.
(10) If a, b, c, d are in this order on P, then b, c, d, a are in this order on P.
(11) If a, b, c, d are in this order on P, then c, d, a, b are in this order on P.
(12) If a, b, c, d are in this order on P, then d, a, b, c are in this order on P.
(13) Suppose $a \neq b$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq a$ and $e \neq b$ and a, e, b, c are in this order on P.
(14) Suppose $a \neq b$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq a$ and $e \neq b$ and a, e, b, d are in this order on P.
(15) Suppose $b \neq c$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq b$ and $e \neq c$ and a, b, e, c are in this order on P.
(16) Suppose $b \neq c$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq b$ and $e \neq c$ and b, e, c, d are in this order on P.
(17) Suppose $c \neq d$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq c$ and $e \neq d$ and a, c, e, d are in this order on P.
(18) Suppose $c \neq d$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq c$ and $e \neq d$ and b, c, e, d are in this order on P.
(19) Suppose $d \neq a$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq d$ and $e \neq a$ and a, b, d, e are in this order on P.
(20) Suppose $d \neq a$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq d$ and $e \neq a$ and a, c, d, e are in this order on P.
(21) Suppose $a \neq c$ and $a \neq d$ and $b \neq d$ and a, b, c, d are in this order on P and b, a, c, d are in this order on P. Then $a=b$.
(22) Suppose $a \neq b$ and $b \neq c$ and $c \neq d$ and a, b, c, d are in this order on P and c, b, a, d are in this order on P. Then $a=c$.
(23) Suppose $a \neq b$ and $a \neq c$ and $b \neq d$ and a, b, c, d are in this order on P and d, b, c, a are in this order on P. Then $a=d$.
(24) Suppose $a \neq c$ and $a \neq d$ and $b \neq d$ and a, b, c, d are in this order on P and a, c, b, d are in this order on P. Then $b=c$.
(25) Suppose $a \neq b$ and $b \neq c$ and $c \neq d$ and a, b, c, d are in this order on P and a, d, c, b are in this order on P. Then $b=d$.
(26) Suppose $a \neq b$ and $a \neq c$ and $b \neq d$ and a, b, c, d are in this order on P and a, b, d, c are in this order on P. Then $c=d$.
(27) Suppose $a \in C$ and $b \in C$ and $c \in C$ and $d \in C$. Then
(i) a, b, c, d are in this order on C, or
(ii) a, b, d, c are in this order on C, or
(iii) a, c, b, d are in this order on C, or
(iv) a, c, d, b are in this order on C, or
(v) a, d, b, c are in this order on C, or
(vi) a, d, c, b are in this order on C.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[3] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[4] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[6] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[8] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Formalized Mathematics, 6(4):467-473, 1997.
[9] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[11] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

