General Fashoda Meet Theorem for Unit Circle

Yatsuka Nakamura Shinshu University Nagano

Summary. Outside and inside Fashoda theorems are proven for points in general position on unit circle. Four points must be ordered in a sense of ordering for simple closed curve. For preparation of proof, the relation between the order and condition of coordinates of points on unit circle is discussed.

MML Identifier: JGRAPH_5.

The articles [11], [9], [17], [21], [3], [4], [20], [5], [10], [1], [18], [7], [8], [12], [19], [16], [6], [2], [15], [14], and [13] provide the terminology and notation for this paper.

1. Preliminaries

In this paper x, a are real numbers.

Next we state a number of propositions:

- (1) If $a \ge 0$ and $(x-a) \cdot (x+a) \ge 0$, then $-a \ge x$ or $x \ge a$.
- (2) If $a \leq 0$ and x < a, then $x^2 > a^2$.
- (3) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $|p| \leq 1$ holds $-1 \leq p_1$ and $p_1 \leq 1$ and $-1 \leq p_2$ and $p_2 \leq 1$.
- (4) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $|p| \leq 1$ and $p_1 \neq 0$ and $p_2 \neq 0$ holds $-1 < p_1$ and $p_1 < 1$ and $-1 < p_2$ and $p_2 < 1$.
- (5) Let a, b, d, e, r_3 be real numbers, P_1, P_2 be non empty metric structures, x be an element of the carrier of P_1 , and x_2 be an element of the carrier of P_2 . Suppose $d \leq a$ and $a \leq b$ and $b \leq e$ and $P_1 = [a, b]_M$ and $P_2 = [d, e]_M$ and $x = x_2$ and $x \in$ the carrier of P_1 and $x_2 \in$ the carrier of P_2 . Then $Ball(x, r_3) \subseteq Ball(x_2, r_3)$.

C 2002 University of Białystok ISSN 1426-2630

- (6) Let a, b, d, e be real numbers and B be a subset of $[d, e]_{T}$. If $d \leq a$ and $a \leq b$ and $b \leq e$ and B = [a, b], then $[a, b]_{T} = [d, e]_{T} \upharpoonright B$.
- (7) For all real numbers a, b and for every subset B of \mathbb{I} such that $0 \leq a$ and $a \leq b$ and $b \leq 1$ and B = [a, b] holds $[a, b]_{\mathrm{T}} = \mathbb{I} \upharpoonright B$.
- (8) Let X be a topological structure, Y, Z be non empty topological structures, f be a map from X into Y, and h be a map from Y into Z. If h is a homeomorphism and f is continuous, then $h \cdot f$ is continuous.
- (9) Let X, Y, Z be topological structures, f be a map from X into Y, and h be a map from Y into Z. If h is a homeomorphism and f is one-to-one, then h cdot f is one-to-one.
- (10) Let X be a topological structure, S, V be non empty topological structures, B be a non empty subset of S, f be a map from X into $S \upharpoonright B$, g be a map from S into V, and h be a map from X into V. If $h = g \cdot f$ and f is continuous and g is continuous, then h is continuous.
- (11) Let $a, b, d, e, s_1, s_2, t_1, t_2$ be real numbers and h be a map from $[a, b]_T$ into $[d, e]_T$. Suppose h is a homeomorphism and $h(s_1) = t_1$ and $h(s_2) = t_2$ and h(a) = d and h(b) = e and $d \leq e$ and $t_1 \leq t_2$ and $s_1 \in [a, b]$ and $s_2 \in [a, b]$. Then $s_1 \leq s_2$.
- (12) Let $a, b, d, e, s_1, s_2, t_1, t_2$ be real numbers and h be a map from $[a, b]_T$ into $[d, e]_T$. Suppose h is a homeomorphism and $h(s_1) = t_1$ and $h(s_2) = t_2$ and h(a) = e and h(b) = d and $e \ge d$ and $t_1 \ge t_2$ and $s_1 \in [a, b]$ and $s_2 \in [a, b]$. Then $s_1 \le s_2$.
- (13) For every natural number n holds $-0_{\mathcal{E}_{T}^{n}} = 0_{\mathcal{E}_{T}^{n}}$.

2. FASHODA MEET THEOREMS FOR CIRCLE IN SPECIAL CASE

Next we state two propositions:

- (14) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$, a, b, c, d be real numbers, and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $a \neq b$ and $c \neq d$ and $f(O)_1 = a$ and $c \leqslant f(O)_2$ and $f(O)_2 \leqslant d$ and $f(I)_1 = b$ and $c \leqslant f(I)_2$ and $f(I)_2 \leqslant d$ and $g(O)_2 = c$ and $a \leqslant g(O)_1$ and $g(O)_1 \leqslant b$ and $g(I)_2 = d$ and $a \leqslant g(I)_1$ and $g(I)_1 \leqslant b$ and for every point r of \mathbb{I} holds $a \geqslant f(r)_1$ or $f(r)_1 \geqslant b$ or $c \geqslant f(r)_2$ or $f(r)_2 \geqslant d$ but $a \geqslant g(r)_1$ or $g(r)_1 \geqslant b$ or $c \geqslant g(r)_2 \Rightarrow d$. Then rng f meets rng g.
- (15) Let f be a map from I into \$\mathcal{E}_T^2\$. Suppose f is continuous and one-to-one. Then there exists a map \$f_2\$ from I into \$\mathcal{E}_T^2\$ such that \$f_2(0) = f(1)\$ and \$f_2(1) = f(0)\$ and \$\operatorname{rng} f_2 = \operatorname{rng} f\$ and \$f_2\$ is continuous and one-to-one. In the sequel \$p\$, \$q\$ denote points of \$\mathcal{E}_T^2\$. Next we state several propositions:

100

- (16) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$, C_0 , K_1 , K_2 , K_3 , K_4 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $K_1 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \leq (q_1)_1 \land (q_1)_2 \geq -(q_1)_1\}$ and $K_2 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_2| = 1 \land (q_2)_2 \geq (q_2)_1 \land (q_2)_2 \leq -(q_2)_1\}$ and $K_3 = \{q_3; q_3 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_3| = 1 \land (q_3)_2 \geq (q_3)_1 \land (q_3)_2 \geq -(q_3)_1\}$ and $K_4 = \{q_4; q_4 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_4| = 1 \land (q_4)_2 \leq (q_4)_1 \land (q_4)_2 \leq -(q_4)_1\}$ and $f(O) \in K_2$ and $f(I) \in K_1$ and $g(O) \in K_3$ and $g(I) \in K_4$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (17) Let f, g be maps from \mathbb{I} into \mathcal{E}_{T}^{2} , C_{0} , K_{1} , K_{2} , K_{3} , K_{4} be subsets of \mathcal{E}_{T}^{2} , and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0} = \{p: |p| \ge 1\}$ and $K_{1} = \{q_{1}; q_{1} \text{ ranges over points of } \mathcal{E}_{T}^{2}: |q_{1}| = 1 \land (q_{1})_{2} \le (q_{1})_{1} \land (q_{1})_{2} \ge -(q_{1})_{1}\}$ and $K_{2} = \{q_{2}; q_{2} \text{ ranges over points of } \mathcal{E}_{T}^{2}: |q_{2}| = 1 \land (q_{2})_{2} \ge (q_{2})_{1} \land (q_{2})_{2} \le -(q_{2})_{1}\}$ and $K_{3} = \{q_{3}; q_{3} \text{ ranges over points of } \mathcal{E}_{T}^{2}: |q_{4}| = 1 \land (q_{3})_{2} \ge (q_{3})_{1} \land (q_{3})_{2} \ge -(q_{3})_{1}\}$ and $K_{4} = \{q_{4}; q_{4} \text{ ranges over points of } \mathcal{E}_{T}^{2}: |q_{4}| = 1 \land (q_{4})_{2} \le (q_{4})_{1} \land (q_{4})_{2} \le -(q_{4})_{1}\}$ and $f(O) \in K_{2}$ and $f(I) \in K_{1}$ and $g(O) \in K_{4}$ and $g(I) \in K_{3}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (18) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$, C_0 , K_1 , K_2 , K_3 , K_4 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \ge 1\}$ and $K_1 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \le (q_1)_1 \land (q_1)_2 \ge -(q_1)_1\}$ and $K_2 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_2| = 1 \land (q_2)_2 \ge (q_2)_1 \land (q_2)_2 \le -(q_2)_1\}$ and $K_3 = \{q_3; q_3 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_3| = 1 \land (q_3)_2 \ge (q_3)_1 \land (q_3)_2 \ge -(q_3)_1\}$ and $K_4 = \{q_4; q_4 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_4| = 1 \land (q_4)_2 \le (q_4)_1 \land (q_4)_2 \le -(q_4)_1\}$ and $f(O) \in K_2$ and $f(I) \in K_1$ and $g(O) \in K_3$ and $g(I) \in K_4$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (19) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$ and C_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose that $C_0 = \{q : |q| \ge 1\}$ and f is continuous and one-to-one and g is continuous and one-to-one and f(0) = [-1, 0] and f(1) = [1, 0] and g(1) = [0, 1] and g(0) = [0, -1] and rng $f \subseteq C_0$ and rng $g \subseteq C_0$. Then rng f meets rng g.
- (20) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and C_0 be a subset of \mathcal{E}_T^2 . Suppose that (i) $C_0 = \{p : |p| \ge 1\},$
 - (i) $|p_1| = 1,$
- (ii) $|p_1| = 1$,
- (iii) $|p_2| = 1,$
- (iv) $|p_3| = 1$,
- (v) $|p_4| = 1$, and
- (vi) there exists a map h from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$ such that h is a homeomorphism

and $h^{\circ}C_0 \subseteq C_0$ and $h(p_1) = [-1, 0]$ and $h(p_2) = [0, 1]$ and $h(p_3) = [1, 0]$ and $h(p_4) = [0, -1]$.

Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$. Suppose that f is continuous and oneto-one and g is continuous and one-to-one and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_4$ and $g(1) = p_2$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.

3. Properties of Fan Morphisms

The following propositions are true:

- (21) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 > 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphN(q), then $p_2 > 0$.
- (22) Let c_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 \ge 0$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphN(q), then $p_2 \ge 0$.
- (23) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 \ge 0$ and $\frac{q_1}{|q|} < c_1$ and $|q| \ne 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphN(q), then $p_2 \ge 0$ and $p_1 < 0$.
- (24) Let c_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 \ge 0$ and $(q_2)_2 \ge 0$ and $|q_1| \ne 0$ and $|q_2| \ne 0$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = c_1$ -FanMorphN (q_1) and $p_2 = c_1$ -FanMorphN (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (25) Let s_3 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < s_3$ and $s_3 < 1$ and $q_1 > 0$. Let p be a point of \mathcal{E}_T^2 . If $p = s_3$ -FanMorphE(q), then $p_1 > 0$.
- (26) Let s_3 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_3$ and $s_3 < 1$ and $q_1 \ge 0$ and $\frac{q_2}{|q|} < s_3$ and $|q| \ne 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = s_3$ -FanMorphE(q), then $p_1 \ge 0$ and $p_2 < 0$.
- (27) Let s_3 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_3$ and $s_3 < 1$ and $(q_1)_1 \ge 0$ and $(q_2)_1 \ge 0$ and $|q_1| \ne 0$ and $|q_2| \ne 0$ and $\frac{(q_1)_2}{|q_1|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = s_3$ -FanMorphE (q_1) and $p_2 = s_3$ -FanMorphE (q_2) , then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.
- (28) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 < 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphS(q), then $p_2 < 0$.
- (29) Let c_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 < 0$ and $\frac{q_1}{|q|} > c_1$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphS(q), then $p_2 < 0$ and $p_1 > 0$.

102

(30) Let c_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 \leq 0$ and $(q_2)_2 \leq 0$ and $|q_1| \neq 0$ and $|q_2| \neq 0$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = c_1$ -FanMorphS (q_1) and $p_2 = c_1$ -FanMorphS (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.

4. Order of Points on Circle

One can prove the following propositions:

- (31) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q : |q| = 1\}$ holds W-bound P = -1 and E-bound P = 1 and S-bound P = -1 and N-bound P = 1.
- (32) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q : |q| = 1\}$ holds W-min P = [-1, 0].
- (33) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q : |q| = 1\}$ holds E-max P = [1, 0].
- (34) For every map f from $\mathcal{E}_{\mathrm{T}}^2$ into \mathbb{R}^1 such that for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $f(p) = \operatorname{proj1}(p)$ holds f is continuous.
- (35) For every map f from $\mathcal{E}_{\mathrm{T}}^2$ into \mathbb{R}^1 such that for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $f(p) = \mathrm{proj2}(p)$ holds f is continuous.
- (36) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q; q \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|q| = 1\}$ holds UpperArc $P \subseteq P$ and LowerArc $P \subseteq P$.
- (37) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{q; q \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|q| = 1\}$. Then UpperArc $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p \in P \land p_{2} \ge 0\}$.
- (38) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{q; q \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|q| = 1\}$. Then LowerArc $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p \in P \land p_{2} \leq 0\}$.
- (39) Let a, b, d, e be real numbers. Suppose $a \leq b$ and e > 0. Then there exists a map f from $[a, b]_{T}$ into $[e \cdot a + d, e \cdot b + d]_{T}$ such that f is a homeomorphism and for every real number r such that $r \in [a, b]$ holds $f(r) = e \cdot r + d$.
- (40) Let a, b, d, e be real numbers. Suppose $a \leq b$ and e < 0. Then there exists a map f from $[a, b]_{T}$ into $[e \cdot b + d, e \cdot a + d]_{T}$ such that f is a homeomorphism and for every real number r such that $r \in [a, b]$ holds $f(r) = e \cdot r + d$.
- (41) There exists a map f from \mathbb{I} into $[-1, 1]_{\mathrm{T}}$ such that f is a homeomorphism and for every real number r such that $r \in [0, 1]$ holds $f(r) = (-2) \cdot r + 1$ and f(0) = 1 and f(1) = -1.

- (42) There exists a map f from \mathbb{I} into $[-1, 1]_T$ such that f is a homeomorphism and for every real number r such that $r \in [0, 1]$ holds $f(r) = 2 \cdot r 1$ and f(0) = -1 and f(1) = 1.
- (43) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{p; p \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|p| = 1\}$. Then there exists a map f from $[-1, 1]_{T}$ into $(\mathcal{E}_{T}^{2}) \upharpoonright$ LowerArc P such that f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} such that $q \in$ LowerArc P holds $f(q_{1}) = q$ and f(-1) = W-min P and f(1) = E-max P.
- (44) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{p; p \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|p| = 1\}$. Then there exists a map f from $[-1, 1]_{T}$ into (\mathcal{E}_{T}^{2}) | UpperArc P such that f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} such that $q \in$ UpperArc P holds $f(q_{1}) = q$ and f(-1) = W-min P and f(1) = E-max P.
- (45) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $|p| = 1\}$. Then there exists a map f from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2)$ bowerArc P such that
 - (i) f is a homeomorphism,
 - (ii) for all points q_1 , q_2 of \mathcal{E}_T^2 and for all real numbers r_1 , r_2 such that $f(r_1) = q_1$ and $f(r_2) = q_2$ and $r_1 \in [0, 1]$ and $r_2 \in [0, 1]$ holds $r_1 < r_2$ iff $(q_1)_1 > (q_2)_1$,
- (iii) f(0) = E-max P, and
- (iv) $f(1) = W \min P$.
- (46) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $|p| = 1\}$. Then there exists a map f from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2)$ UpperArc P such that
- (i) f is a homeomorphism,
- (ii) for all points q_1 , q_2 of \mathcal{E}_T^2 and for all real numbers r_1 , r_2 such that $f(r_1) = q_1$ and $f(r_2) = q_2$ and $r_1 \in [0, 1]$ and $r_2 \in [0, 1]$ holds $r_1 < r_2$ iff $(q_1)_1 < (q_2)_1$,
- (iii) f(0) = W-min P, and
- (iv) f(1) = E-max P.
- (47) Let p_1, p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_2 \in \text{UpperArc } P$ and $\text{LE}(p_1, p_2, P)$, then $p_1 \in \text{UpperArc } P$.
- (48) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 < 0$ and $(p_2)_2 < 0$. Then $(p_1)_1 > (p_2)_1$ and $(p_1)_2 < (p_2)_2$.
- (49) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$.

104

Then $(p_1)_1 < (p_2)_1$ and $(p_1)_2 < (p_2)_2$.

- (50) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$. Then $(p_1)_1 < (p_2)_1$.
- (51) Let p_1, p_2 be points of \mathcal{E}^2_T and P be a compact non empty subset of \mathcal{E}^2_T . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}^2_T : |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_2 \leq 0$ and $(p_2)_2 \leq 0$ and $p_1 \neq \text{W-min } P$. Then $(p_1)_1 > (p_2)_1$.
- (52) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ but $(p_2)_2 \ge 0$ or $(p_2)_1 \ge 0$ but $\text{LE}(p_1, p_2, P)$. Then $(p_1)_2 \ge 0$ or $(p_1)_1 \ge 0$.
- (53) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_1 \ge 0$ and $(p_2)_1 \ge 0$. Then $(p_1)_2 > (p_2)_2$.
- (54) Let p_1, p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 < 0$ and $(p_2)_2 < 0$ and $(p_1)_1 \ge (p_2)_1$ or $(p_1)_2 \le (p_2)_2$. Then $LE(p_1, p_2, P)$.
- (55) Let p_1, p_2 be points of \mathcal{E}^2_T and P be a compact non empty subset of \mathcal{E}^2_T . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}^2_T : |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 > 0$ and $(p_2)_1 > 0$ and $(p_1)_2 < 0$ and $(p_2)_2 < 0$ and $(p_1)_1 \ge (p_2)_1$ or $(p_1)_2 \ge (p_2)_2$. Then $\text{LE}(p_1, p_2, P)$.
- (56) Let p_1, p_2 be points of $\mathcal{E}^2_{\mathrm{T}}$ and P be a compact non empty subset of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_1)_1 \le (p_2)_1$ or $(p_1)_2 \le (p_2)_2$. Then $\mathrm{LE}(p_1, p_2, P)$.
- (57) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_1)_1 \le (p_2)_1$. Then $\text{LE}(p_1, p_2, P)$.
- (58) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 \ge 0$ and $(p_2)_1 \ge 0$ and $(p_1)_2 \ge (p_2)_2$. Then $\text{LE}(p_1, p_2, P)$.
- (59) Let p_1, p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_2 \leq 0$ and $(p_2)_2 \leq 0$ and $p_2 \neq W$ -min P and $(p_1)_1 \geq (p_2)_1$. Then $LE(p_1, p_2, P)$.
- (60) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 \leq 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphS(q), then $p_2 \leq 0$.
- (61) Let c_1 be a real number, p_1, p_2, q_1, q_2 be points of \mathcal{E}^2_T , and P be a compact

non empty subset of \mathcal{E}_{T}^{2} . Suppose $-1 < c_{1}$ and $c_{1} < 1$ and $P = \{p; p \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|p| = 1\}$ and $\text{LE}(p_{1}, p_{2}, P)$ and $q_{1} = c_{1}$ -FanMorphS (p_{1}) and $q_{2} = c_{1}$ -FanMorphS (p_{2}) . Then $\text{LE}(q_{1}, q_{2}, P)$.

(62) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $(p_1)_1 < 0$ and $(p_1)_2 \ge 0$ and $(p_2)_1 < 0$ and $(p_2)_2 \ge 0$ and $(p_3)_1 < 0$ and $(p_3)_2 \ge 0$ and $(p_4)_1 < 0$ and $(p_4)_2 \ge 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(63) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $\text{LE}(p_2, p_3, P)$ and $\text{LE}(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_3)_2 \ge 0$ and $(p_4)_2 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} \ge 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} \ge 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} \ge 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} \ge 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(64) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_3)_2 \ge 0$ and $(p_4)_2 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(65) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ or $(p_1)_1 \ge$ 0 and $(p_2)_2 \ge 0$ or $(p_2)_1 \ge 0$ and $(p_3)_2 \ge 0$ or $(p_3)_1 \ge 0$ and $(p_4)_2 > 0$ or $(p_4)_1 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}^2_{T} holds |f(q)| = |q|

and $q_1 = f(p_1)$ and $q_2 = f(p_2)$ and $q_3 = f(p_3)$ and $q_4 = f(p_4)$ and $(q_1)_2 \ge 0$ and $(q_2)_2 \ge 0$ and $(q_3)_2 \ge 0$ and $(q_4)_2 > 0$ and $\text{LE}(q_1, q_2, P)$ and $\text{LE}(q_2, q_3, P)$ and $\text{LE}(q_3, q_4, P)$.

(66) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ or $(p_1)_1 \ge$ 0 and $(p_2)_2 \ge 0$ or $(p_2)_1 \ge 0$ and $(p_3)_2 \ge 0$ or $(p_3)_1 \ge 0$ and $(p_4)_2 > 0$ or $(p_4)_1 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(67) Let p_1, p_2, p_3, p_4 be points of $\mathcal{E}_{\mathrm{T}}^2$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |p| = 1\}$ and $p_4 = \text{W-min } P$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$ and there exist points q_1, q_2, q_3, q_4 of $\mathcal{E}_{\mathrm{T}}^2$ such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(68) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

5. General Fashoda Theorems

One can prove the following propositions:

(69) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $p_1 \neq p_2$ and $p_2 \neq p_3$ and $p_3 \neq p_4$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_3)_1 < 0$ and $(p_4)_1 < 0$ and

 $(p_1)_2 < 0$ and $(p_2)_2 < 0$ and $(p_3)_2 < 0$ and $(p_4)_2 < 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that f is a homeomorphism and for every point q of \mathcal{E}_T^2 holds |f(q)| = |q| and $[-1, 0] = f(p_1)$ and $[0, 1] = f(p_2)$ and $[1, 0] = f(p_3)$ and $[0, -1] = f(p_4)$.

- (70) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $\text{LE}(p_2, p_3, P)$ and $\text{LE}(p_3, p_4, P)$ and $p_1 \neq p_2$ and $p_2 \neq p_3$ and $p_3 \neq p_4$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that f is a homeomorphism and for every point q of \mathcal{E}_T^2 holds |f(q)| = |q| and $[-1, 0] = f(p_1)$ and $[0, 1] = f(p_2)$ and $[1, 0] = f(p_3)$ and $[0, -1] = f(p_4)$.
- (71) Let p_1, p_2, p_3, p_4 be points of $\mathcal{E}_{\mathrm{T}}^2$, P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, and C_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $|p| = 1\}$ and $\mathrm{LE}(p_1, p_2, P)$ and $\mathrm{LE}(p_2, p_3, P)$ and $\mathrm{LE}(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_2$ and $g(1) = p_4$ and $\mathrm{rng} f \subseteq C_0$ and $\mathrm{rng} g \subseteq C_0$. Then $\mathrm{rng} f$ meets $\mathrm{rng} g$.
- (72) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $\text{LE}(p_2, p_3, P)$ and $\text{LE}(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_4$ and $g(1) = p_2$ and $\text{rng } f \subseteq C_0$ and $\text{rng } g \subseteq C_0$. Then rng f meets rng g.
- (73) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \ge 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_4$ and $g(1) = p_2$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (74) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \ge 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_2$ and $g(1) = p_4$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.

References

- [1] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-[3] 65. 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
 [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427-440, 1997.
- Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
- [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [13]Yatsuka Nakamura. Fan homeomorphisms in the plane. Formalized Mathematics, 10(1):1-19.2002
- [14] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(1):223–230, 1990.
- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [20]Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received June 24, 2002