On the Decomposition of a Simple Closed Curve into Two Arcs

Andrzej Trybulec ${ }^{1}$
University of Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. The purpose of the paper is to prove lemmas needed for the Jordan curve theorem. The main result is that the decomposition of a simple closed curve into two arcs with the ends p_{1}, p_{2} is unique in the sense that every arc on the curve with the same ends must be equal to one of them.

MML Identifier: JORDAN16.

The articles [25], [24], [26], [14], [27], [2], [4], [8], [3], [22], [17], [21], [7], [6], [20], [1], [23], [15], [9], [5], [10], [19], [18], [11], [13], [12], and [16] provide the terminology and notation for this paper.

One can prove the following proposition
(1) Let S_{1} be a finite non empty subset of \mathbb{R} and e be a real number. If for every real number r such that $r \in S_{1}$ holds $r<e$, then $\max S_{1}<e$.
For simplicity, we use the following convention: C is a simple closed curve, A, A_{1}, A_{2} are subsets of $\mathcal{E}_{\mathrm{T}}^{2}, p, p_{1}, p_{2}, q, q_{1}, q_{2}$ are points of $\mathcal{E}_{\mathrm{T}}^{2}$, and n is a natural number.

Let us consider n. Note that there exists a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ which is trivial.
We now state a number of propositions:
(2) For all sets a, b, c, X such that $a \in X$ and $b \in X$ and $c \in X$ holds $\{a, b, c\} \subseteq X$.
(3) $\emptyset_{\mathcal{E}_{\mathrm{T}}^{n}}$ is Bounded.
(4) LowerArc $C \neq \mathrm{Upper} A r c C$.
(5) $\operatorname{Segment}\left(A, p_{1}, p_{2}, q_{1}, q_{2}\right) \subseteq A$.

[^0](6) Let T be a non empty topological space and A, B be subsets of the carrier of T. If $A \subseteq B$, then $T \upharpoonright A$ is a subspace of $T \upharpoonright B$.
(7) If A is an arc from p_{1} to p_{2} and $q \in A$, then $q \in \operatorname{LSegment}\left(A, p_{1}, p_{2}, q\right)$.
(8) If A is an arc from p_{1} to p_{2} and $q \in A$, then $q \in \operatorname{RSegment}\left(A, p_{1}, p_{2}, q\right)$.
(9) If A is an arc from p_{1} to p_{2} and LE $q_{1}, q_{2}, A, p_{1}, p_{2}$, then $q_{1} \in$ $\operatorname{Segment}\left(A, p_{1}, p_{2}, q_{1}, q_{2}\right)$ and $q_{2} \in \operatorname{Segment}\left(A, p_{1}, p_{2}, q_{1}, q_{2}\right)$.
(10) $\operatorname{Segment}(p, q, C) \subseteq C$.
(11) If $p \in C$ and $q \in C$, then $\operatorname{LE}(p, q, C)$ or $\operatorname{LE}(q, p, C)$.
(12) Let X, Y be non empty topological spaces, Y_{0} be a non empty subspace of Y, f be a map from X into Y, and g be a map from X into Y_{0}. If $f=g$ and f is continuous, then g is continuous.
(13) Let S, T be non empty topological spaces, S_{0} be a non empty subspace of S, T_{0} be a non empty subspace of T, and f be a map from S into T. Suppose f is a homeomorphism. Let g be a map from S_{0} into T_{0}. If $g=f \upharpoonright S_{0}$ and g is onto, then g is a homeomorphism.
(14) Let P_{1}, P_{2}, P_{3} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P_{1} is an arc from p_{1} to p_{2} and P_{2} is an arc from p_{1} to p_{2} and P_{3} is an arc from p_{1} to p_{2} and $P_{2} \cap P_{3}=\left\{p_{1}, p_{2}\right\}$ and $P_{1} \subseteq P_{2} \cup P_{3}$. Then $P_{1}=P_{2}$ or $P_{1}=P_{3}$.
(15) Let C be a simple closed curve, A_{1}, A_{2} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose A_{1} is an arc from p_{1} to p_{2} and A_{2} is an arc from p_{1} to p_{2} and $A_{1} \subseteq C$ and $A_{2} \subseteq C$ and $A_{1} \neq A_{2}$. Then $A_{1} \cup A_{2}=C$ and $A_{1} \cap A_{2}=\left\{p_{1}, p_{2}\right\}$.
(16) Let A_{1}, A_{2} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If A_{1} is an arc from p_{1} to p_{2} and $A_{1} \cap A_{2}=\left\{q_{1}, q_{2}\right\}$, then $A_{1} \neq A_{2}$.
(17) Let C be a simple closed curve, A_{1}, A_{2} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose A_{1} is an arc from p_{1} to p_{2} and A_{2} is an arc from p_{1} to p_{2} and $A_{1} \subseteq C$ and $A_{2} \subseteq C$ and $A_{1} \cap A_{2}=\left\{p_{1}, p_{2}\right\}$. Then $A_{1} \cup A_{2}=C$.
(18) Suppose $A_{1} \subseteq C$ and $A_{2} \subseteq C$ and $A_{1} \neq A_{2}$ and A_{1} is an arc from p_{1} to p_{2} and A_{2} is an arc from p_{1} to p_{2}. Let given A. If A is an arc from p_{1} to p_{2} and $A \subseteq C$, then $A=A_{1}$ or $A=A_{2}$.
(19) Let C be a simple closed curve and A be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. If A is an arc from W-min C to $\mathrm{E}-\max C$ and $A \subseteq C$, then $A=$ LowerArc C or $A=$ UpperArc C.
(20) Suppose A is an arc from p_{1} to p_{2} and LE $q_{1}, q_{2}, A, p_{1}, p_{2}$. Then there exists a map g from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright A$ and there exist real numbers s_{1}, s_{2} such that g is a homeomorphism and $g(0)=p_{1}$ and $g(1)=p_{2}$ and $g\left(s_{1}\right)=q_{1}$ and $g\left(s_{2}\right)=q_{2}$ and $0 \leqslant s_{1}$ and $s_{1} \leqslant s_{2}$ and $s_{2} \leqslant 1$.
(21) Suppose A is an arc from p_{1} to p_{2} and LE $q_{1}, q_{2}, A, p_{1}, p_{2}$ and $q_{1} \neq q_{2}$. Then there exists a map g from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright A$ and there exist real numbers
s_{1}, s_{2} such that g is a homeomorphism and $g(0)=p_{1}$ and $g(1)=p_{2}$ and $g\left(s_{1}\right)=q_{1}$ and $g\left(s_{2}\right)=q_{2}$ and $0 \leqslant s_{1}$ and $s_{1}<s_{2}$ and $s_{2} \leqslant 1$.
(22) If A is an arc from p_{1} to p_{2} and LE $q_{1}, q_{2}, A, p_{1}, p_{2}$, then $\operatorname{Segment}\left(A, p_{1}, p_{2}, q_{1}, q_{2}\right)$ is non empty.
(23) If $p \in C$, then $p \in \operatorname{Segment}(p, \mathrm{~W}-\min C, C)$ and $\mathrm{W}-\min C \in$ $\operatorname{Segment}(p, \mathrm{~W}-\min C, C)$.
Let f be a partial function from \mathbb{R} to \mathbb{R}. We say that f is continuous if and only if:
(Def. 1) f is continuous on $\operatorname{dom} f$.
Let f be a function from \mathbb{R} into \mathbb{R}. Let us observe that f is continuous if and only if:
(Def. 2) f is continuous on \mathbb{R}.
Let a, b be real numbers. The functor $\operatorname{AffineMap}(a, b)$ yielding a function from \mathbb{R} into \mathbb{R} is defined by:
(Def. 3) For every real number x holds $(\operatorname{AffineMap}(a, b))(x)=a \cdot x+b$.
Let a, b be real numbers. Observe that $\operatorname{AffineMap}(a, b)$ is continuous.
Let us mention that there exists a function from \mathbb{R} into \mathbb{R} which is continuous. We now state a number of propositions:
(24) Let f, g be continuous partial functions from \mathbb{R} to \mathbb{R}. Then $g \cdot f$ is a continuous partial function from \mathbb{R} to \mathbb{R}.
(25) For all real numbers a, b holds $(\operatorname{AffineMap}(a, b))(0)=b$.
(26) For all real numbers a, b holds $(\operatorname{AffineMap}(a, b))(1)=a+b$.
(27) For all real numbers a, b such that $a \neq 0$ holds $\operatorname{AffineMap}(a, b)$ is one-to-one.
(28) For all real numbers a, b, x, y such that $a>0$ and $x<y$ holds $(\operatorname{AffineMap}(a, b))(x)<(\operatorname{AffineMap}(a, b))(y)$.
(29) For all real numbers a, b, x, y such that $a<0$ and $x<y$ holds $(\operatorname{AffineMap}(a, b))(x)>(\operatorname{AffineMap}(a, b))(y)$.
(30) For all real numbers a, b, x, y such that $a \geqslant 0$ and $x \leqslant y$ holds $(\operatorname{AffineMap}(a, b))(x) \leqslant(\operatorname{AffineMap}(a, b))(y)$.
(31) For all real numbers a, b, x, y such that $a \leqslant 0$ and $x \leqslant y$ holds $(\operatorname{AffineMap}(a, b))(x) \geqslant(\operatorname{AffineMap}(a, b))(y)$.
(32) For all real numbers a, b such that $a \neq 0$ holds rng AffineMap $(a, b)=\mathbb{R}$.
(33) For all real numbers a, b such that $a \neq 0$ holds $(\operatorname{AffineMap}(a, b))^{-1}=$ AffineMap $\left(a^{-1},-\frac{b}{a}\right)$.
(34) For all real numbers a, b such that $a>0$ holds $(\operatorname{AffineMap}(a, b))^{\circ}[0,1]=$ $[b, a+b]$.
(35) For every map f from $\mathbb{R}^{\mathbf{1}}$ into $\mathbb{R}^{\mathbf{1}}$ and for all real numbers a, b such that $a \neq 0$ and $f=\operatorname{AffineMap}(a, b)$ holds f is a homeomorphism.
(36) If A is an arc from p_{1} to p_{2} and LE $q_{1}, q_{2}, A, p_{1}, p_{2}$ and $q_{1} \neq q_{2}$, then $\operatorname{Segment}\left(A, p_{1}, p_{2}, q_{1}, q_{2}\right)$ is an arc from q_{1} to q_{2}.
(37) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P \subseteq C$ and P is an arc from p_{1} to p_{2} and $\mathrm{W}-\min C \in P$ and $\mathrm{E}-\max C \in P$. Then UpperArc $C \subseteq P$ or LowerArc $C \subseteq P$.

References

[1] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[2] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[13] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Formalized Mathematics, 6(4):467-473, 1997.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[15] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1-16, 1992.
[16] Yatsuka Nakamura. On the dividing function of the simple closed curve into segments. Formalized Mathematics, 7(1):135-138, 1998.
[17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[18] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[19] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[20] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[22] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[23] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[24] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received September 16, 2002

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102. The work has been done while the author visited Shinshu University.

