Upper and Lower Sequence on the Cage, Upper and Lower Arcs ${ }^{1}$

Robert Milewski
University of Białystok

MML Identifier: JORDAN1J.

The articles [25], [30], [2], [4], [3], [29], [5], [14], [27], [20], [24], [13], [1], [23], [10], [11], [8], [28], [16], [12], [21], [26], [7], [18], [19], [6], [22], [9], [15], and [17] provide the notation and terminology for this paper.

In this paper n is a natural number.
The following propositions are true:
(1) Let G be a Go-board and $i_{1}, i_{2}, j_{1}, j_{2}$ be natural numbers. Suppose $1 \leqslant j_{1}$ and $j_{1} \leqslant$ width G and $1 \leqslant j_{2}$ and $j_{2} \leqslant$ width G and $1 \leqslant i_{1}$ and $i_{1}<i_{2}$ and $i_{2} \leqslant \operatorname{len} G$. Then $\left(G \circ\left(i_{1}, j_{1}\right)\right)_{\mathbf{1}}<\left(G \circ\left(i_{2}, j_{2}\right)\right)_{\mathbf{1}}$.
(2) Let G be a Go-board and $i_{1}, i_{2}, j_{1}, j_{2}$ be natural numbers. Suppose $1 \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} G$ and $1 \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} G$ and $1 \leqslant j_{1}$ and $j_{1}<j_{2}$ and $j_{2} \leqslant$ width G. Then $\left(G \circ\left(i_{1}, j_{1}\right)\right)_{\mathbf{2}}<\left(G \circ\left(i_{2}, j_{2}\right)\right)_{\mathbf{2}}$.
Let f be a non empty finite sequence and let g be a finite sequence. One can verify that $f \sim g$ is non empty.

The following propositions are true:
(3) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and n be a natural number. Then $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)-:$ E-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))) \cap$ $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n):-\operatorname{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)))=$ $\{\mathrm{N}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)), \mathrm{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))\}$.
(4) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathbb{T}}^{2}$ holds $\operatorname{UpperSeq}(C, n)=\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))}\right):-$ W-min $\widetilde{\mathcal{L}}($ Cage $(C, n))$.

[^0](5) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\widetilde{\mathrm{W}}$-min $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{UpperSeq}(C, n)$ and $\mathrm{W}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in$ $\widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$.
(6) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathrm{W}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{UpperSeq}(C, n)$ and W-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$.
(7) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathrm{N}-\mathrm{min} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{UpperSeq}(C, n)$ and N -min $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$.
(8) For every compact connected non vertical non horizontal subset $C \underset{\sim}{\sim}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $N-\underset{\sim}{\mathrm{L}}$ max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{UpperSeq}(C, n)$ and $\mathrm{N}-$ max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$.
(9) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds E-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{UpperSeq}(C, n)$ and E-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in$ $\widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$.
(10) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds E-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{LowerSeq}(C, n)$ and E-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in$ $\widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$.
(11) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\underset{\sim}{\operatorname{E}}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{LowerSeq}(C, n)$ and E-min $\widetilde{\mathcal{L}}($ Cage $(C, n)) \in$ $\widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$.
(12) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds S-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{LowerSeq}(C, n)$ and S-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in$ $\widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$.
(13) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\underset{\sim}{S}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{LowerSeq}(C, n)$ and S-min $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in$ $\widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$.
(14) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\underset{\mathcal{L}}{\mathrm{L}}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in \operatorname{rng} \operatorname{LowerSeq}(C, n)$ and $\mathrm{W}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \in$ $\widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$.
(15) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and $\mathrm{N}-\min Y \in X$ holds $\mathrm{N}-\min X=\mathrm{N}-\min Y$.
(16) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and $\mathrm{N}-\max Y \in X$ holds $\mathrm{N}-\max X=\mathrm{N}-\max Y$.
(17) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and E-min $Y \in X$ holds E-min $X=\mathrm{E}-$ min Y.
(18) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and E-max $Y \in X$ holds $E-\max X=$ E-max Y.
(19) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and S-min $Y \in X$ holds $\mathrm{S}-\min X=\mathrm{S}-\min Y$.
(20) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and S-max $Y \in X$ holds S-max $X=$ S-max Y.
(21) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and $\mathrm{W}-$ min $Y \in X$ holds $\mathrm{W}-\min X=\mathrm{W}-\min Y$.
(22) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ and $\mathrm{W}-\max Y \in X$ holds $\mathrm{W}-\max X=\mathrm{W}-\max Y$.
(23) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that N -bound $X<$ N -bound Y holds N -bound $X \cup Y=\mathrm{N}$-bound Y.
(24) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that E-bound $X<$ E-bound Y holds E-bound $X \cup Y=$ E-bound Y.
(25) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that S -bound $X<$ S-bound Y holds S-bound $X \cup Y=\mathrm{S}$-bound X.
(26) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that W -bound $X<$ W-bound Y holds W-bound $X \cup Y=\mathrm{W}$-bound X.
(27) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that N -bound $X<$ N-bound Y holds N -min $X \cup Y=\mathrm{N}-\min Y$.
(28) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that N -bound $X<$ N-bound Y holds $\mathrm{N}-\max X \cup Y=\mathrm{N}-\max Y$.
(29) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that E-bound $X<$ E-bound Y holds E-min $X \cup Y=$ E-min Y.
(30) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that E-bound $X<$ E-bound Y holds E-max $X \cup Y=$ E-max Y.
(31) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that S -bound $X<$ S-bound Y holds S-min $X \cup Y=$ S-min X.
(32) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that S -bound $X<$ S-bound Y holds $\mathrm{S}-\max X \cup Y=\mathrm{S}-\max X$.
(33) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that W-bound $X<$ W-bound Y holds $\mathrm{W}-$ min $X \cup Y=\mathrm{W}-\min X$.
(34) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that W-bound $X<$ W -bound Y holds W -max $X \cup Y=\mathrm{W}$-max X.
(35) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence and $p \in \widetilde{\mathcal{L}}(f)$, then $(\downharpoonleft p, f)_{\operatorname{len} \downharpoonleft p, f}=f_{\operatorname{len} f}$.
(36) Let f be a non constant standard special circular sequence, p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and g be a connected subset of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \operatorname{RightComp}(f)$ and $q \in \operatorname{LeftComp}(f)$ and $p \in g$ and $q \in g$, then g meets $\widetilde{\mathcal{L}}(f)$.
One can verify that there exists special sequence finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ which is non constant, standard, and s.c.c..

Next we state a number of propositions:
(37) For every S-sequence f in \mathbb{R}^{2} and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \operatorname{rng} f$ holds $\downharpoonleft p, f=\operatorname{mid}(f, p \leftrightarrow f$, len $f)$.
(38) Let M be a Go-board and f be a S-sequence in \mathbb{R}^{2}. Suppose f is a sequence which elements belong to M. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \operatorname{rng} f$, then $L f, p$ is a sequence which elements belong to M.
(39) Let M be a Go-board and f be a S-sequence in \mathbb{R}^{2}. Suppose f is a sequence which elements belong to M. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \operatorname{rng} f$, then $\downharpoonleft p, f$ is a sequence which elements belong to M.
(40) Let G be a Go-board and f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is a sequence which elements belong to G. Let i, j be natural numbers. If $1 \leqslant i$ and $i \leqslant \operatorname{len} G$ and $1 \leqslant j$ and $j \leqslant$ width G, then if $G \circ(i, j) \in \widetilde{\mathcal{L}}(f)$, then $G \circ(i, j) \in \operatorname{rng} f$.
(41) Let f be a S-sequence in \mathbb{R}^{2} and g be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) g is unfolded, s.n.c., and one-to-one,
(ii) $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g)=\left\{f_{1}\right\}$,
(iii) $f_{1}=g_{\operatorname{len} g}$,
(iv) for every natural number i such that $1 \leqslant i$ and $i+2 \leqslant \operatorname{len} f$ holds $\mathcal{L}(f, i) \cap \mathcal{L}\left(f_{\text {len } f}, g_{1}\right)=\emptyset$, and
(v) for every natural number i such that $2 \leqslant i$ and $i+1 \leqslant \operatorname{len} g$ holds $\mathcal{L}(g, i) \cap \mathcal{L}\left(f_{\operatorname{len} f}, g_{1}\right)=\emptyset$.
Then $f \frown g$ is s.c.c..
(42) Let C be a compact non vertical non horizontal non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Then there exists a natural number i such that $1 \leqslant i$ and $i+1 \leqslant$ len Gauge (C, n) and $\mathrm{W}-\min C \in \operatorname{cell}(\operatorname{Gauge}(C, n), 1, i)$ and $\mathrm{W}-\min C \neq$ Gauge $(C, n) \circ(2, i)$.
(43) For every S-sequence f in \mathbb{R}^{2} and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \widetilde{\mathcal{L}}(f)$ and $f(\operatorname{len} f) \in \widetilde{\mathcal{L}}(\downharpoonright f, p)$ holds $f(\operatorname{len} f)=p$.
(44) For every non empty finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\downharpoonright f, p \neq \emptyset$.
(45) For every S-sequence f in \mathbb{R}^{2} and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \widetilde{\mathcal{L}}(f)$ holds $(\downharpoonright f, p)_{\text {len } \mid f, p}=p$.
(46) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$ and $p_{1}=$ E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p=\mathrm{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(47) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$ and $p_{\mathbf{1}}=$ W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p=\mathrm{W}$-min $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(48) Let G be a Go-board, f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and k be a natural number. Suppose $1 \leqslant k$ and $k<\operatorname{len} f$ and $f^{\wedge} g$ is a sequence
which elements belong to G. Then left_cell $\left(f^{\wedge} g, k, G\right)=\operatorname{left_ cell}(f, k, G)$ and right_cell $(f \wedge g, k, G)=\operatorname{right}$ _cell (f, k, G).
(49) Let D be a set, f, g be finite sequences of elements of D, and i be a natural number. If $i \leqslant \operatorname{len} f$, then $(f \cap g) \upharpoonright i=f \upharpoonright i$.
(50) For every set D and for all finite sequences f, g of elements of D holds $(f \propto g) \upharpoonright \operatorname{len} f=f$.
(51) Let G be a Go-board, f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and k be a natural number. Suppose $1 \leqslant k$ and $k<\operatorname{len} f$ and $f \rightsquigarrow g$ is a sequence which elements belong to G. Then left_cell $(f \propto g, k, G)=\operatorname{left_ cell}(f, k, G)$ and right cell $(f \propto g, k, G)=\operatorname{right} _c e l l(f, k, G)$.
(52) Let G be a Go-board, f be a S-sequence in \mathbb{R}^{2}, p be a point of \mathcal{E}_{T}^{2}, and k be a natural number. Suppose $1 \leqslant k$ and $k<p \leftrightarrow f$ and f is a sequence which elements belong to G and $p \in \operatorname{rng} f$. Then left_cell $(\llcorner f, p, k, G)=$ left_cell (f, k, G) and right_cell($(f, p, k, G)=\operatorname{right_ cell}(f, k, G)$.
(53) Let G be a Go-board, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}, p$ be a point of $\mathcal{E}_{\mathrm{T}}^{2}$, and k be a natural number. Suppose $1 \leqslant k$ and $k<p \leftrightarrow f$ and f is a sequence which elements belong to G. Then left_cell $(f-: p, k, G)=$ left_cell (f, k, G) and $\operatorname{right_ cell(~}(f-: p, k, G)=\operatorname{right_ cell}(f, k, G)$.
(54) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) f is unfolded, s.n.c., and one-to-one,
(ii) g is unfolded, s.n.c., and one-to-one,
(iii) $f_{\operatorname{len} f}=g_{1}$, and
(iv) $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g)=\left\{g_{1}\right\}$.

Then $f \cap g$ is s.n.c..
(55) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is one-to-one and g is one-to-one and $\operatorname{rng} f \cap \operatorname{rng} g \subseteq\left\{g_{1}\right\}$. Then $f \sim g$ is one-to-one.
(56) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence and $p \in \operatorname{rng} f$ and $p \neq f(1)$, then $\operatorname{Index}(p, f)+1=p \leftrightarrow f$.
(57) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant j$ and $k \leqslant$ width $\operatorname{Gauge}(C, n)$ and $\operatorname{Gauge}(C, n) \circ(i, k) \in$ $\widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))$ and Gauge $(C, n) \circ(i, j) \in \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$. Then $j \neq k$.
(58) Let C be a simple closed curve and i, j, k be natural numbers. Suppose $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width $\operatorname{Gauge}(C, n)$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, $\operatorname{Gauge}(C, n) \circ$ $(i, k)) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ $(i, j), \operatorname{Gauge}(C, n) \circ(i, k)) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k))$ meets LowerArc C.
(59) Let C be a simple closed curve and i, j, k be natural numbers.

Suppose $1<i$ and $i<$ len Gauge (C, n) and $1 \leqslant j$ and $j \leqslant k$ and $k \leqslant$ width $\operatorname{Gauge}(C, n)$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ$ $(i, k)) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, j), Gauge $(C, n) \circ(i, k)) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k))$ meets UpperArc C.
(60) Let C be a simple closed curve and i, j, k be natural numbers. Suppose that $1<i$ and $i<$ len Gauge (C, n) and $1 \leqslant$ j and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $n>0$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k)) \cap \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j), \operatorname{Gauge}(C, n) \circ(i, k)) \cap$ LowerArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, j), Gauge $(C, n) \circ(i, k))$ meets LowerArc C.
(61) Let C be a simple closed curve and i, j, k be natural numbers. Suppose that $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1 \leqslant$ j and $j \leqslant k$ and $k \leqslant$ width Gauge (C, n) and $n>0$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j), \operatorname{Gauge}(C, n) \circ(i, k)) \cap \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\{\operatorname{Gauge}(C, n) \circ(i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ(i, j)$, Gauge $(C, n) \circ(i, k)) \cap$ LowerArc $\mathcal{L}(\operatorname{Cage}(C, n))=\{\operatorname{Gauge}(C, n) \circ(i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ$ (i, j), Gauge $(C, n) \circ(i, k))$ meets UpperArc C.
(62) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and j be a natural number. Suppose Gauge $(C, n+1) \circ$ (Center Gauge $(C, n+$ $1), j) \in \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))$ and $1 \leqslant j$ and $j \leqslant$ width Gauge $(C, n+$ 1). Then $\mathcal{L}(\operatorname{Gauge}(C, 1) \circ($ Center Gauge $(C, 1), 1)$, Gauge $(C, n+1) \circ$ (Center Gauge $(C, n+1), j))$ meets LowerArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))$.
(63) Let C be a simple closed curve and j, k be natural numbers. Suppose that
(i) $1 \leqslant j$,
(ii) $j \leqslant k$,
(iii) $\quad k \leqslant$ width Gauge $(C, n+1)$,
(iv) $\quad \mathcal{L}(\operatorname{Gauge}(C, n+1) \circ(\operatorname{Center} \operatorname{Gauge}(C, n+1), j)$, Gauge $(C, n+$ 1) $\circ(\operatorname{Center} \operatorname{Gauge}(C, n+1), k)) \cap \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))=$ $\{\operatorname{Gauge}(C, n+1) \circ($ Center Gauge $(C, n+1), k)\}$, and
(v) $\quad \mathcal{L}(\operatorname{Gauge}(C, n+1) \circ(\operatorname{Center} \operatorname{Gauge}(C, n+1), j)$, Gauge $(C, n+1) \circ$ $($ Center Gauge $(C, n+1), k)) \cap$ LowerArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))=\{$ Gauge $(C, n+$ $1) \circ($ Center Gauge $(C, n+1), j)\}$.
Then $\mathcal{L}(\operatorname{Gauge}(C, n+1) \circ(\operatorname{Center} \operatorname{Gauge}(C, n+1), j)$, Gauge $(C, n+1) \circ$ (Center Gauge $(C, n+1), k)$) meets LowerArc C.
(64) Let C be a simple closed curve and j, k be natural numbers. Suppose that
(i) $1 \leqslant j$,
(ii) $j \leqslant k$,
(iii) $\quad k \leqslant$ width Gauge $(C, n+1)$,
(iv) $\quad \mathcal{L}(\operatorname{Gauge}(C, n+1) \circ($ Center $\operatorname{Gauge}(C, n+1), j)$, Gauge $(C, n+$ 1) $\circ(\operatorname{Center} \operatorname{Gauge}(C, n+1), k)) \cap \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))=$ $\{\operatorname{Gauge}(C, n+1) \circ($ Center Gauge $(C, n+1), k)\}$, and
(v) $\quad \mathcal{L}(\operatorname{Gauge}(C, n+1) \circ($ Center Gauge $(C, n+1), j)$, Gauge $(C, n+1) \circ$ $($ Center Gauge $(C, n+1), k)) \cap$ LowerArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))=\{$ Gauge $(C, n+$ 1) $\circ($ Center Gauge $(C, n+1), j)\}$.

Then $\mathcal{L}(\operatorname{Gauge}(C, n+1) \circ(\operatorname{Center} \operatorname{Gauge}(C, n+1), j)$, Gauge $(C, n+1) \circ$ $($ Center $\operatorname{Gauge}(C, n+1), k))$ meets UpperArc C.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[6] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[7] Czesław Byliński. Some properties of cells on Go-board. Formalized Mathematics, 8(1):139-146, 1999.
[8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[9] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19-24, 2001.
[10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[13] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501-509, 2001.
[16] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[17] Robert Milewski. Upper and lower sequence of a cage. Formalized Mathematics, 9(4):787790, 2001.
[18] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[19] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[20] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[21] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[22] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[23] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[24] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[26] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465-468, 1996.
[27] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[28] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541-548, 1997.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received April 5, 2002

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

