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Summary. We will introduce four homeomorphisms (Fan morphisms)
which give spoke-like distortion to the plane. They do not change the norms of
vectors and preserve halfplanes invariant. These morphisms are used to regulate
placement of points on the circle.
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The articles [14], [18], [5], [7], [1], [2], [11], [12], [10], [3], [13], [4], [9], [19], [16],
[17], [15], [8], and [6] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper z, a denote real numbers and p, ¢ denote points of 5%.
The following propositions are true:
(1) If |z| < a, then —a < z and z < a.
(2) Ifa>0and (x—a)-(z+a) <0, then —a <z and z < a.
(3) For every real number s; such that —1 < s; and s; < 1 holds 1+s; > 0
and 1 —s; > 0.
(4) For every real number a such that a® < 1 holds —1 < @ and a < 1.
(5) For every real number a such that a® < 1 holds —1 < @ and a < 1.
(6) Let X be a non empty topological structure, g be a map from X into
R, B be a subset of X, and a be a real number. If g is continuous and
B = {p; p ranges over points of X: m,g > a}, then B is open.
(7) Let X be a non empty topological structure, g be a map from X into
R, B be a subset of X, and a be a real number. If g is continuous and
B = {p; p ranges over points of X: m,g < a}, then B is open.

@ 2002 University of Bialystok
1 ISSN 1426-2630



YATSUKA NAKAMURA

(8) Let f be a map from &% into £2. Suppose that
(i)  f is continuous and one-to-one,

(i) rgf= Qgz, and

(ili)  for every point py of 5% there exists a non empty compact subset K
of 5% such that K = f°K and there exists a subset V5 of 5% such that
p2 € Vo and Vs is open and Vo C K and f(p2) € Va.

Then f is a homeomorphism.

(9) Let X be a non empty topological space, f1, f2 be maps from X into R,
and a, b be real numbers. Suppose fi is continuous and fo is continuous
and b # 0 and for every point g of X holds fa(gq) # 0. Then there exists a
map ¢ from X into R such that

(i)  for every point p of X and for all real numbers 7y, ro such that fi(p) =

i

and fa(p) = r5 holds g(p) = 24—, and

(ii) g is continuous.

(10) Let X be a non empty topological space, f1, fo be maps from X into RY,
and a, b be real numbers. Suppose fi is continuous and fo is continuous
and b # 0 and for every point ¢ of X holds fa(q) # 0. Then there exists a
map g from X into R such that

(i)  for every point p of X and for all real numbers 7y, rg such that fi(p) =

n_

a'nd f2(p) =T2 hOldS g(p) =79 - T2b , and
(ii) g is continuous.

(11) Let X be a non empty topological space and f; be a map from X into
R!. Suppose f; is continuous. Then there exists a map g from X into R!
such that for every point p of X and for every real number ry such that
f1(p) = r1 holds g(p) = 12 and g is continuous.

(12) Let X be a non empty topological space and f; be a map from X into
RY. Suppose f; is continuous. Then there exists a map g from X into R!
such that for every point p of X and for every real number r; such that
fi(p) = r1 holds g(p) = |r1| and g is continuous.

(13) Let X be a non empty topological space and f; be a map from X into
R1. Suppose fi is continuous. Then there exists a map g from X into R!
such that for every point p of X and for every real number r; such that
fi(p) = r1 holds g(p) = —r1 and g is continuous.

(14) Let X be a non empty topological space, f1, f2 be maps from X into R,
and a, b be real numbers. Suppose f; is continuous and fo is continuous
and b # 0 and for every point g of X holds fa(q) # 0. Then there exists a
map ¢ from X into R! such that

(i)  for every point p of X and for all real numbers ry, ro such that fi(p) =

nn_

and fo(p) = ro holds g(p) =ro- —\/|1 — (”T)z\, and
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(ii) g is continuous.
(15) Let X be a non empty topological space, fi, f> be maps from X into R,

and a, b be real numbers. Suppose f; is continuous and fy is continuous
and b # 0 and for every point g of X holds f2(gq) # 0. Then there exists a
map g from X into R! such that

(i) for every point p of X and for all real numbers r1, 3 such that f1(p) =
and fo(p) = > holds g(p) = > \/1 = (% )2, and

(ii) g is continuous.

Let n be a natural number. The functor n NormF yields a function from the

carrier of £} into the carrier of R' and is defined by:
(Def. 1) For every point ¢ of £} holds n NormF(q) = |q|.
Next we state several propositions:

(16) For every natural number n holds dom(n NormF) = the carrier of &t
and dom(n NormF) = R".

(18)}  For every natural number n and for all points p, g of £Z holds ||p|—|q|| <
p—ql.

(19) For every natural number n and for every map f from E? into R such
that f = n NormF holds f is continuous.

(20) Let n be a natural number, K be a subset of £}, and f be a map from
(EM)1 Ky into RL. If for every point p of (€2)[Kp holds f(p) = n NormF(p),
then f is continuous.

(21) Let n be a natural number, p be a point of £, r be a real number, and
B be a subset of EL. If B = Ball(p,), then B is Bounded and closed.

(22) For every point p of £2 and for every real number r and for every subset
B of €2 such that B = Ball(p,r) holds B is compact.

2. FAN MORPHISM FOR WEST

Let s be a real number and let ¢ be a point of 8%. The functor FanW(s, q)
yields a point of 5% and is defined as follows:

a2 _, a2

lg| - [=1/1 —( ‘q'_s )2, ‘i'__ss], if % > sand g1 <0,

(Def. 2) FanW(s,q) = a2_ a2,
lg] - [—1/1—( ‘T'Jrs )2, ‘T'Jrs ], if % <sand ¢ <0,

q, otherwise.

[y

Let s be a real number. The functor s-FanMorphW yields a function from
the carrier of 5% into the carrier of 5% and is defined by:

!The proposition (17) has been removed.
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(Def. 3) For every point g of £2 holds s-FanMorphW(q) = FanW(s, q).
Next we state a number of propositions:
(23) Let s; be a real number. Then

92 _g

g
(i) if ‘%2' > s1 and ¢1 < 0, then s; -FanMorphW(q) = [|¢|-—1/1 — (“{'_751)2,

a2
lq| - {=—], and

(ii) if g1 > 0, then s; -FanMorphW(q) = gq.
(24) For every real number s; such that ‘%‘" < sp and @1 < 0 holds

=12 fa—*1
s1-FanMorphW (q) = [[q] - —{/1 — ( 1+s1 )2 lal - 1+s1 J-

(25) Let 51 be a real number such that —1 < s; and s; < 1. Then

(i) > s1 and 1 < 0 and g # Ogz, then s, -FanMorphW(q) = [|¢| -
/ —51 2 _g)
\il - 2 ‘ | Iile ]’ and
i < s1and g1 < 0 and g # Og%, then s; -FanMorphW(q) = [|q] -

V Ayl H2
1+81 14+sq 1°

Let s1 be a real number, K; be a non empty subset of 5%, and f be a
map from (£2)[K; into Rl. Suppose that
(1) -1 < sy,
(i) s <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

P2_ o

b
f(p) = |p| - ¥, and
(iv)  for every point g of €% such that ¢ € the carrier of (£2)] K7 holds ¢1 < 0
and g # Ogz .
Then f is continuous.
(27) Let s be a real number, K; be a non empty subset of 5%, and f be a
map from (£2)K; into RL. Suppose that
(i) -1 < sy,
(i) s <1,
(i)  for every point p of €% such that p € the carrier of (£2)]K; holds

) = lpl - =2 and
(iv)  for every point ¢ of % such that ¢ € the carrier of (£2)] K7 holds ¢1 < 0
and q # 05%.
Then f is continuous.
(28) Let s1 be a real number, K7 be a non empty subset of 5%, and f be a
map from (£2)K; into R!. Suppose that
(i) -1 < sq,
(i) s1<1,
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(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

7o) = ol - =1 - (22, and

(iv)  for every point q of % such that g € the carrier of (£2)[ K7 holds g1 < 0
and {2 > s; and ¢ # Og2.
Then f is continuous.

(29) Let s; be a real number, K; be a non empty subset of £2, and f be a
map from (£2)K; into R!. Suppose that
(i) —1 < sy,
(i) s <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

) = Ipl- =1 — (Z=2)2, and

(iv) for every point g of £2 such that g € the carrier of (€2)[K; holds ¢1 < 0
and {# < s1 and ¢ # Ogz.
Then f is continuous.

(30) Let s; be a real number, Ky, By be subsets of %, and f be a
map from (£2)[Kp into (£2)]By. Suppose —1 < s; and s; < 1 and
f = si1-FanMorphW |Ky and By = {g;q ranges over points of 5%:
g1 <0 A q#Og%}andKoz{p:%l>sl A pr <0 A p#Og%}.
Then f is continuous.

(31) Let s; be a real number, Ky, By be subsets of €%, and f be a
map from (£2)[Ky into (£%)]By. Suppose —1 < s and s; < 1 and
f = si1-FanMorphW |Ky and By = {¢;q ranges over points of 8%:
g1 <0 A q;éOggF}andKO:{pzﬁgsl A pr <0 A p;é()g%}.
Then f is continuous.

(32) For every real number s; and for every subset K3 of 5% such that K3 =
{p:p2 > s1-|p| A p1 <0} holds K3 is closed.

(33) For every real number s; and for every subset K3 of 5% such that K3 =
{p:p2 <s1-|p| A p1 <0} holds K3 is closed.

(34) Let s1 be a real number, Ky, By be subsets of %, and f be a
map from (£2)[Kp into (£2)]By. Suppose —1 < s and s; < 1 and
f = s1-FanMorphW [Ky and By = (the carrier of £2) \ {Og%} and
Ko={p:p1 <0 A p# 05%}. Then f is continuous.

(35) Let s1 be a real number, Ky, By be subsets of &%, and f be a
map from (£2)[Ky into (£2)]By. Suppose —1 < s and s; < 1 and
f = s1-FanMorphW |Ky and By = (the carrier of £2) \ {05%} and
Ko={p:p1>20 A p# Og%}. Then f is continuous.

(36) Let By be a subset of £2 and K be a subset of (£2)[By. Suppose By =
(the carrier of £2)\ {Og%} and Ko={p:p1 <0 A p# 05%}' Then K is
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closed.

(37) Let s1 be a real number, By be a subset of £2, K be a subset of (£2)] By,
and f be a map from (£2)[By| Ky into (£2)]By. Suppose —1 < s1 and
s1 < 1and f = s;-FanMorphW [ K and By = (the carrier of £2) \ {()g%}
and Ko={p:p1 <0 A p# Og%}. Then f is continuous.

(38) Let By be a subset of £2 and K be a subset of (£2)]By. Suppose By =
(the carrier of £2) \ {05%} and Ko={p:p1 >0 A p# 05%}. Then Kj is
closed.

(39) Let s; be a real number, By be a subset of £2, K be a subset of (£2)] By,
and f be a map from (£2)[By| Ky into (£2)]By. Suppose —1 < s1 and
s1 < 1and f = s;-FanMorphW [ K and By = (the carrier of £2) \ {05%}
and Ko={p:p1 >0 A p# 05%}. Then f is continuous.

(40) For every real number s; and for every point p of 5’% holds
|s1 -FanMorphW (p)| = |p|.

(41) For every real number s; and for all sets x, Ky such that —1 < s;
and s1 < 1l and z € Ko and Ko = {p : p1 < 0 A p#Og%}holds
s1-FanMorphW (z) € K.

(42) For every real number s; and for all sets x, Ky such that —1 < s;
and s1 < 1l and 2 € Kpand Ko = {p : p1 =2 0 A p;éOg%}holds
s1-FanMorphW (z) € K.

(43) Let s be a real number and D be a non empty subset of £%. Suppose
—1 < 51 and 51 < 1 and D° = {05%}' Then there exists a map h from
(E2)ID into (£2)] D such that h = s; -FanMorphW [ D and h is continuous.

(44) Let s; be a real number. Suppose —1 < s; and s; < 1. Then there
exists a map h from £2 into £2 such that h = s;-FanMorphW and h is
continuous.

(45) For every real number s; such that —1 < s; and s; < 1 holds
s1 -FanMorphW is one-to-one.

(46) For every real number s; such that —1 < s; and s; < 1 holds
51 -FanMorphW is a map from £2 into €2 and rng(s; -FanMorphW) = the
carrier of 5%.

(47) Let s; be a real number and ps be a point of 5%. Suppose —1 < s1
and s; < 1. Then there exists a non empty compact subset K of 5% such
that K = s; -FanMorphW° K and there exists a subset V5 of £% such that
p2 € Vo and V3 is open and Vo C K and s -FanMorphW (psy) € Va.

(48) Let s; be a real number. Suppose —1 < s; and s; < 1. Then there
exists a map f from €2 into €2 such that f = s; -FanMorphW and f is a
homeomorphism.

(49) Let s; be a real number and ¢ be a point of 5%. Suppose —1 < 1
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and s1 < 1 and ¢; < 0 and %"' > s1. Let p be a point of 5%. Ifp =
s1-FanMorphW(q), then p; < 0 and p2 > 0.

(50) Let s; be a real number and ¢ be a point of 6’%. Suppose —1 < s71
and s < 1 and ¢3 < 0 and %2' < s1. Let p be a point of S%. If p =
s1-FanMorphW (q), then p; < 0 and p2 < 0.

(51) Let s be a real number and ¢y, g2 be points of £%. Suppose —1 < s
and s1 < 1 and (¢1)1 < 0 and (|qqll)|2 > 51 and (g2)1 < 0 and (fq?z)f > s1 and

—(ﬁlll)f < (ﬁ;z)f. Let p1, ps be points of 5%. If p; = s;-FanMorphW(q¢;) and

p2 = s1-FanMorphW(g2), then (ﬁ;)f < %_

(52) Let s; be a real number and ¢, g2 be points of 82 Suppose —1 < $1
and s; < 1 and (¢q1)1 < 0 and (|ql)|2 < s1 and (g2)1 < 0 and (f2)‘ < s1 and

(fqll)f < (f;)f. Let pi1, p2 be points of £2. If p; = s1 -FanMorphW(q;) and

p2 = s1-FanMorphW(g2), then (T;l)f < % _

(53) Let s; be a real number and ¢, g2 be points of 52 Suppose —1 < 81

and s1 < 1 and (¢1)1 < 0 and (g2)1 < 0 and (?l)f < (‘q)‘ Let p1, ps be

points of 2. If p; = s1-FanMorphW(q1) and ps = s1 -FanMorphW(g2),

(p1)2 (p2)2
then T F < 5,1

(54) Let s; be a real number and g be a point of £2. Suppose —1 < s
and s; < 1 and ¢ < 0 and %" = s1. Let p be a point of £2. If p =
s1-FanMorphW(q), then p; < 0 and p2 = 0.

(55) For every real number s; holds Ogz = s1 -FanMorphW(0gz ).

3. FAN MORPHISM FOR NORTH

Let s be a real number and let ¢ be a point of 2. The functor FanN(s, q)
yields a point of €2 and is defined by:

a1 a .
|Q|'[‘i|75 ) 1- (‘i‘ s )2]7 1f%>8and Q2>O,
(Def. 4) FanN(s,q) = a1 _g o

|Q|'[‘il+s, 1—(‘{:_5)] f‘qq|<sandq2>()

q, otherwise.

Let ¢ be a real number. The functor c-FanMorphN yielding a function from
the carrier of 5% into the carrier of 5% is defined as follows:

(Def. 5) For every point g of £ holds ¢-FanMorphN(q) = FanN(c, g).
One can prove the following propositions:
(56) Let ¢1 be a real number. Then
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91
@ > ¢ and ga > 0, then ¢ -FanMorphN(q) = [|g| - 12 - lq| -

1—cy ?

Iq\
- , and

(i) if g2 <0, then ¢1 -FanMorphN(q) = gq.
57) For every real number c¢; such that &£ < ¢; and g2 > 0 holds
lq]

q—l—cl ﬂ_cl
c1-FanMorphN(q) = [lq| - ¥— |q| - /1 = (14-)2].

1+cp 1+c1
(58) Let ¢ be a real number such that —1 < ¢; and ¢; < 1. Then
a1
(i) | | > c1and g2 > 0 and g # Ogz, then ¢ -FanMorphN(q) = [|¢|- ‘i‘,(jla

=—c1

lal - \/1 = (=)?], and

1—c1

(i) if & -
q1
lal - /1 = ()7,
(59) Let c; be a real number, K7 be a non empty subset of 5%, and f be a
map from (£2)K; into R!. Suppose that
(i) -1 < e,
(ii) c <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)[K; holds

<cpandge > 0and g # Ogz, then ¢; -FanMorphN(q) = [|¢|- ‘i‘ﬂ,l ,

—C1

f(p)=1Ipl- "" ——, and
(iv)  for every pomt q of E2 such that ¢ € the carrier of (£2)] K holds g2 > 0

and ¢ # Ogz .
Then f is continuous.

(60) Let c; be a real number, K; be a non empty subset of 8%, and f be a
map from (€2)K; into R!. Suppose that
(1) -1 < ey,
(i) o<1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

—c1

P1
F0) = lpl - 2 ana
(iv)  for every point ¢ of % such that ¢ € the carrier of (£2)] K7 holds g2 > 0
and ¢ # Ogz .
Then f is continuous.

(61) Let c; be a real number, K; be a non empty subset of £2, and f be a
map from (£2)K; into R!. Suppose that
(i) -1 < e,
(i) e <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

) = ol - /1= (B=2)2, and
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(iv) for every point g of £2 such that ¢ € the carrier of (€2)[K; holds g2 > 0
and Tl | > c1 and q7é052
Then f is continuous.
(62) Let c; be a real number, K; be a non empty subset of 5%, and f be a
map from (€2)K; into R!. Suppose that
(i) -1 <ey,
(ii) c <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

B
fp)=Ipl-\/1 = (F5)? and

(iv) for every point q of €2 such that q € the carrier of (£2)[K; holds g2 > 0
and 1 W < ¢ and ¢ # Og2.

Then f is continuous.

(63) Let c¢; be a real number, Ky, By be subsets of &%, and f be a
map from (£2)[Ko into (£2)]Bo. Suppose —1 < ¢; and ¢; < 1 and
f = c1-FanMorphN [Ky and By = {q;q ranges over points of 5%:
2 >0 A q;éOS%}andKoz{p:%>c1 AN p2 =20 A p#Og%}.
Then f is continuous.

(64) Let c¢; be a real number, Ky, By be subsets of &%, and f be a
map from (£2)[Ko into (£2)]By. Suppose —1 < ¢ and ¢; < 1 and
f = ci-FanMorphN [Ky and By = {¢;q ranges over points of 5%:
2 >0 A q#Og%}anngz{p:%'<cl AN p2 =20 A p;éOS%}.
Then f is continuous.

65) For every real number c¢; and for every subset K3 of £2 such that K3 =

T
{p:p1>ci-|p| A p2 >0} holds K3 is closed.
66) For every real number ¢; and for every subset K3 of 2 such that K5 =
y y T
{p:p1 <eci-|p| AN p2 >0} holds K3 is closed.

(67) Let c¢; be a real number, Ky, By be subsets of &%, and f be a
map from (£2)[Ko into (£2)]By. Suppose —1 < ¢ and ¢; < 1 and
f = c¢;-FanMorphN [K, and By = (the carrier of £2)\ {05%} and

={p:p2>20 A p# ng} Then f is continuous.

(68) Let c¢; be a real number, Ky, By be subsets of &%, and f be a
map from (£2)[Ko into (£2)]Bp. Suppose —1 < ¢ and ¢; < 1 and
f = ci1-FanMorphN [K( and By = (the carrier of £2) \ {05%} and
Ko={p:p2<0 A p# Og%}. Then f is continuous.

(69) Let By be a subset of £2 and K be a subset of (£2)]By. Suppose By =
(the carrier of £2)\ {052} and Ko={p:p2>20 A p# 052} Then K is
closed.

(70) Let By be a subset of £2 and K be a subset of (£2)[By. Suppose By =
(the carrier of £2)\ {Og%} and Ko={p:p2 <0 A p# 05%}' Then K is
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closed.

(71) Let ¢1 be a real number, By be a subset of £%, K be a subset of (£2)] By,
and f be a map from (£2)[By[Ky into (E2)[By. Suppose —1 < ¢; and
c1 < 1and f = ¢; -FanMorphN [ K and By = (the carrier of £2) \ {()g%}
and Ko={p:p22>20 A p# Og%}. Then f is continuous.

(72) Let c; be a real number, By be a subset of £2, Ko be a subset of (£2)] By,
and f be a map from (E2)[By[Ko into (£2)]By. Suppose —1 < ¢; and
c1 <1 and f = ¢; -FanMorphN [Kj and By = (the carrier of £2)\ {Og%}
and Ko={p:p2 <0 A p# 05%}. Then f is continuous.

or cevery real number c; an or every pomt p O oldas
73) F 1 b d f i f &% hold
|c1 -FanMorphN(p)| = |p|.

(74) For every real number ¢; and for all sets x, Ky such that —1 < ¢
and ¢; < 1 and x € Ko and Kg = {p : p2 > 0 A p;éOggr}holds
¢1 -FanMorphN(z) € K.

(75) For every real number ¢; and for all sets x, Ky such that —1 < ¢
and ¢; < 1l and z € Ky and Ko = {p : p2 < 0 A p#Og%}holds
¢1 -FanMorphN(z) € K.

(76) Let c1 be a real number and D be a non empty subset of £2. Suppose
—1 < ¢ and ¢; < 1 and D¢ = {Og%}. Then there exists a map h from

(E2)ID into (E2)]D such that h = ¢y -FanMorphN [ D and h is continuous.

(77) Let c; be a real number. Suppose —1 < ¢; and ¢; < 1. Then there
exists a map h from £2 into £2 such that h = ¢;-FanMorphN and h is
continuous.

(78) For every real number c¢; such that —1 < ¢; and ¢; < 1 holds
c1 -FanMorphN is one-to-one.

(79) For every real number c¢; such that —1 < ¢; and ¢; < 1 holds
c1 -FanMorphN is a map from 5% into 8% and rng(c; -FanMorphN) = the
carrier of é’%.

(80) Let ¢; be a real number and py be a point of £2. Suppose —1 < ¢
and c¢; < 1. Then there exists a non empty compact subset K of 5% such
that K = ¢y -FanMorphN° K and there exists a subset V5 of 5% such that
p2 € Vo and Vs is open and Vo C K and ¢ -FanMorphN(ps) € Va.

(81) Let ¢; be a real number. Suppose —1 < ¢; and ¢; < 1. Then there
exists a map f from €2 into €% such that f = ¢ -FanMorphN and f is a
homeomorphism.

(82) Let ¢; be areal number and ¢ be a point of 5%. Suppose —1 < ¢1 and ¢1 <
1 and g2 > 0 and % > c1. Let p be a point of £2. If p = ¢; -FanMorphN(q),
then po > 0 and p; > 0.

(83) Let ¢ be areal number and ¢ be a point of 5%. Suppose —1 < ¢1 and ¢ <
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land g2 > 0 and % < c1. Let p be a point of E2. If p = ¢; -FanMorphN(g),
then po > 0 and p; < 0.

(84) Let ¢1 be a real number and ¢, g2 be points of 5%. Suppose —1 < ¢

and ¢; < 1 and (¢q1)2 > 0 and (fqll)‘l > ¢; and (g2)2 > 0 and (71;3‘1 > c; and

(fqll)f < (@22)‘1. Let p1, p2 be points of E2. If p; = ¢; -FanMorphN(q;) and

p2 = ¢ -FanMorphN(gz2), then (@1)'1 < % .

(85) Let ¢ be a real number and ¢, g2 be points of 52 Suppose —1 < ¢
and ¢; < 1 and (¢q1)2 > 0 and (T”)‘ < ¢ and (g2)2 > 0 and (| )‘ < ¢ and

(‘C"qll)| < (‘quQ)‘ . Let p1, p2 be points of 2. If p; = ¢; -FanMorphN(g;) and

p2 = ¢1 -FanMorphN(gz), then (P11 _ (P21

[p1] [p2]
(86) Let ¢ be a real number and ¢, g2 be points of 52 Suppose —1 < ¢
and ¢; < 1 and (q1)2 > 0 and (g2)2 > 0 and (Iq)l < %. Let p1, po

be points of £2. If p; = ¢1 -FanMorphN(q;) and ps = ¢; -FanMorphN(g2),
(p1)1 ( (p2)1
then 5 <l
(87) Let ¢ be areal number and ¢ be a point of 5%. Suppose —1 < ¢y and ¢ <
1l and g2 > 0 and % = c1. Let p be a point of £2. If p = ¢; -FanMorphN(q),
then pa > 0 and p; = 0.

88) For every real number ¢; holds Oc2 = ¢; -FanMorphN(Og2 ).
gT ST

4. FAN MORPHISM FOR EAST

Let s be a real number and let ¢ be a point of 5%. The functor FanE(s, q)
yields a point of 5% and is defined as follows:

92 2

g - [\/1 = (552, 55, if 2 > 5 and g1 > 0,
(Def. 6) FanE(s,q) = a2 _g a2
lal - [\/1 = ()2 ), i {2 < s and g1 > 0,

q, otherwise.
Let s be a real number. The functor s-FanMorphE yielding a function from
the carrier of S% into the carrier of E% is defined as follows:

(Def. 7) For every point g of £2 holds s-FanMorphE(g) = FanE(s, q).
Next we state a number of propositions:
(89) Let s; be a real number. Then

az _
(i) if % > s1 and ¢1 > 0, then s; -FanMorphE(q) = [|¢| - /1 — (“{'_781)2,

a2 o
lq| - =], and

(ii) if ¢1 <0, then s; -FanMorphE(q) =
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(90) For every real number s; such that ‘%2‘ < s1 and g1 > 0 holds

a1 \2 far =1
s1-FanMorphE(q) = [lg| - \/1 — (455-)2, lg] - ).

(91) Let s1 be a real number such that —1 < s and s; < 1. Then
(i) if %2' > sy and ¢ > 0 and ¢ # 05%, then s;-FanMorphE(q) = [|q] -

2_51 2—81
1 - (45-)2,lgl - §=-], and
(i) if % < sy and g7 > 0 and g # 05%, then s; -FanMorphE(q) = [|¢| -

92 a2
= —s = —s
lal —°t !

1— ()% lal - )
(92) Let s be a real number, K; be a non empty subset of 5%, and f be a
map from (£2)K; into R!. Suppose that
(1) -1 < sy,
(i) s <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

P2

f(p) = lp|- ¥, and
(iv)  for every point g of % such that g € the carrier of (£2)[ K7 holds g1 > 0

and ¢ 7# Ogz.
Then f is continuous.

(93) Let s1 be a real number, K; be a non empty subset of 5%, and f be a
map from (£2)K; into RL. Suppose that

(i) -1 < s1,
(i) s <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)[K; holds

P2 o
f) = |p| - ¥, and
(iv)  for every point ¢ of €% such that ¢ € the carrier of (£2)[ K7 holds ¢1 > 0
and g # Ogz .
Then f is continuous.

(94) Let s be a real number, K; be a non empty subset of E%, and f be a
map from (£2)K; into R!. Suppose that
(1) -1 < sy,
(i) s <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

70 = ol -1 = (B2, and

(iv)  for every point ¢ of €% such that ¢ € the carrier of (£2)] K7 holds ¢1 > 0
and {& > s; and ¢ # Ogz.
Then f is continuous.

(95) Let s be a real number, K; be a non empty subset of E%, and f be a
map from (£2)K; into R!. Suppose that
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(1) -1 < sy,
(i) s1<1,
(iii)  for every point p of £2 such that p € the carrier of (£2)[K; holds
P2
o[ %t

f) =1Ipl-\/1 = (F57)?% and
(iv)  for every point g of £2 such that g € the carrier of (€2)[K; holds ¢1 > 0

and {# < s1 and ¢ # Ogz.
Then f is continuous.

(96) Let s; be a real number, Ky, By be subsets of S%, and f be a
map from (£2)]Kp into (£2)]By. Suppose —1 < s; and s; < 1 and
f = si-FanMorphE [Ky and By = {q;q ranges over points of 5%:
g1 =0 A q#Og%}andKoz{p:%"l>sl AN pr =20 A p#Og%}.
Then f is continuous.

(97) Let s; be a real number, Ky, By be subsets of %, and f be a
map from (£2)]Ky into (£2)[By. Suppose —1 < s; and s; < 1 and
f = sip-FanMorphE [Ky and By = {g;q ranges over points of 5%:
g >0 A q;éOg%}andKoz{p:%<sl A pr >0 A p;éOg%}.
Then f is continuous.

(98) For every real number s; and for every subset K3 of 5% such that K3 =
{p:p2>s1-|p| A p1 >0} holds K3 is closed.

(99) For every real number s; and for every subset K3 of 6’% such that K3 =
{p:p2<s1-|p| A p1 >0} holds K3 is closed.

(100) Let s; be a real number, Ky, By be subsets of 5%, and f be a
map from (5%)[[(0 into (S%NBO. Suppose —1 < s1 and s; < 1 and
f = si1-FanMorphE [K(y and By = (the carrier of £2) \ {Og2} and
Ko={p:p1>0 A p# 05%}. Then f is continuous.

(101) Let s; be a real number, Ky, By be subsets of E’%, and f be a
map from (£2)[Ky into (£2)]By. Suppose —1 < s; and s; < 1 and
f = si-FanMorphE [Ko and By = (the carrier of £2) \ {05%} and
Ko={p:p1 <0 A p# 05%}. Then f is continuous.

(102) Let s; be a real number, By be a subset of £2, K be a subset of (£2)] B,
and f be a map from (2)[By| Ky into (£2)]By. Suppose —1 < s and
s1 < 1 and f = s;-FanMorphE |K( and By = (the carrier of £2) \ {05%}
and Ko={p:p1 >0 A p# Og%}. Then f is continuous.

(103) Let s be a real number, By be a subset of £2, K be a subset of (£2) B,
and f be a map from (2)[By| Ky into (£2)]By. Suppose —1 < s1 and
s1 < 1 and f = s;-FanMorphE [K( and By = (the carrier of £2)\ {05%}
and Ko={p:p1 <0 A p# Og%}. Then f is continuous.

(104) For every real number s; and for every point p of 5% holds
|s1 -FanMorphE(p)| = [p].

13
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(105) For every real number s; and for all sets z, Ky such that —1 < s
and s1 < 1l and x € Kopand Ko = {p:p1 =2 0 A p;é()g%}holds
s1-FanMorphE(z) € K.

(106) For every real number s; and for all sets x, Ky such that —1 < s;
and s1 < 1l and z € Ko and Ko = {p : p1 < 0 A p;éOg%}holds
s1-FanMorphE(z) € K.

(107) Let s1 be a real number and D be a non empty subset of 5%. Suppose
—1 < s; and 51 < 1 and D¢ = {Og%}. Then there exists a map h from

(E2)ID into (E2)]D such that h = s -FanMorphE | D and h is continuous.

(108) Let s; be a real number. Suppose —1 < s; and s; < 1. Then there
exists a map h from 5% into 5% such that h = s;-FanMorphE and h is
continuous.

(109) For every real number s; such that —1 < s; and s; < 1 holds
s1 -FanMorphE is one-to-one.

(110) For every real number s; such that —1 < s; and s; < 1 holds
s1 -FanMorphE is a map from 5% into 5% and rng(s; -FanMorphE) = the
carrier of 5%.

(111) Let s; be a real number and ps be a point of £2. Suppose —1 < s
and s; < 1. Then there exists a non empty compact subset K of 5% such
that K = s;-FanMorphE® K and there exists a subset V5 of 5% such that
p2 € Vo and Vs is open and Vo C K and s; -FanMorphE(ps) € V5.

(112) Let s; be a real number. Suppose —1 < s; and s; < 1. Then there
exists a map f from €2 into £2 such that f = sy -FanMorphE and f is a
homeomorphism.

(113) Let s; be a real number and g be a point of £2. Suppose —1 < s;
and s; < 1 and ¢; > 0 and %2' > s1. Let p be a point of 5%. If p =
s1-FanMorphE(q), then p; > 0 and pg > 0.

(114) Let s; be a real number and ¢ be a point of 5’%. Suppose —1 < s71
and s1 < 1 and ¢; > 0 and %' < s1. Let p be a point of 5%. If p =
s1-FanMorphE(q), then p; > 0 and pa < 0.

(115) Let s; be a real number and ¢;, g2 be points of E%. Suppose —1 < s1

and s; < 1 and (¢1)1 > 0 and (ilqll)f > s1 and (g2)1 > 0 and (@)‘2 > s1 and

. Let p1, p2 be points of 4. If p; = s; -FanMorphE(q;) and

(q1)2 < (q2)2

lq1] lq2]

p2 = s1-FanMorphE(g2), then

(P1)z _ (p2)2
[p1] < Ip2| *

(116) Let s; be a real number and ¢, g2 be points of £2. Suppose —1 < s

and s; < 1 and (g1)1 > 0 and (fqll)f < s1 and (g2)1 > 0 and (@)‘2 < 81 and

Let p1, pa be points of £2. If p; = s -FanMorphE(q;) and

(q1)2 (g2)2
lq1] < lga| ~

p2 = s1-FanMorphE(g2), then % < %‘
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(117) Let s; be a real number and g1, g2 be points of £2. Suppose —1 < s

and s; < 1 and (¢1)1 > 0 and (¢2)1 > 0 and (\q)l < %. Let pi1, po

be points of £2. If p; = s -FanMorphE(q;) and ps = s1 -FanMorphE(g2),

(p1)2 (P2)2
then T °F < g1

(118) Let s; be a real number and ¢ be a point of 5%. Suppose —1 < s
and s1 < 1 and ¢; > 0 and %' = s1. Let p be a point of E%. If p =
s1-FanMorphE(q), then p; > 0 and pa = 0.

(119)  For every real number s; holds Ogz = s, -FanMorphE(0Ogz ).

5. FAN MORPHISM FOR SOUTH

Let s be a real number and let ¢ be a point of £%. The functor FanS(s, q)
yields a point of 5% and is defined by:

91

Q

A _g —llfs

’q| [‘ilsv_ 1_(‘378)], lffql‘ sandq2<0
(Def. 8) FanS(s,q) = a1 g a1
’q|‘[‘i|+s>— 1—(‘ZI+S)], lffql‘<sandq2<0,

q, otherwise.

Let ¢ be a real number. The functor c¢-FanMorphS yielding a function from
the carrier of 5% into the carrier of 5% is defined by:

(Def. 9)  For every point ¢ of £2 holds c-FanMorphS(q) = FanS(c, g).
One can prove the following propositions:
(120) Let ¢ be a real number. Then

(i) i i

i

> ¢ and g2 < 0, then ¢;-FanMorphS(q) = [|q| -

c1 )
a .
- /1~ (H52)2), and
(ii) if g2 > 0, then ¢; -FanMorphS(q) =
(121) For every real number ¢; such that %1' < ¢ and g2 < 0 holds

14+c1 14+c1
(122) Let ¢ be a real number such that —1 < ¢; and ¢; < 1. Then

91
(i) if & >candge <0andq# Oggr, then ¢; -FanMorphS(q) = [|q|- %

lal = e
91 —c1

- —/1 = (42)2), and

- Ay
c1-FanMorphS(q) = [|q| - L—, |q| - —\/1 — (££—)2].

Cc1

(i) if % < ¢ and g2 < 0and g # Ogz, then ¢ -FanMorphS(q) = [|q|- ‘i|+c1 ,

a .

lal - =\ 1 = (£
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(123) Let c1 be a real number, K1 be a non empty subset of £2, and f be a
map from (£2)K; into R!. Suppose that

(i) -1 < ¢y,
(i) e <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)[K; holds

P
f) = |p| - F=, and
(iv)  for every point ¢ of €% such that ¢ € the carrier of (£2)] K7 holds g2 < 0
and g # Ogz .
Then f is continuous.

(124) Let ¢; be a real number, K; be a non empty subset of 5%, and f be a
map from (€2)K; into R!. Suppose that

(1) -1 < ey,
(i) ¢ <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

m_.
f(p) = Ip| - 5, and

(iv)  for every point g of 5% such that ¢ € the carrier of (5%) [ K71 holds g2 < 0
and ¢ 7# Ogz.
Then f is continuous.

(125) Let ¢1 be a real number, K; be a non empty subset of 5%, and f be a
map from (£2)K; into R'. Suppose that
(i) -1 < e,
(ii) c <1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

F) = ol - =1 = (E=2)2, and

(iv)  for every point ¢ of £% such that ¢ € the carrier of (£2)] K7 holds g2 < 0
and %1' > c1 and ¢ # Ogz.
Then f is continuous.

(126) Let ¢; be a real number, K7 be a non empty subset of 5%, and f be a
map from (£2)K; into R!. Suppose that
(1) -1 < ey,
(i) o<1,
(iii)  for every point p of £2 such that p € the carrier of (£2)]K; holds

7o) = ol - =1 - (222)2, and

(iv)  for every point ¢ of €% such that ¢ € the carrier of (£2)] K7 holds g2 < 0
and (i <cp and g # Ogz.
Then f is continuous.

(127) Let ¢; be a real number, Ky, By be subsets of E%, and f be a map
from (£2)1Ky into (E2)[By. Suppose —1 < ¢; and ¢; < 1 and f =
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¢1 -FanMorphS [ K and By = {q; g ranges over points of 5%: G2 <0ANqg#
05%} and Ko = {p: %' >c1 Ape<0 A p# Oggr}. Then f is continuous.

(128) Let ¢; be a real number, Ky, By be subsets of 5%, and f be a map
from (E2)[Ko into (E2)[By. Suppose —1 < ¢; and ¢; < 1 and f =
c1 -FanMorphS [ K and By = {g¢; ¢ ranges over points of 5%: g2 <0 A q#
05%} and Ko = {p: % <cp Ape<0 A p# 05%}. Then f is continuous.

(129) For every real number ¢; and for every subset K3 of £2 such that K3 =
{p:p1>ci-|p| A p2 <0} holds K3 is closed.

(130) For every real number ¢; and for every subset K3 of 5% such that K3 =
{p:p1<eci-|p| AN p2 <0} holds K3 is closed.

(131) Let ¢; be a real number, Ky, By be subsets of 5%, and f be a
map from (£2)[Ko into (£2)]Bo. Suppose —1 < ¢ and ¢; < 1 and
f = c1-FanMorphS [Ky and By = (the carrier of £2) \ {05%} and
Ko={p:p2<0 A p# 05%}. Then f is continuous.

(132) Let ¢; be a real number, Ky, By be subsets of 8%, and f be a
map from (£2)[Ko into (£2)]Bo. Suppose —1 < ¢ and ¢; < 1 and
f = c1-FanMorphS [Ky and By = (the carrier of £2) \ {05%} and
Ko={p:p2>0 A p# 05%}. Then f is continuous.

(133) Let ¢1 be a real number, By be a subset of £2, K be a subset of (£2)] By,
and f be a map from (2)[By[Ko into (£2)]Bp. Suppose —1 < ¢; and
c1 < 1 and f = ¢ -FanMorphS [Ky and By = (the carrier of £2) \ {05%}
and Ko={p:p2 <0 A p# 05%}. Then f is continuous.

(134) Let ¢1 be a real number, By be a subset of £2, K be a subset of (£2)] By,
and f be a map from (2)[By[Ko into (£2)]By. Suppose —1 < ¢; and
c1 < 1 and f = ¢ -FanMorphS [Ky and By = (the carrier of £2) \ {05%}
and Ko={p:p2>0 A p# 05%}. Then f is continuous.

(135) For every real number c; and for every point p of £2 holds
|c1 -FanMorphS(p)| = |p|.

(136) For every real number ¢; and for all sets x, Ky such that —1 < ¢
and ¢; < 1 and x € Kg and Kg = {p : p2 < 0 A p;é()ggr}holds
¢1 -FanMorphS(z) € K.

(137) For every real number ¢; and for all sets =, Ky such that —1 < ¢
and ¢ < 1l and x € Ko and Ko = {p : p2 > 0 A p#Og%}holds
c1 -FanMorphS(z) € K.

(138) Let ¢; be a real number and D be a non empty subset of 8%. Suppose
—1 <c¢ and ¢ <1 and D¢ = {Og%}. Then there exists a map h from
(E2)1D into (£2)]D such that h = ¢; -FanMorphS | D and h is continuous.

(139) Let ¢; be areal number. Suppose —1 < ¢; and ¢; < 1. Then there exists a
map h from 5% into 5% such that h = ¢; -FanMorphS and h is continuous.

17



18 YATSUKA NAKAMURA

(140) For every real number ¢; such that —1 < ¢; and ¢; < 1 holds
c1 -FanMorphS is one-to-one.

(141) For every real number ¢; such that —1 < ¢; and ¢; < 1 holds
c1-FanMorphS is a map from £2 into €2 and rng(c; -FanMorphS) = the
carrier of 5%.

(142) Let ¢; be a real number and ps be a point of 8%. Suppose —1 < ¢
and ¢; < 1. Then there exists a non empty compact subset K of 5% such
that K = ¢; -FanMorphS°® K and there exists a subset V5 of 5% such that
p2 € Vo and Vs is open and Vo C K and ¢ -FanMorphS(p2) € Va.

(143) Let ¢; be a real number. Suppose —1 < ¢; and ¢; < 1. Then there
exists a map f from £2 into €2 such that f = ¢;-FanMorphS and f is a
homeomorphism.

(144) Let ¢ be areal number and ¢ be a point of 8%. Suppose —1 < ¢1 and ¢1 <
1 and g2 < 0 and ‘%1' > c1. Let p be a point of E2. If p = ¢; -FanMorph$S(q),
then po < 0 and p; > 0.

(145) Let ¢1 be areal number and ¢ be a point of 5%. Suppose —1 < ¢1 and ¢ <
1 and g2 < 0 and & < ¢;. Let p be a point of 2. If p = ¢; -FanMorphS(q),

lq]
then p2 < 0 and p; < 0.

(146) Let ¢ be a real number and ¢, g2 be points of 5%. Suppose —1 < ¢
and ¢; < 1 and (g1)2 < 0 and (CIDIRS c1 and (g2)2 < 0 and (2)1 ¢ and

la1] la2]
@ o (@21 16 p1, p2 be points of £2. If p; = ¢; -FanMorphS(q;) and

(p1)1 (p2)1
Ip1] < [p2| *

(147) Let ¢; be a real number and ¢, g2 be points of 5%. Suppose —1 < ¢
and ¢; < 1 and (¢q1)2 < 0 and (@)y c1 and (g2)2 < 0 and (@)1 c; and

lq1] lg2]
% < %. Let p1, p2 be points of £%. If p; = ¢1 -FanMorphS(¢1) and

p2 = c¢1 -FanMorphS(g2), then (fpi)ll < (T;JZQ)‘I'

(148) Let ¢ be a real number and ¢1, g2 be points of E%. Suppose —1 < ¢

and ¢; < 1 and (q1)2 < 0 and (g2)2 < 0 and (i];l)f < (?;Q)f. Let pi1, po
be points of 4. If p; = ¢; -FanMorphS(q1) and ps = ¢ -FanMorphS(g2),

(1)1 (P2)1

then [p1] < Ip2| ~
(149) Let ¢ be areal number and ¢ be a point of 5%. Suppose —1 < ¢1 and ¢ <

1 and g2 < 0 and ‘%' = ¢1. Let p be a point of £2. If p = ¢; -FanMorph$S(g),

then pa < 0 and p; = 0.

lq1] lgz]
p2 = ¢1 -FanMorphS(g¢2), then

(150) For every real number c¢; holds Ogz = c1 -FanMorphS(0Og2 ).
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