General Fashoda Meet Theorem for Unit Circle

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. Outside and inside Fashoda theorems are proven for points in general position on unit circle. Four points must be ordered in a sense of ordering for simple closed curve. For preparation of proof, the relation between the order and condition of coordinates of points on unit circle is discussed.

MML Identifier: JGRAPH_5.

The articles [11], [9], [17], [21], [3], [4], [20], [5], [10], [1], [18], [7], [8], [12], [19], [16], [6], [2], [15], [14], and [13] provide the terminology and notation for this paper.

1. Preliminaries

In this paper x, a are real numbers.
Next we state a number of propositions:
(1) If $a \geqslant 0$ and $(x-a) \cdot(x+a) \geqslant 0$, then $-a \geqslant x$ or $x \geqslant a$.
(2) If $a \leqslant 0$ and $x<a$, then $x^{2}>a^{2}$.
(3) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $|p| \leqslant 1$ holds $-1 \leqslant p_{\mathbf{1}}$ and $p_{\mathbf{1}} \leqslant 1$ and $-1 \leqslant p_{2}$ and $p_{2} \leqslant 1$.
(4) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $|p| \leqslant 1$ and $p_{\mathbf{1}} \neq 0$ and $p_{\mathbf{2}} \neq 0$ holds $-1<p_{1}$ and $p_{1}<1$ and $-1<p_{2}$ and $p_{2}<1$.
(5) Let a, b, d, e, r_{3} be real numbers, P_{1}, P_{2} be non empty metric structures, x be an element of the carrier of P_{1}, and x_{2} be an element of the carrier of P_{2}. Suppose $d \leqslant a$ and $a \leqslant b$ and $b \leqslant e$ and $P_{1}=[a, b]_{\mathrm{M}}$ and $P_{2}=[d, e]_{\mathrm{M}}$ and $x=x_{2}$ and $x \in$ the carrier of P_{1} and $x_{2} \in$ the carrier of P_{2}. Then $\operatorname{Ball}\left(x, r_{3}\right) \subseteq \operatorname{Ball}\left(x_{2}, r_{3}\right)$.
(6) Let a, b, d, e be real numbers and B be a subset of $[d, e]_{\mathrm{T}}$. If $d \leqslant a$ and $a \leqslant b$ and $b \leqslant e$ and $B=[a, b]$, then $[a, b]_{\mathrm{T}}=[d, e]_{\mathrm{T}} \backslash B$.
(7) For all real numbers a, b and for every subset B of \mathbb{I} such that $0 \leqslant a$ and $a \leqslant b$ and $b \leqslant 1$ and $B=[a, b]$ holds $[a, b]_{\mathrm{T}}=\mathbb{I}\lceil B$.
(8) Let X be a topological structure, Y, Z be non empty topological structures, f be a map from X into Y, and h be a map from Y into Z. If h is a homeomorphism and f is continuous, then $h \cdot f$ is continuous.
(9) Let X, Y, Z be topological structures, f be a map from X into Y, and h be a map from Y into Z. If h is a homeomorphism and f is one-to-one, then $h \cdot f$ is one-to-one.
(10) Let X be a topological structure, S, V be non empty topological structures, B be a non empty subset of S, f be a map from X into $S \upharpoonright B, g$ be a map from S into V, and h be a map from X into V. If $h=g \cdot f$ and f is continuous and g is continuous, then h is continuous.
(11) Let $a, b, d, e, s_{1}, s_{2}, t_{1}, t_{2}$ be real numbers and h be a map from $[a, b]_{\mathrm{T}}$ into $[d, e]_{\mathrm{T}}$. Suppose h is a homeomorphism and $h\left(s_{1}\right)=t_{1}$ and $h\left(s_{2}\right)=t_{2}$ and $h(a)=d$ and $h(b)=e$ and $d \leqslant e$ and $t_{1} \leqslant t_{2}$ and $s_{1} \in[a, b]$ and $s_{2} \in[a, b]$. Then $s_{1} \leqslant s_{2}$.
(12) Let $a, b, d, e, s_{1}, s_{2}, t_{1}, t_{2}$ be real numbers and h be a map from $[a, b]_{\mathrm{T}}$ into $[d, e]_{\mathrm{T}}$. Suppose h is a homeomorphism and $h\left(s_{1}\right)=t_{1}$ and $h\left(s_{2}\right)=t_{2}$ and $h(a)=e$ and $h(b)=d$ and $e \geqslant d$ and $t_{1} \geqslant t_{2}$ and $s_{1} \in[a, b]$ and $s_{2} \in[a, b]$. Then $s_{1} \leqslant s_{2}$.
(13) For every natural number n holds $-0_{\mathcal{E}_{T}^{n}}=0_{\mathcal{E}_{\mathrm{T}}^{n}}$.

2. Fashoda Meet Theorems for Circle in Special Case

Next we state two propositions:
(14) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $a \neq b$ and $c \neq d$ and $f(O)_{\mathbf{1}}=a$ and $c \leqslant f(O)_{\mathbf{2}}$ and $f(O)_{\mathbf{2}} \leqslant d$ and $f(I)_{\mathbf{1}}=b$ and $c \leqslant f(I)_{\mathbf{2}}$ and $f(I)_{\mathbf{2}} \leqslant d$ and $g(O)_{\mathbf{2}}=c$ and $a \leqslant g(O)_{\mathbf{1}}$ and $g(O)_{\mathbf{1}} \leqslant b$ and $g(I)_{\mathbf{2}}=d$ and $a \leqslant g(I)_{\mathbf{1}}$ and $g(I)_{\mathbf{1}} \leqslant b$ and for every point r of \mathbb{I} holds $a \geqslant f(r)_{\mathbf{1}}$ or $f(r)_{\mathbf{1}} \geqslant b$ or $c \geqslant f(r)_{\mathbf{2}}$ or $f(r)_{\mathbf{2}} \geqslant d$ but $a \geqslant g(r)_{\mathbf{1}}$ or $g(r)_{\mathbf{1}} \geqslant b$ or $c \geqslant g(r)_{\mathbf{2}}$ or $g(r)_{\mathbf{2}} \geqslant d$. Then rng f meets rng g.
(15) Let f be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is continuous and one-to-one. Then there exists a map f_{2} from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$ such that $f_{2}(0)=f(1)$ and $f_{2}(1)=f(0)$ and $\operatorname{rng} f_{2}=\operatorname{rng} f$ and f_{2} is continuous and one-to-one.
In the sequel p, q denote points of $\mathcal{E}_{\mathrm{T}}^{2}$.
Next we state several propositions:
(16) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{1}, K_{2}, K_{3}, K_{4}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=$ $\{p:|p| \leqslant 1\}$ and $K_{1}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=1 \wedge\left(q_{1}\right)_{\mathbf{2}} \leqslant$ $\left.\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geqslant-\left(q_{1}\right)_{\mathbf{1}}\right\}$ and $K_{2}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|q_{2}\right|=1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geqslant\left(q_{2}\right)_{\mathbf{1}} \wedge\left(q_{2}\right)_{\mathbf{2}} \leqslant-\left(q_{2}\right)_{\mathbf{1}}\right\}$ and $K_{3}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant-\left(q_{3}\right)_{\mathbf{1}}\right\}$ and $K_{4}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=1 \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant-\left(q_{4}\right)_{\mathbf{1}}\right\}$ and $f(O) \in K_{2}$ and $f(I) \in K_{1}$ and $g(O) \in K_{3}$ and $g(I) \in K_{4}$ and rng $f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(17) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{1}, K_{2}, K_{3}, K_{4}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=$ $\{p:|p| \geqslant 1\}$ and $K_{1}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=1 \wedge\left(q_{1}\right)_{2} \leqslant$ $\left.\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geqslant-\left(q_{1}\right)_{\mathbf{1}}\right\}$ and $K_{2}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|q_{2}\right|=1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geqslant\left(q_{2}\right)_{1} \wedge\left(q_{2}\right)_{2} \leqslant-\left(q_{2}\right)_{1}\right\}$ and $K_{3}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant-\left(q_{3}\right)_{1}\right\}$ and $K_{4}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=1 \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant-\left(q_{4}\right)_{\mathbf{1}}\right\}$ and $f(O) \in K_{2}$ and $f(I) \in K_{1}$ and $g(O) \in K_{4}$ and $g(I) \in K_{3}$ and $\mathrm{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(18) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{1}, K_{2}, K_{3}, K_{4}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=$ $\{p:|p| \geqslant 1\}$ and $K_{1}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=1 \wedge\left(q_{1}\right)_{2} \leqslant$ $\left.\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geqslant-\left(q_{1}\right)_{\mathbf{1}}\right\}$ and $K_{2}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|q_{2}\right|=1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geqslant\left(q_{2}\right)_{\mathbf{1}} \wedge\left(q_{2}\right)_{\mathbf{2}} \leqslant-\left(q_{2}\right)_{\mathbf{1}}\right\}$ and $K_{3}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant-\left(q_{3}\right)_{\mathbf{1}}\right\}$ and $K_{4}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=1 \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant-\left(q_{4}\right)_{\mathbf{1}}\right\}$ and $f(O) \in K_{2}$ and $f(I) \in K_{1}$ and $g(O) \in K_{3}$ and $g(I) \in K_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and rng $g \subseteq C_{0}$. Then rng f meets rng g.
(19) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$ and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $C_{0}=\{q:|q| \geqslant 1\}$ and f is continuous and one-to-one and g is continuous and one-to-one and $f(0)=[-1,0]$ and $f(1)=[1,0]$ and $g(1)=[0,1]$ and $g(0)=[0,-1]$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(20) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) $C_{0}=\{p:|p| \geqslant 1\}$,
(ii) $\left|p_{1}\right|=1$,
(iii) $\left|p_{2}\right|=1$,
(iv) $\left|p_{3}\right|=1$,
(v) $\left|p_{4}\right|=1$, and
(vi) there exists a map h from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ such that h is a homeomorphism
and $h^{\circ} C_{0} \subseteq C_{0}$ and $h\left(p_{1}\right)=[-1,0]$ and $h\left(p_{2}\right)=[0,1]$ and $h\left(p_{3}\right)=[1,0]$ and $h\left(p_{4}\right)=[0,-1]$.
Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{4}$ and $g(1)=p_{2}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.

3. Properties of Fan Morphisms

The following propositions are true:
(21) Let c_{1} be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<1$ and $q_{2}>0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=c_{1}-\operatorname{FanMorph} N(q)$, then $p_{2}>0$.
(22) Let c_{1} be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<1$ and $q_{2} \geqslant 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=c_{1}$-FanMorphN (q), then $p_{2} \geqslant 0$.
(23) Let c_{1} be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<1$ and $q_{\mathbf{2}} \geqslant 0$ and $\frac{q_{1}}{|q|}<c_{1}$ and $|q| \neq 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=c_{1}$-FanMorphN (q), then $p_{2} \geqslant 0$ and $p_{1}<0$.
(24) Let c_{1} be a real number and q_{1}, q_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<1$ and $\left(q_{1}\right)_{2} \geqslant 0$ and $\left(q_{2}\right)_{2} \geqslant 0$ and $\left|q_{1}\right| \neq 0$ and $\left|q_{2}\right| \neq 0$ and $\frac{\left(q_{1}\right)_{1}}{\left|q_{1}\right|}<\frac{\left(q_{2}\right)_{1}}{\left|q_{2}\right|}$. Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p_{1}=c_{1}$-FanMorphN $\left(q_{1}\right)$ and $p_{2}=c_{1}-$ FanMorphN $\left(q_{2}\right)$, then $\frac{\left(p_{1}\right)_{1}}{\left|p_{1}\right|}<\frac{\left(p_{2}\right)_{1}}{\left|p_{2}\right|}$.
(25) Let s_{3} be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<s_{3}$ and $s_{3}<1$ and $q_{1}>0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=s_{3}-\operatorname{FanMorphE}(q)$, then $p_{1}>0$.
(26) Let s_{3} be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<s_{3}$ and $s_{3}<1$ and $q_{1} \geqslant 0$ and $\frac{q_{2}}{|q|}<s_{3}$ and $|q| \neq 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=s_{3}$-FanMorphE (q), then $p_{1} \geqslant 0$ and $p_{2}<0$.
(27) Let s_{3} be a real number and q_{1}, q_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<s_{3}$ and $s_{3}<1$ and $\left(q_{1}\right)_{\mathbf{1}} \geqslant 0$ and $\left(q_{2}\right)_{\mathbf{1}} \geqslant 0$ and $\left|q_{1}\right| \neq 0$ and $\left|q_{2}\right| \neq 0$ and $\frac{\left(q_{1}\right)_{2}}{\left|q_{1}\right|}<\frac{\left(q_{2}\right)_{2}}{\left|q_{2}\right|}$. Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p_{1}=s_{3}-\operatorname{FanMorphE}\left(q_{1}\right)$ and $p_{2}=s_{3}$-FanMorphE $\left(q_{2}\right)$, then $\frac{\left(p_{1}\right)_{2}}{\left|p_{1}\right|}<\frac{\left(p_{2}\right)_{2}}{\left|p_{2}\right|}$.
(28) Let c_{1} be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<1$ and $q_{2}<0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=c_{1}-\operatorname{FanMorphS}(q)$, then $p_{2}<0$.
(29) Let c_{1} be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<$ 1 and $q_{2}<0$ and $\frac{q_{1}}{|q|}>c_{1}$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=c_{1}-\operatorname{FanMorphS}(q)$, then $p_{2}<0$ and $p_{1}>0$.
(30) Let c_{1} be a real number and q_{1}, q_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<1$ and $\left(q_{1}\right)_{2} \leqslant 0$ and $\left(q_{2}\right)_{2} \leqslant 0$ and $\left|q_{1}\right| \neq 0$ and $\left|q_{2}\right| \neq 0$ and $\frac{\left(q_{1}\right)_{1}}{\left|q_{1}\right|}<\frac{\left(q_{2}\right)_{1}}{\left|q_{2}\right|}$. Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p_{1}=c_{1}-\operatorname{FanMorphS}\left(q_{1}\right)$ and $p_{2}=c_{1}$-FanMorphS $\left(q_{2}\right)$, then $\frac{\left(p_{1}\right)_{1}}{\left|p_{1}\right|}<\frac{\left(p_{2}\right)_{1}}{\left|p_{2}\right|}$.

4. Order of Points on Circle

One can prove the following propositions:
(31) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\{q:|q|=1\}$ holds W-bound $P=-1$ and E-bound $P=1$ and S -bound $P=-1$ and N-bound $P=1$.
(32) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\{q:|q|=1\}$ holds W-min $P=[-1,0]$.
(33) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\{q:|q|=1\}$ holds E-max $P=[1,0]$.
(34) For every map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $f(p)=\operatorname{proj} 1(p)$ holds f is continuous.
(35) For every map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $f(p)=\operatorname{proj} 2(p)$ holds f is continuous.
(36) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|q|=1\right\}$ holds UpperArc $P \subseteq P$ and LowerArc $P \subseteq P$.
(37) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|q|=1\right\}$. Then UpperArc $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p \in P \wedge p_{2} \geqslant 0\right\}$.
(38) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|q|=1\right\}$. Then LowerArc $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p \in P \wedge p_{\mathbf{2}} \leqslant 0\right\}$.
(39) Let a, b, d, e be real numbers. Suppose $a \leqslant b$ and $e>0$. Then there exists a map f from $[a, b]_{\mathrm{T}}$ into $[e \cdot a+d, e \cdot b+d]_{\mathrm{T}}$ such that f is a homeomorphism and for every real number r such that $r \in[a, b]$ holds $f(r)=e \cdot r+d$.
(40) Let a, b, d, e be real numbers. Suppose $a \leqslant b$ and $e<0$. Then there exists a map f from $[a, b]_{\mathrm{T}}$ into $[e \cdot b+d, e \cdot a+d]_{\mathrm{T}}$ such that f is a homeomorphism and for every real number r such that $r \in[a, b]$ holds $f(r)=e \cdot r+d$.
(41) There exists a map f from \mathbb{I} into $[-1,1]_{\mathrm{T}}$ such that f is a homeomorphism and for every real number r such that $r \in[0,1]$ holds $f(r)=(-2) \cdot r+1$ and $f(0)=1$ and $f(1)=-1$.
(42) There exists a map f from \mathbb{I} into $[-1,1]_{\mathrm{T}}$ such that f is a homeomorphism and for every real number r such that $r \in[0,1]$ holds $f(r)=2 \cdot r-1$ and $f(0)=-1$ and $f(1)=1$.
(43) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$. Then there exists a map f from $[-1,1]_{\mathrm{T}}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ LowerArc P such that f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ LowerArc P holds $f\left(q_{1}\right)=q$ and $f(-1)=\mathrm{W}$-min P and $f(1)=\mathrm{E}-\max P$.
(44) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$. Then there exists a map f from $[-1,1]_{\mathrm{T}}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ UpperArc P such that f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in \mathrm{UpperArc} P$ holds $f\left(q_{1}\right)=q$ and $f(-1)=\mathrm{W}$-min P and $f(1)=\mathrm{E}-\max P$.
(45) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid$ LowerArc P such that
(i) f is a homeomorphism,
(ii) for all points q_{1}, q_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ and for all real numbers r_{1}, r_{2} such that $f\left(r_{1}\right)=q_{1}$ and $f\left(r_{2}\right)=q_{2}$ and $r_{1} \in[0,1]$ and $r_{2} \in[0,1]$ holds $r_{1}<r_{2}$ iff $\left(q_{1}\right)_{\mathbf{1}}>\left(q_{2}\right)_{\mathbf{1}}$,
(iii) $f(0)=\mathrm{E}-\max P$, and
(iv) $f(1)=\mathrm{W}-\min P$.
(46) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ UpperArc P such that
(i) f is a homeomorphism,
(ii) for all points q_{1}, q_{2} of \mathcal{E}_{T}^{2} and for all real numbers r_{1}, r_{2} such that $f\left(r_{1}\right)=q_{1}$ and $f\left(r_{2}\right)=q_{2}$ and $r_{1} \in[0,1]$ and $r_{2} \in[0,1]$ holds $r_{1}<r_{2}$ iff $\left(q_{1}\right)_{\mathbf{1}}<\left(q_{2}\right)_{\mathbf{1}}$,
(iii) $f(0)=\mathrm{W}-\min P$, and
(iv) $f(1)=\mathrm{E}-\max P$.
(47) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{2} \in \operatorname{UpperArc} P$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$, then $p_{1} \in \operatorname{UpperArc} P$.
(48) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $p_{1} \neq p_{2}$ and $\left(p_{1}\right)_{\mathbf{1}}<0$ and $\left(p_{2}\right)_{\mathbf{1}}<0$ and $\left(p_{1}\right)_{\mathbf{2}}<0$ and $\left(p_{2}\right)_{\mathbf{2}}<0$. Then $\left(p_{1}\right)_{\mathbf{1}}>\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$.
(49) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $p_{1} \neq p_{2}$ and $\left(p_{1}\right)_{\mathbf{1}}<0$ and $\left(p_{2}\right)_{\mathbf{1}}<0$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$.

Then $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{2}}<\left(p_{2}\right)_{\mathbf{2}}$.
(50) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $p_{1} \neq p_{2}$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$. Then $\left(p_{1}\right)_{\mathbf{1}}<\left(p_{2}\right)_{\mathbf{1}}$.
(51) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $p_{1} \neq p_{2}$ and $\left(p_{1}\right)_{\mathbf{2}} \leqslant 0$ and $\left(p_{2}\right)_{\mathbf{2}} \leqslant 0$ and $p_{1} \neq \mathrm{W}-\min P$. Then $\left(p_{1}\right)_{\mathbf{1}}>\left(p_{2}\right)_{\mathbf{1}}$.
(52) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ but $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$ or $\left(p_{2}\right)_{\mathbf{1}} \geqslant 0$ but $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$. Then $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ or $\left(p_{1}\right)_{\mathbf{1}} \geqslant 0$.
(53) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{T}^{2}:|p|=1\right\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $p_{1} \neq p_{2}$ and $\left(p_{1}\right)_{\mathbf{1}} \geqslant 0$ and $\left(p_{2}\right)_{\mathbf{1}} \geqslant 0$. Then $\left(p_{1}\right)_{\mathbf{2}}>\left(p_{2}\right)_{\mathbf{2}}$.
(54) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \in P$ and $p_{2} \in P$ and $\left(p_{1}\right)_{1}<0$ and $\left(p_{2}\right)_{1}<0$ and $\left(p_{1}\right)_{2}<0$ and $\left(p_{2}\right)_{\mathbf{2}}<0$ and $\left(p_{1}\right)_{\mathbf{1}} \geqslant\left(p_{2}\right)_{\mathbf{1}}$ or $\left(p_{1}\right)_{\mathbf{2}} \leqslant\left(p_{2}\right)_{\mathbf{2}}$. Then $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$.
(55) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \in P$ and $p_{2} \in P$ and $\left(p_{1}\right)_{1}>0$ and $\left(p_{2}\right)_{1}>0$ and $\left(p_{1}\right)_{\mathbf{2}}<0$ and $\left(p_{2}\right)_{\mathbf{2}}<0$ and $\left(p_{1}\right)_{\mathbf{1}} \geqslant\left(p_{2}\right)_{\mathbf{1}}$ or $\left(p_{1}\right)_{\mathbf{2}} \geqslant\left(p_{2}\right)_{\mathbf{2}}$. Then $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$.
(56) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \in P$ and $p_{2} \in P$ and $\left(p_{1}\right)_{1}<0$ and $\left(p_{2}\right)_{1}<0$ and $\left(p_{1}\right)_{2} \geqslant 0$ and $\left(p_{2}\right)_{2} \geqslant 0$ and $\left(p_{1}\right)_{\mathbf{1}} \leqslant\left(p_{2}\right)_{\mathbf{1}}$ or $\left(p_{1}\right)_{\mathbf{2}} \leqslant\left(p_{2}\right)_{\mathbf{2}}$. Then $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$.
(57) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \in P$ and $p_{2} \in P$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{1}\right)_{\mathbf{1}} \leqslant\left(p_{2}\right)_{\mathbf{1}}$. Then $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$.
(58) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \in P$ and $p_{2} \in P$ and $\left(p_{1}\right)_{\mathbf{1}} \geqslant 0$ and $\left(p_{2}\right)_{\mathbf{1}} \geqslant 0$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant\left(p_{2}\right)_{\mathbf{2}}$. Then $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$.
(59) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \in P$ and $p_{2} \in P$ and $\left(p_{1}\right)_{\mathbf{2}} \leqslant 0$ and $\left(p_{2}\right)_{\mathbf{2}} \leqslant 0$ and $p_{2} \neq \mathrm{W}-\min P$ and $\left(p_{1}\right)_{\mathbf{1}} \geqslant\left(p_{2}\right)_{\mathbf{1}}$. Then $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$.
(60) Let c_{1} be a real number and q be a point of \mathcal{E}_{T}^{2}. Suppose $-1<c_{1}$ and $c_{1}<1$ and $q_{2} \leqslant 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p=c_{1}-\operatorname{FanMorphS}(q)$, then $p_{2} \leqslant 0$.
(61) Let c_{1} be a real number, $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$, and P be a compact
non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $-1<c_{1}$ and $c_{1}<1$ and $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $q_{1}=c_{1}-\operatorname{FanMorphS}\left(p_{1}\right)$ and $q_{2}=c_{1}$-FanMorphS $\left(p_{2}\right)$. Then $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$.
(62) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$ and $\left(p_{1}\right)_{1}<0$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{2}\right)_{\mathbf{1}}<0$ and $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{3}\right)_{\mathbf{1}}<0$ and $\left(p_{3}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{4}\right)_{\mathbf{1}}<0$ and $\left(p_{4}\right)_{\mathbf{2}} \geqslant 0$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist points $q_{1}, q_{2}, q_{3}, q_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|f(q)|=|q|$ and $q_{1}=f\left(p_{1}\right)$ and $q_{2}=f\left(p_{2}\right)$ and $q_{3}=f\left(p_{3}\right)$ and $q_{4}=f\left(p_{4}\right)$ and $\left(q_{1}\right)_{1}<0$ and $\left(q_{1}\right)_{2}<0$ and $\left(q_{2}\right)_{1}<0$ and $\left(q_{2}\right)_{\mathbf{2}}<0$ and $\left(q_{3}\right)_{1}<0$ and $\left(q_{3}\right)_{2}<0$ and $\left(q_{4}\right)_{1}<0$ and $\left(q_{4}\right)_{\mathbf{2}}<0$ and $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$ and $\operatorname{LE}\left(q_{2}, q_{3}, P\right)$ and $\mathrm{LE}\left(q_{3}, q_{4}, P\right)$.
(63) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{3}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{4}\right)_{2}>0$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist points $q_{1}, q_{2}, q_{3}, q_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|f(q)|=|q|$ and $q_{1}=f\left(p_{1}\right)$ and $q_{2}=f\left(p_{2}\right)$ and $q_{3}=f\left(p_{3}\right)$ and $q_{4}=f\left(p_{4}\right)$ and $\left(q_{1}\right)_{1}<0$ and $\left(q_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\left(q_{2}\right)_{1}<0$ and $\left(q_{2}\right)_{\mathbf{2}} \geqslant 0$ and $\left(q_{3}\right)_{1}<0$ and $\left(q_{3}\right)_{\mathbf{2}} \geqslant 0$ and $\left(q_{4}\right)_{1}<0$ and $\left(q_{4}\right)_{\mathbf{2}} \geqslant 0$ and $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$ and $\operatorname{LE}\left(q_{2}, q_{3}, P\right)$ and $\mathrm{LE}\left(q_{3}, q_{4}, P\right)$.
(64) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$ and $\left(p_{1}\right)_{2} \geqslant 0$ and $\left(p_{2}\right)_{2} \geqslant 0$ and $\left(p_{3}\right)_{\mathbf{2}} \geqslant 0$ and $\left(p_{4}\right)_{\mathbf{2}}>0$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist points $q_{1}, q_{2}, q_{3}, q_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|f(q)|=|q|$ and $q_{1}=f\left(p_{1}\right)$ and $q_{2}=f\left(p_{2}\right)$ and $q_{3}=f\left(p_{3}\right)$ and $q_{4}=f\left(p_{4}\right)$ and $\left(q_{1}\right)_{1}<0$ and $\left(q_{1}\right)_{\mathbf{2}}<0$ and $\left(q_{2}\right)_{1}<0$ and $\left(q_{2}\right)_{2}<0$ and $\left(q_{3}\right)_{1}<0$ and $\left(q_{3}\right)_{2}<0$ and $\left(q_{4}\right)_{1}<0$ and $\left(q_{4}\right)_{\mathbf{2}}<0$ and $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$ and $\operatorname{LE}\left(q_{2}, q_{3}, P\right)$ and $\operatorname{LE}\left(q_{3}, q_{4}, P\right)$.
(65) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ and $\mathrm{LE}\left(p_{3}, p_{4}, P\right)$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ or $\left(p_{1}\right)_{\mathbf{1}} \geqslant$ 0 and $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$ or $\left(p_{2}\right)_{\mathbf{1}} \geqslant 0$ and $\left(p_{3}\right)_{\mathbf{2}} \geqslant 0$ or $\left(p_{3}\right)_{\mathbf{1}} \geqslant 0$ and $\left(p_{4}\right)_{\mathbf{2}}>0$ or $\left(p_{4}\right)_{\mathbf{1}}>0$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist points $q_{1}, q_{2}, q_{3}, q_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|f(q)|=|q|$
and $q_{1}=f\left(p_{1}\right)$ and $q_{2}=f\left(p_{2}\right)$ and $q_{3}=f\left(p_{3}\right)$ and $q_{4}=f\left(p_{4}\right)$ and $\left(q_{1}\right)_{2} \geqslant 0$ and $\left(q_{2}\right)_{\mathbf{2}} \geqslant 0$ and $\left(q_{3}\right)_{\mathbf{2}} \geqslant 0$ and $\left(q_{4}\right)_{\mathbf{2}}>0$ and $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$ and $\operatorname{LE}\left(q_{2}, q_{3}, P\right)$ and $\operatorname{LE}\left(q_{3}, q_{4}, P\right)$.
(66) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ and $\mathrm{LE}\left(p_{3}, p_{4}, P\right)$ and $\left(p_{1}\right)_{2} \geqslant 0$ or $\left(p_{1}\right)_{1} \geqslant$ 0 and $\left(p_{2}\right)_{\mathbf{2}} \geqslant 0$ or $\left(p_{2}\right)_{1} \geqslant 0$ and $\left(p_{3}\right)_{2} \geqslant 0$ or $\left(p_{3}\right)_{1} \geqslant 0$ and $\left(p_{4}\right)_{2}>0$ or $\left(p_{4}\right)_{1}>0$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist points $q_{1}, q_{2}, q_{3}, q_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
f is a homeomorphism and for every point q of $\mathcal{E}_{\text {T }}^{2}$ holds $|f(q)|=|q|$ and $q_{1}=f\left(p_{1}\right)$ and $q_{2}=f\left(p_{2}\right)$ and $q_{3}=f\left(p_{3}\right)$ and $q_{4}=f\left(p_{4}\right)$ and $\left(q_{1}\right)_{1}<0$ and $\left(q_{1}\right)_{\mathbf{2}}<0$ and $\left(q_{2}\right)_{\mathbf{1}}<0$ and $\left(q_{2}\right)_{\mathbf{2}}<0$ and $\left(q_{3}\right)_{\mathbf{1}}<0$ and $\left(q_{3}\right)_{\mathbf{2}}<0$ and $\left(q_{4}\right)_{1}<0$ and $\left(q_{4}\right)_{2}<0$ and $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$ and $\operatorname{LE}\left(q_{2}, q_{3}, P\right)$ and $\mathrm{LE}\left(q_{3}, q_{4}, P\right)$.
(67) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{4}=\mathrm{W}-\min P$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ and $\mathrm{LE}\left(p_{3}, p_{4}, P\right)$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist points q_{1}, q_{2}, q_{3}, q_{4} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
f is a homeomorphism and for every point q of $\mathcal{E}_{\text {T }}^{2}$ holds $|f(q)|=|q|$ and $q_{1}=f\left(p_{1}\right)$ and $q_{2}=f\left(p_{2}\right)$ and $q_{3}=f\left(p_{3}\right)$ and $q_{4}=f\left(p_{4}\right)$ and $\left(q_{1}\right)_{1}<0$ and $\left(q_{1}\right)_{\mathbf{2}}<0$ and $\left(q_{2}\right)_{\mathbf{1}}<0$ and $\left(q_{2}\right)_{\mathbf{2}}<0$ and $\left(q_{3}\right)_{\mathbf{1}}<0$ and $\left(q_{3}\right)_{\mathbf{2}}<0$ and $\left(q_{4}\right)_{1}<0$ and $\left(q_{4}\right)_{2}<0$ and $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$ and $\operatorname{LE}\left(q_{2}, q_{3}, P\right)$ and $\operatorname{LE}\left(q_{3}, q_{4}, P\right)$.
(68) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist points $q_{1}, q_{2}, q_{3}, q_{4}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ such that f is a homeomorphism and for every point q of $\mathcal{E}_{\text {T }}^{2}$ holds $|f(q)|=|q|$ and $q_{1}=f\left(p_{1}\right)$ and $q_{2}=f\left(p_{2}\right)$ and $q_{3}=f\left(p_{3}\right)$ and $q_{4}=f\left(p_{4}\right)$ and $\left(q_{1}\right)_{1}<0$ and $\left(q_{1}\right)_{\mathbf{2}}<0$ and $\left(q_{2}\right)_{\mathbf{1}}<0$ and $\left(q_{2}\right)_{\mathbf{2}}<0$ and $\left(q_{3}\right)_{\mathbf{1}}<0$ and $\left(q_{3}\right)_{\mathbf{2}}<0$ and $\left(q_{4}\right)_{1}<0$ and $\left(q_{4}\right)_{2}<0$ and $\operatorname{LE}\left(q_{1}, q_{2}, P\right)$ and $\operatorname{LE}\left(q_{2}, q_{3}, P\right)$ and $\operatorname{LE}\left(q_{3}, q_{4}, P\right)$.

5. General Fashoda Theorems

One can prove the following propositions:
(69) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\text {T }}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ and $\mathrm{LE}\left(p_{3}, p_{4}, P\right)$ and $p_{1} \neq p_{2}$ and $p_{2} \neq p_{3}$ and $p_{3} \neq p_{4}$ and $\left(p_{1}\right)_{\mathbf{1}}<0$ and $\left(p_{2}\right)_{\mathbf{1}}<0$ and $\left(p_{3}\right)_{\mathbf{1}}<0$ and $\left(p_{4}\right)_{\mathbf{1}}<0$ and
$\left(p_{1}\right)_{\mathbf{2}}<0$ and $\left(p_{2}\right)_{\mathbf{2}}<0$ and $\left(p_{3}\right)_{\mathbf{2}}<0$ and $\left(p_{4}\right)_{\mathbf{2}}<0$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ such that f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|f(q)|=|q|$ and $[-1,0]=f\left(p_{1}\right)$ and $[0,1]=f\left(p_{2}\right)$ and $[1,0]=f\left(p_{3}\right)$ and $[0,-1]=f\left(p_{4}\right)$.
(70) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$ and $p_{1} \neq p_{2}$ and $p_{2} \neq p_{3}$ and $p_{3} \neq p_{4}$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ such that f is a homeomorphism and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|f(q)|=|q|$ and $[-1,0]=f\left(p_{1}\right)$ and $[0$, $1]=f\left(p_{2}\right)$ and $[1,0]=f\left(p_{3}\right)$ and $[0,-1]=f\left(p_{4}\right)$.
(71) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ and $\mathrm{LE}\left(p_{3}, p_{4}, P\right)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\{p:|p| \leqslant 1\}$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(72) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\{p:|p| \leqslant 1\}$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{4}$ and $g(1)=p_{2}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(73) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\{p:|p| \geqslant 1\}$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{4}$ and $g(1)=p_{2}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(74) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\{p:|p| \geqslant 1\}$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\mathrm{rng} g \subseteq C_{0}$. Then rng f meets rng g.

References

[1] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[13] Yatsuka Nakamura. Fan homeomorphisms in the plane. Formalized Mathematics, 10(1):119, 2002.
[14] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received June 24, 2002

