Upper and Lower Sequence on the Cage, Upper and Lower Arcs^1

Robert Milewski University of Białystok

MML Identifier: JORDAN1J.

The articles [25], [30], [2], [4], [3], [29], [5], [14], [27], [20], [24], [13], [1], [23], [10], [11], [8], [28], [16], [12], [21], [26], [7], [18], [19], [6], [22], [9], [15], and [17] provide the notation and terminology for this paper.

In this paper n is a natural number.

The following propositions are true:

- (1) Let G be a Go-board and i_1 , i_2 , j_1 , j_2 be natural numbers. Suppose $1 \leq j_1$ and $j_1 \leq \text{width } G$ and $1 \leq j_2$ and $j_2 \leq \text{width } G$ and $1 \leq i_1$ and $i_1 < i_2$ and $i_2 \leq \text{len } G$. Then $(G \circ (i_1, j_1))_1 < (G \circ (i_2, j_2))_1$.
- (2) Let G be a Go-board and i_1 , i_2 , j_1 , j_2 be natural numbers. Suppose $1 \leq i_1$ and $i_1 \leq \text{len } G$ and $1 \leq i_2$ and $i_2 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 < j_2$ and $j_2 \leq \text{width } G$. Then $(G \circ (i_1, j_1))_2 < (G \circ (i_2, j_2))_2$.

Let f be a non empty finite sequence and let g be a finite sequence. One can verify that $f \sim g$ is non empty.

The following propositions are true:

- (3) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and n be a natural number. Then $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n) -: \mathrm{E}\operatorname{-max} \widetilde{\mathcal{L}}(\mathrm{Cage}(C,n))) \cap \widetilde{\mathcal{L}}(\mathrm{Cage}(C,n) := \mathrm{E}\operatorname{-max} \widetilde{\mathcal{L}}(\mathrm{Cage}(C,n))) =$ $\{\mathrm{N}\operatorname{-min} \widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)), \mathrm{E}\operatorname{-max} \widetilde{\mathcal{L}}(\mathrm{Cage}(C,n))\}.$
- (4) For every compact connected non vertical non horizontal subset C of $\mathcal{E}^2_{\mathrm{T}}$ holds UpperSeq $(C, n) = ((\operatorname{Cage}(C, n))^{\mathrm{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))}) :- \operatorname{W-min} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)).$

C 2002 University of Białystok ISSN 1426-2630

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

ROBERT MILEWSKI

- (5) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ holds W-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{UpperSeq}(C,n)$ and W-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C,n))$.
- (6) For every compact connected non vertical non horizontal subset C of $\mathcal{E}^2_{\mathrm{T}}$ holds W-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{UpperSeq}(C,n)$ and W-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C,n)).$
- (7) For every compact connected non vertical non horizontal subset C of $\mathcal{E}^2_{\mathrm{T}}$ holds N-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{UpperSeq}(C,n)$ and N-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C,n)).$
- (8) For every compact connected non vertical non horizontal subset C of $\mathcal{E}^2_{\mathrm{T}}$ holds N-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{UpperSeq}(C,n)$ and N-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C,n)).$
- (9) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ holds E-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{UpperSeq}(C,n)$ and E-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C,n))$.
- (10) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ holds E-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{LowerSeq}(C,n)$ and E-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C,n)).$
- (11) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ holds E-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{LowerSeq}(C,n)$ and E-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C,n))$.
- (12) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ holds S-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{LowerSeq}(C,n)$ and S-max $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C,n))$.
- (13) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ holds S-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{LowerSeq}(C,n)$ and S-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C,n)).$
- (14) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ holds W-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \mathrm{rng}\,\mathrm{LowerSeq}(C,n)$ and W-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)) \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C,n))$.
- (15) For all non empty compact subsets X, Y of $\mathcal{E}^2_{\mathrm{T}}$ such that $X \subseteq Y$ and N-min $Y \in X$ holds N-min X = N-min Y.
- (16) For all non empty compact subsets X, Y of $\mathcal{E}^2_{\mathrm{T}}$ such that $X \subseteq Y$ and N-max $Y \in X$ holds N-max X = N-max Y.
- (17) For all non empty compact subsets X, Y of $\mathcal{E}^2_{\mathrm{T}}$ such that $X \subseteq Y$ and E-min $Y \in X$ holds E-min X =E-min Y.
- (18) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that $X \subseteq Y$ and E-max $Y \in X$ holds E-max X = E-max Y.
- (19) For all non empty compact subsets X, Y of $\mathcal{E}^2_{\mathrm{T}}$ such that $X \subseteq Y$ and S-min $Y \in X$ holds S-min X = S-min Y.

74

- (20) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that $X \subseteq Y$ and S-max $Y \in X$ holds S-max X = S-max Y.
- (21) For all non empty compact subsets X, Y of $\mathcal{E}^2_{\mathrm{T}}$ such that $X \subseteq Y$ and W-min $Y \in X$ holds W-min X = W-min Y.
- (22) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that $X \subseteq Y$ and W-max $Y \in X$ holds W-max X = W-max Y.
- (23) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that N-bound X < N-bound Y holds N-bound $X \cup Y =$ N-bound Y.
- (24) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that E-bound X < E-bound Y holds E-bound $X \cup Y =$ E-bound Y.
- (25) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that S-bound X < S-bound Y holds S-bound $X \cup Y =$ S-bound X.
- (26) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that W-bound X < W-bound Y holds W-bound $X \cup Y = W$ -bound X.
- (27) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that N-bound X < N-bound Y holds N-min $X \cup Y =$ N-min Y.
- (28) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that N-bound X < N-bound Y holds N-max $X \cup Y = N$ -max Y.
- (29) For all non empty compact subsets X, Y of $\mathcal{E}_{\mathrm{T}}^2$ such that E-bound X < E-bound Y holds E-min $X \cup Y =$ E-min Y.
- (30) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that E-bound X < E-bound Y holds E-max $X \cup Y =$ E-max Y.
- (31) For all non empty compact subsets X, Y of $\mathcal{E}^2_{\mathbb{T}}$ such that S-bound X < S-bound Y holds S-min $X \cup Y =$ S-min X.
- (32) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that S-bound X < S-bound Y holds S-max $X \cup Y =$ S-max X.
- (33) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that W-bound X < W-bound Y holds W-min $X \cup Y = W$ -min X.
- (34) For all non empty compact subsets X, Y of \mathcal{E}^2_T such that W-bound X < W-bound Y holds W-max $X \cup Y =$ W-max X.
- (35) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If f is a special sequence and $p \in \widetilde{\mathcal{L}}(f)$, then $(\downarrow p, f)_{\mathrm{len} \downarrow p, f} = f_{\mathrm{len} f}$.
- (36) Let f be a non constant standard special circular sequence, p, q be points of $\mathcal{E}^2_{\mathrm{T}}$, and g be a connected subset of $\mathcal{E}^2_{\mathrm{T}}$. If $p \in \mathrm{RightComp}(f)$ and $q \in \mathrm{LeftComp}(f)$ and $p \in g$ and $q \in g$, then g meets $\widetilde{\mathcal{L}}(f)$.

One can verify that there exists special sequence finite sequence of elements of \mathcal{E}_{T}^{2} which is non constant, standard, and s.c.c..

Next we state a number of propositions:

ROBERT MILEWSKI

- (37) For every S-sequence f in \mathbb{R}^2 and for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \mathrm{rng} f$ holds $\downarrow p, f = \mathrm{mid}(f, p \leftrightarrow f, \mathrm{len} f).$
- (38) Let M be a Go-board and f be a S-sequence in \mathbb{R}^2 . Suppose f is a sequence which elements belong to M. Let p be a point of $\mathcal{E}^2_{\mathrm{T}}$. If $p \in \mathrm{rng} f$, then $\mid f, p$ is a sequence which elements belong to M.
- (39) Let M be a Go-board and f be a S-sequence in \mathbb{R}^2 . Suppose f is a sequence which elements belong to M. Let p be a point of $\mathcal{E}^2_{\mathrm{T}}$. If $p \in \mathrm{rng} f$, then $\downarrow p, f$ is a sequence which elements belong to M.
- (40) Let G be a Go-board and f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f is a sequence which elements belong to G. Let i, j be natural numbers. If $1 \leq i$ and $i \leq \text{len } G$ and $1 \leq j$ and $j \leq \text{width } G$, then if $G \circ (i, j) \in \widetilde{\mathcal{L}}(f)$, then $G \circ (i, j) \in \text{rng } f$.
- (41) Let f be a S-sequence in \mathbb{R}^2 and g be a finite sequence of elements of $\mathcal{E}^2_{\mathbb{T}}$. Suppose that
 - (i) g is unfolded, s.n.c., and one-to-one,
- (ii) $\mathcal{L}(f) \cap \mathcal{L}(g) = \{f_1\},\$
- (iii) $f_1 = g_{\operatorname{len} g},$
- (iv) for every natural number *i* such that $1 \leq i$ and $i + 2 \leq \text{len } f$ holds $\mathcal{L}(f,i) \cap \mathcal{L}(f_{\text{len } f},g_1) = \emptyset$, and
- (v) for every natural number *i* such that $2 \leq i$ and $i + 1 \leq \text{len } g$ holds $\mathcal{L}(g, i) \cap \mathcal{L}(f_{\text{len } f}, g_1) = \emptyset$. Then $f \cap g$ is s.c.c..
- (42) Let C be a compact non vertical non horizontal non empty subset of $\mathcal{E}^2_{\mathrm{T}}$. Then there exists a natural number i such that $1 \leq i$ and $i+1 \leq$ len Gauge(C,n) and W-min $C \in$ cell(Gauge(C,n), 1, i) and W-min $C \neq$ Gauge $(C,n) \circ (2, i)$.
- (43) For every S-sequence f in \mathbb{R}^2 and for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \widetilde{\mathcal{L}}(f)$ and $f(\operatorname{len} f) \in \widetilde{\mathcal{L}}(\lfloor f, p)$ holds $f(\operatorname{len} f) = p$.
- (44) For every non empty finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $\downarrow f, p \neq \emptyset$.
- (45) For every S-sequence f in \mathbb{R}^2 and for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \widetilde{\mathcal{L}}(f)$ holds $(|f, p|_{\mathrm{len} \mid f, p} = p.$
- (46) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C, n))$ and $p_1 =$ E-bound $\widetilde{\mathcal{L}}(\mathrm{Cage}(C, n))$, then $p = \mathrm{E}\operatorname{-max} \widetilde{\mathcal{L}}(\mathrm{Cage}(C, n))$.
- (47) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C, n))$ and $p_1 =$ W-bound $\widetilde{\mathcal{L}}(\mathrm{Cage}(C, n))$, then $p = \mathrm{W-min} \widetilde{\mathcal{L}}(\mathrm{Cage}(C, n))$.
- (48) Let G be a Go-board, f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$, and k be a natural number. Suppose $1 \leq k$ and $k < \mathrm{len} f$ and $f \cap g$ is a sequence

which elements belong to G. Then $\operatorname{left_cell}(f \cap g, k, G) = \operatorname{left_cell}(f, k, G)$ and $\operatorname{right_cell}(f \cap g, k, G) = \operatorname{right_cell}(f, k, G)$.

- (49) Let D be a set, f, g be finite sequences of elements of D, and i be a natural number. If $i \leq \text{len } f$, then $(f \frown g) \upharpoonright i = f \upharpoonright i$.
- (50) For every set D and for all finite sequences f, g of elements of D holds $(f \frown g) \upharpoonright \text{len } f = f.$
- (51) Let G be a Go-board, f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$, and k be a natural number. Suppose $1 \leq k$ and $k < \mathrm{len} f$ and $f \frown g$ is a sequence which elements belong to G. Then $\mathrm{left_cell}(f \frown g, k, G) = \mathrm{left_cell}(f, k, G)$ and $\mathrm{right_cell}(f \frown g, k, G) = \mathrm{right_cell}(f, k, G)$.
- (52) Let G be a Go-board, f be a S-sequence in \mathbb{R}^2 , p be a point of $\mathcal{E}^2_{\mathrm{T}}$, and k be a natural number. Suppose $1 \leq k$ and $k and f is a sequence which elements belong to G and <math>p \in \mathrm{rng} f$. Then $\mathrm{left_cell}(|f, p, k, G) = \mathrm{left_cell}(f, k, G)$ and $\mathrm{right_cell}(|f, p, k, G) = \mathrm{right_cell}(f, k, G)$.
- (53) Let G be a Go-board, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, p be a point of $\mathcal{E}_{\mathrm{T}}^2$, and k be a natural number. Suppose $1 \leq k$ and $k and f is a sequence which elements belong to G. Then <math>\operatorname{left_cell}(f : p, k, G) = \operatorname{left_cell}(f, k, G)$ and $\operatorname{right_cell}(f : p, k, G) = \operatorname{right_cell}(f, k, G)$.
- (54) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose that
 - (i) f is unfolded, s.n.c., and one-to-one,
- (ii) g is unfolded, s.n.c., and one-to-one,
- (iii) $f_{\text{len }f} = g_1$, and
- (iv) $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g) = \{g_1\}.$ Then $f \frown g$ is s.n.c..
- (55) Let f, g be finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose f is one-to-one and g is one-to-one and $\operatorname{rng} f \cap \operatorname{rng} g \subseteq \{g_1\}$. Then $f \frown g$ is one-to-one.
- (56) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If f is a special sequence and $p \in \mathrm{rng} f$ and $p \neq f(1)$, then $\mathrm{Index}(p, f) + 1 = p \leftrightarrow f$.
- (57) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and i, j, k be natural numbers. Suppose 1 < i and $i < \mathrm{len} \operatorname{Gauge}(C, n)$ and $1 \leq j$ and $k \leq \mathrm{width} \operatorname{Gauge}(C, n)$ and $\operatorname{Gauge}(C, n) \circ (i, k) \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C, n))$ and $\mathrm{Gauge}(C, n) \circ (i, j) \in \widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C, n))$. Then $j \neq k$.
- (58) Let C be a simple closed curve and i, j, k be natural numbers. Suppose 1 < i and i < len Gauge(C, n) and 1 ≤ j and j ≤ k and k ≤ width Gauge(C, n) and $\mathcal{L}(Gauge(C, n) \circ (i, j), Gauge(C, n) \circ (i, k)) \cap \widetilde{\mathcal{L}}(UpperSeq(C, n)) = \{Gauge(C, n) \circ (i, k)\} \text{ and } \mathcal{L}(Gauge(C, n) \circ (i, j), Gauge(C, n) \circ (i, k)) \cap \widetilde{\mathcal{L}}(LowerSeq(C, n)) = \{Gauge(C, n) \circ (i, j)\}.$ Then $\mathcal{L}(Gauge(C, n) \circ (i, j), Gauge(C, n) \circ (i, k))$ meets LowerArc C.
- (59) Let C be a simple closed curve and i, j, k be natural numbers.

ROBERT MILEWSKI

Suppose 1 < i and $i < \text{len} \operatorname{Gauge}(C, n)$ and $1 \leq j$ and $j \leq k$ and $k \leq \text{width} \operatorname{Gauge}(C, n)$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ (i, j), \operatorname{Gauge}(C, n) \circ (i, k)) \cap \widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n)) = \{\operatorname{Gauge}(C, n) \circ (i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ (i, j), \operatorname{Gauge}(C, n) \circ (i, k)) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n)) = \{\operatorname{Gauge}(C, n) \circ (i, j)\}.$ Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ (i, j), \operatorname{Gauge}(C, n) \circ (i, k))$ meets UpperArc C.

- (60) Let C be a simple closed curve and i, j, k be natural numbers. Suppose that 1 < i and $i < \text{len} \operatorname{Gauge}(C, n)$ and $1 \leq j$ and $j \leq k$ and $k \leq \text{width} \operatorname{Gauge}(C, n)$ and n > 0 and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ (i, j), \operatorname{Gauge}(C, n) \circ (i, k)) \cap \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \{\operatorname{Gauge}(C, n) \circ (i, k)\}$ and $\mathcal{L}(\operatorname{Gauge}(C, n) \circ (i, j), \operatorname{Gauge}(C, n) \circ (i, k)) \cap \operatorname{LowerArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \{\operatorname{Gauge}(C, n) \circ (i, j)\}$. Then $\mathcal{L}(\operatorname{Gauge}(C, n) \circ (i, j), \operatorname{Gauge}(C, n) \circ (i, k))$ meets LowerArc C.
- (61) Let C be a simple closed curve and i, j, k be natural numbers. Suppose that 1 < i and i < len Gauge(C, n) and $1 \leq j$ and $j \leq k$ and $k \leq \text{width Gauge}(C, n)$ and n > 0 and $\mathcal{L}(\text{Gauge}(C, n) \circ (i, j), \text{Gauge}(C, n) \circ (i, k)) \cap \text{UpperArc} \widetilde{\mathcal{L}}(\text{Cage}(C, n)) = \{\text{Gauge}(C, n) \circ (i, k)\}$ and $\mathcal{L}(\text{Gauge}(C, n) \circ (i, j), \text{Gauge}(C, n) \circ (i, k)) \cap \text{LowerArc} \widetilde{\mathcal{L}}(\text{Cage}(C, n)) = \{\text{Gauge}(C, n) \circ (i, j)\}$. Then $\mathcal{L}(\text{Gauge}(C, n) \circ (i, j), \text{Gauge}(C, n) \circ (i, k))$ meets UpperArc C.
- (62) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and j be a natural number. Suppose $\operatorname{Gauge}(C, n+1) \circ (\operatorname{Center} \operatorname{Gauge}(C, n+1), j) \in \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1))$ and $1 \leq j$ and $j \leq \operatorname{width} \operatorname{Gauge}(C, n+1)$. 1). Then $\mathcal{L}(\operatorname{Gauge}(C, 1) \circ (\operatorname{Center} \operatorname{Gauge}(C, 1), 1), \operatorname{Gauge}(C, n+1) \circ (\operatorname{Center} \operatorname{Gauge}(C, n+1), j))$ meets $\operatorname{LowerArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n+1)).$
- (63) Let C be a simple closed curve and j, k be natural numbers. Suppose that
 - (i) $1 \leq j$,
 - (ii) $j \leq k$,
- (iii) $k \leq \text{width Gauge}(C, n+1),$
- (iv) $\mathcal{L}(\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j), \text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), k)) \cap \text{UpperArc } \widetilde{\mathcal{L}}(\text{Cage}(C, n + 1)) = \{\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), k)\}, \text{ and } \}$
- (v) $\mathcal{L}(\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j), \text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n+1), k)) \cap \text{LowerArc } \widetilde{\mathcal{L}}(\text{Cage}(C, n+1)) = \{\text{Gauge}(C, n+1) \circ (\text{Center Gauge}(C, n + 1), j)\}.$ Then $\mathcal{L}(\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j), \text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j)\}$

Then $\mathcal{L}(\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j), \text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), k))$ meets LowerArc C.

- (64) Let C be a simple closed curve and j, k be natural numbers. Suppose that
 - (i) $1 \leq j$,
 - (ii) $j \leq k$,

- (iii) $k \leq \text{width Gauge}(C, n+1),$
- (iv) $\mathcal{L}(\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j), \text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), k)) \cap \text{UpperArc } \widetilde{\mathcal{L}}(\text{Cage}(C, n + 1)) = \{\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), k)\}, \text{ and } \}$
- (v) $\mathcal{L}(\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j), \text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n+1), k)) \cap \text{LowerArc } \widetilde{\mathcal{L}}(\text{Cage}(C, n+1)) = \{\text{Gauge}(C, n+1), j) \in (\text{Center Gauge}(C, n + 1), j) \}.$

Then $\mathcal{L}(\text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), j), \text{Gauge}(C, n + 1) \circ (\text{Center Gauge}(C, n + 1), k))$ meets UpperArc C.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
- [6] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
- [7] Czesław Byliński. Some properties of cells on Go-board. Formalized Mathematics, 8(1):139–146, 1999.
- [8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427–440, 1997.
- [9] Czesław Byliński and Mariusz Żynel. Cages the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19-24, 2001.
- [10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [13] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [15] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501–509, 2001.
- [16] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [17] Robert Milewski. Upper and lower sequence of a cage. Formalized Mathematics, 9(4):787– 790, 2001.
- [18] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [19] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255–263, 1997.
- [20] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297–304, 1996.
- [21] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [22] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563–572, 1997.
- [23] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.

ROBERT MILEWSKI

- [24] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. $\label{eq:Formalized} \textit{Formalized Mathematics}, \ 1(1){:}223{-}230, \ 1990.$
- [25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.[26] Andrzej Trybulec. Left and right component of the complement of a special closed curve.
- Formalized Mathematics, 5(4):465-468, 1996.
- [27] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317–322, 1996. [28] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. *Formalized*
- Mathematics, 6(4):541-548, 1997.
- [29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, [30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received April 5, 2002

Fibonacci Numbers

Robert M. Solovay P. O. Box 5949 Eugene OR 97405 U. S. A.

Summary. We show that Fibonacci commutes with g.c.d.; we then derive the formula connecting the Fibonacci sequence with the roots of the polynomial $x^2 - x - 1$.

MML Identifier: FIB_NUM.

The terminology and notation used here are introduced in the following articles: [3], [9], [5], [1], [2], [4], [7], [6], and [8].

1. FIBONACCI COMMUTES WITH GCD

One can prove the following three propositions:

- (1) For all natural numbers m, n holds gcd(m, n) = gcd(m, n+m).
- (2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds $gcd(k, m \cdot n) = gcd(k, n)$.
- (3) For every real number s such that s > 0 there exists a natural number n such that n > 0 and $0 < \frac{1}{n}$ and $\frac{1}{n} \leq s$.

In this article we present several logical schemes. The scheme Fib Ind concerns a unary predicate \mathcal{P} , and states that:

For every natural number k holds $\mathcal{P}[k]$

provided the following conditions are met:

- $\mathcal{P}[0],$
- $\mathcal{P}[1]$, and
- For every natural number k such that $\mathcal{P}[k]$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k+2]$.

C 2002 University of Białystok ISSN 1426-2630 The scheme *Bin Ind* concerns a binary predicate \mathcal{P} , and states that: For all natural numbers m, n holds $\mathcal{P}[m, n]$

provided the parameters satisfy the following conditions:

- For all natural numbers m, n such that $\mathcal{P}[m, n]$ holds $\mathcal{P}[n, m]$, and
- Let k be a natural number. Suppose that for all natural numbers m, n such that m < k and n < k holds $\mathcal{P}[m, n]$. Let m be a natural number. If $m \leq k$, then $\mathcal{P}[k, m]$.

We now state two propositions:

- (4) For all natural numbers m, n holds $\operatorname{Fib}(m + (n+1)) = \operatorname{Fib}(n) \cdot \operatorname{Fib}(m) + \operatorname{Fib}(n+1) \cdot \operatorname{Fib}(m+1)$.
- (5) For all natural numbers m, n holds gcd(Fib(m), Fib(n)) = Fib(gcd(m, n)).

2. FIBONACCI NUMBERS AND THE GOLDEN MEAN

Next we state the proposition

(6) Let x, a, b, c be real numbers. Suppose $a \neq 0$ and $\Delta(a, b, c) \ge 0$. Then $a \cdot x^2 + b \cdot x + c = 0$ if and only if $x = \frac{-b - \sqrt{\Delta(a, b, c)}}{2 \cdot a}$ or $x = \frac{-b + \sqrt{\Delta(a, b, c)}}{2 \cdot a}$.

The real number τ is defined by:

(Def. 1)
$$\tau = \frac{1+\sqrt{5}}{2}$$
.

The real number $\overline{\tau}$ is defined as follows:

(Def. 2)
$$\bar{\tau} = \frac{1-\sqrt{5}}{2}$$
.

One can prove the following propositions:

- (7) For every natural number *n* holds $\operatorname{Fib}(n) = \frac{\tau^n \overline{\tau}^n}{\sqrt{5}}$.
- (8) For every natural number *n* holds $|\operatorname{Fib}(n) \frac{\tau^n}{\sqrt{5}}| < 1$.
- (9) For all sequences F, G of real numbers such that for every natural number n holds F(n) = G(n) holds F = G.
- (10) For all sequences f, g, h of real numbers such that g is non-zero holds (f/g)(g/h) = f/h.
- (11) For all sequences f, g of real numbers and for every natural number n holds $(f/g)(n) = \frac{f(n)}{g(n)}$ and $(f/g)(n) = f(n) \cdot g(n)^{-1}$.
- (12) Let F be a sequence of real numbers. Suppose that for every natural number n holds $F(n) = \frac{\operatorname{Fib}(n+1)}{\operatorname{Fib}(n)}$. Then F is convergent and $\lim F = \tau$.

FIBONACCI NUMBERS

Acknowledgments

My thanks to Freek Wiedijk for helping me learn Mizar and to Piotr Rudnicki for instructive comments on an earlier version of this article. This article was finished while I was visiting Bialystok and Adam Naumowicz and Josef Urban helped me through some difficult moments.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I preliminaries. Formalized Mathematics, 4(1):69–72, 1993.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [5] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [6] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [7] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507–509, 1991.
- [8] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
- [9] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received April 19, 2002

Preparing the Internal Approximations of Simple Closed Curves¹

Andrzej Trybulec University of Białystok

Summary. We mean by an internal approximation of a simple closed curve a special polygon disjoint with it but sufficiently close to it, i.e. such that it is clock-wise oriented and its right cells meet the curve. We prove lemmas used in the next article to construct a sequence of internal approximations.

MML Identifier: JORDAN11.

The articles [18], [5], [20], [11], [1], [16], [2], [21], [4], [3], [12], [17], [7], [8], [9], [10], [13], [14], [15], [6], and [19] provide the terminology and notation for this paper.

In this paper j, k, n are natural numbers and C is a subset of \mathcal{E}_{T}^{2} satisfying conditions of simple closed curve.

Let us consider C. The functor ApproxIndex C yielding a natural number is defined by:

(Def. 1) ApproxIndex C is sufficiently large for C and for every j such that j is sufficiently large for C holds $j \ge \text{ApproxIndex } C$.

Next we state the proposition

(1) ApproxIndex $C \ge 1$.

Let us consider C. The functor Y-InitStart C yields a natural number and is defined as follows:

(Def. 2) Y-InitStart $C < \text{width } \text{Gauge}(C, \text{ApproxIndex } C) \text{ and } \text{cell}(\text{Gauge}(C, \text{ApproxIndex } C), \text{X-SpanStart}(C, \text{ApproxIndex } C) - ' 1, \text{Y-InitStart } C) \subseteq \text{BDD } C \text{ and for every } j \text{ such that } j < \text{width } \text{Gauge}(C, \text{ApproxIndex } C) \text{ and } \text{cell}(\text{Gauge}(C, \text{ApproxIndex } C), \text{X-SpanStart}(C, \text{ApproxIndex } C) - ' 1, j) \subseteq \text{BDD } C \text{ holds } j \ge \text{Y-InitStart } C.$

C 2002 University of Białystok ISSN 1426-2630

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

The following propositions are true:

- (2) Y-InitStart C > 1.
- (3) Y-InitStart C + 1 < width Gauge(C, ApproxIndex C).

Let us consider C, n. Let us assume that n is sufficiently large for C. The functor Y-SpanStart(C, n) yields a natural number and is defined by the conditions (Def. 3).

(Def. 3)(i) Y-SpanStart $(C, n) \leq$ width Gauge(C, n),

- (ii) for every k such that Y-SpanStart $(C, n) \leq k$ and $k \leq 2^{n-'ApproxIndex C}$. (Y-InitStart C-'2)+2 holds cell(Gauge(C, n), X-SpanStart $(C, n)-'1, k) \subseteq$ BDD C, and
- (iii) for every j such that $j \leq \text{width Gauge}(C, n)$ and for every k such that $j \leq k$ and $k \leq 2^{n-'\operatorname{ApproxIndex}C} \cdot (\operatorname{Y-InitStart}C 2) + 2$ holds $\operatorname{cell}(\operatorname{Gauge}(C, n), \operatorname{X-SpanStart}(C, n) 1, k) \subseteq \operatorname{BDD}C$ holds $j \geq \operatorname{Y-SpanStart}(C, n)$.

One can prove the following propositions:

- (4) If *n* is sufficiently large for *C*, then X-SpanStart(*C*, *n*) = $2^{n-'ApproxIndex C} \cdot (X-SpanStart(C, ApproxIndex C) 2) + 2.$
- (5) If *n* is sufficiently large for *C*, then Y-SpanStart(*C*, *n*) $\leq 2^{n-'\operatorname{ApproxIndex} C} \cdot (\operatorname{Y-InitStart} C '2) + 2.$
- (6) If n is sufficiently large for C, then cell(Gauge(C, n), X-SpanStart(C, n)-' 1, Y-SpanStart(C, n)) \subseteq BDD C.
- (7) If n is sufficiently large for C, then 1 < Y-SpanStart(C, n) and Y-SpanStart $(C, n) \leq$ width Gauge(C, n).
- (8) If n is sufficiently large for C, then $\langle X$ -SpanStart(C, n), Y-SpanStart(C, n) $\rangle \in$ the indices of Gauge(C, n).
- (9) If *n* is sufficiently large for *C*, then $\langle X-SpanStart(C,n) 1, Y-SpanStart(C,n) \rangle \in$ the indices of Gauge(C,n).
- (10) If n is sufficiently large for C, then cell(Gauge(C, n), X-SpanStart(C, n)-' 1, Y-SpanStart(C, n) -' 1) meets C.
- (11) If n is sufficiently large for C, then cell(Gauge(C, n), X-SpanStart(C, n)-' 1, Y-SpanStart(C, n)) misses C.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65–69, 1991.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.

- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [6] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
- [7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
 [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \$\mathcal{E}_T^2\$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [14] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [15] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. *Formalized Mathematics*, 8(1):1–13, 1999.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [19] Andrzej Trybulec. More on the external approximation of a continuum. Formalized
- [19] Andrzej Trybulec. More on the external approximation of a continuum. Formalized Mathematics, 9(4):831–841, 2001.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received May 21, 2002

On the General Position of Special Polygons¹

Mariusz Giero University of Białystok

Summary. In this paper we introduce the notion of general position. We also show some auxiliary theorems for proving Jordan curve theorem. The following main theorems are proved:

- 1. End points of a polygon are in the same component of a complement of another polygon if number of common points of these polygons is even;
- 2. Two points of polygon L are in the same component of a complement of polygon M if two points of polygon M are in the same component of polygon L.

MML Identifier: JORDAN12.

The papers [23], [6], [26], [20], [2], [18], [22], [16], [27], [1], [8], [5], [3], [25], [11], [4], [21], [19], [9], [10], [14], [15], [12], [13], [17], [24], and [7] provide the terminology and notation for this paper.

1. Preliminaries

We adopt the following rules: i, j, k, n denote natural numbers, a, b, c, x denote sets, and r denotes a real number.

The following four propositions are true:

- (1) If 1 < i, then 0 < i 1.
- (2) If $1 \le i$, then i 1 < i.
- (3) 1 is odd.
- (4) Let given n, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{n}$, and given i. If $1 \leq i$ and $i+1 \leq \mathrm{len} f$, then $f_i \in \mathrm{rng} f$ and $f_{i+1} \in \mathrm{rng} f$.

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

C 2002 University of Białystok ISSN 1426-2630

MARIUSZ GIERO

Let us mention that every finite sequence of elements of \mathcal{E}_T^2 which is s.n.c. is also s.c.c..

Next we state two propositions:

- (5) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$. If $f \frown g$ is unfolded and s.c.c. and len $g \ge 2$, then f is unfolded and s.n.c..
- (6) For all finite sequences g_1, g_2 of elements of $\mathcal{E}^2_{\mathrm{T}}$ holds $\widetilde{\mathcal{L}}(g_1) \subseteq \widetilde{\mathcal{L}}(g_1 \frown g_2)$.

2. The Notion of General Position and Its Properties

Let us consider n and let f_1 , f_2 be finite sequences of elements of $\mathcal{E}^n_{\mathrm{T}}$. We say that f_1 is in general position wrt f_2 if and only if:

(Def. 1) $\mathcal{L}(f_1)$ misses rng f_2 and for every i such that $1 \leq i$ and $i < \text{len } f_2$ holds $\widetilde{\mathcal{L}}(f_1) \cap \mathcal{L}(f_2, i)$ is trivial.

Let us consider n and let f_1 , f_2 be finite sequences of elements of $\mathcal{E}^n_{\mathrm{T}}$. We say that f_1 and f_2 are in general position if and only if:

(Def. 2) f_1 is in general position wrt f_2 and f_2 is in general position wrt f_1 .

Let us note that the predicate f_1 and f_2 are in general position is symmetric. The following propositions are true:

- (7) Let f_1 , f_2 be finite sequences of elements of \mathcal{E}_T^2 . Suppose f_1 and f_2 are in general position. Let f be a finite sequence of elements of \mathcal{E}_T^2 . If $f = f_2 \upharpoonright \text{Seg } k$, then f_1 and f are in general position.
- (8) Let f_1, f_2, g_1, g_2 be finite sequences of elements of \mathcal{E}_T^2 . Suppose $f_1 \frown f_2$ and $g_1 \frown g_2$ are in general position. Then $f_1 \frown f_2$ and g_1 are in general position.

In the sequel f, g are finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$. The following propositions are true:

- (9) For all k, f, g such that $1 \leq k$ and $k+1 \leq \log g$ and f and g are in general position holds $g(k) \in (\widetilde{\mathcal{L}}(f))^c$ and $g(k+1) \in (\widetilde{\mathcal{L}}(f))^c$.
- (10) Let f_1 , f_2 be finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose f_1 and f_2 are in general position. Let given i, j. If $1 \leq i$ and $i + 1 \leq \mathrm{len} f_1$ and $1 \leq j$ and $j + 1 \leq \mathrm{len} f_2$, then $\mathcal{L}(f_1, i) \cap \mathcal{L}(f_2, j)$ is trivial.
- (11) For all f, g holds $\{\mathcal{L}(f,i) : 1 \leq i \land i+1 \leq \operatorname{len} f\} \cap \{\mathcal{L}(g,j) : 1 \leq j \land j+1 \leq \operatorname{len} g\}$ is finite.
- (12) For all f, g such that f and g are in general position holds $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g)$ is finite.
- (13) For all f, g such that f and g are in general position and for every k holds $\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(g, k)$ is finite.

3. PROPERTIES OF BEING IN THE SAME COMPONENT OF A COMPLEMENT OF A POLYGON

We use the following convention: f is a non constant standard special circular sequence, g is a special finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, and p, p_1 , p_2 , q are points of $\mathcal{E}_{\mathrm{T}}^2$.

One can prove the following propositions:

- (14) For all f, p_1 , p_2 such that $\mathcal{L}(p_1, p_2)$ misses $\widetilde{\mathcal{L}}(f)$ there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $p_1 \in C$ and $p_2 \in C$.
- (15) There exists a subset C of \mathcal{E}_{T}^{2} such that C is a component of $(\mathcal{L}(f))^{c}$ and $a \in C$ and $b \in C$ if and only if $a \in \text{RightComp}(f)$ and $b \in \text{RightComp}(f)$ or $a \in \text{LeftComp}(f)$ and $b \in \text{LeftComp}(f)$.
- (16) $a \in (\mathcal{L}(f))^{c}$ and $b \in (\mathcal{L}(f))^{c}$ and it is not true that there exists a subset C of \mathcal{E}_{T}^{c} such that C is a component of $(\mathcal{\widetilde{L}}(f))^{c}$ and $a \in C$ and $b \in C$ if and only if $a \in \text{LeftComp}(f)$ and $b \in \text{RightComp}(f)$ or $a \in \text{RightComp}(f)$ and $b \in \text{LeftComp}(f)$.
- (17) Let given f, a, b, c. Suppose that
 - (i) there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\hat{\mathcal{L}}(f))^{\mathrm{c}}$ and $a \in C$ and $b \in C$, and
- (ii) there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^c$ and $b \in C$ and $c \in C$.

Then there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^c$ and $a \in C$ and $c \in C$.

- (18) Let given f, a, b, c. Suppose that
 - (i) $a \in (\mathcal{L}(f))^{c}$,
- (ii) $b \in (\mathcal{L}(f))^{c}$,
- (iii) $c \in (\mathcal{L}(f))^{c}$,
- (iv) it is not true that there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $a \in C$ and $b \in C$, and
- (v) it is not true that there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $b \in C$ and $c \in C$. Then there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $a \in C$ and $c \in C$.

4. Cells Are Convex

In the sequel G denotes a Go-board.

One can prove the following propositions:

- (19) If $i \leq \text{len } G$, then vstrip(G, i) is convex.
- (20) If $j \leq \text{width } G$, then hstrip(G, j) is convex.

MARIUSZ GIERO

- (21) If $i \leq \text{len } G$ and $j \leq \text{width } G$, then cell(G, i, j) is convex.
- (22) For all f, k such that $1 \leq k$ and $k + 1 \leq \text{len } f$ holds leftcell(f, k) is convex.
- (23) For all f, k such that $1 \leq k$ and $k+1 \leq len f$ holds $left_cell(f, k, the Go-board of f)$ is convex and right_cell(f, k, the Go-board of f) is convex.

5. Properties of Points Lying on the Same Line

The following propositions are true:

- (24) Let given p_1 , p_2 , f and r be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $r \in \mathcal{L}(p_1, p_2)$ and there exists x such that $\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(p_1, p_2) = \{x\}$ and $r \notin \widetilde{\mathcal{L}}(f)$. Then $\widetilde{\mathcal{L}}(f)$ misses $\mathcal{L}(p_1, r)$ or $\widetilde{\mathcal{L}}(f)$ misses $\mathcal{L}(r, p_2)$.
- (25) For all points p, q, r, s of \mathcal{E}_{T}^{2} such that $\mathcal{L}(p,q)$ is vertical and $\mathcal{L}(r,s)$ is vertical and $\mathcal{L}(p,q)$ meets $\mathcal{L}(r,s)$ holds $p_{1} = r_{1}$.
- (26) For all p, p_1 , p_2 such that $p \notin \mathcal{L}(p_1, p_2)$ and $(p_1)_2 = (p_2)_2$ and $(p_2)_2 = p_2$ holds $p_1 \in \mathcal{L}(p, p_2)$ or $p_2 \in \mathcal{L}(p, p_1)$.
- (27) For all p, p_1, p_2 such that $p \notin \mathcal{L}(p_1, p_2)$ and $(p_1)_1 = (p_2)_1$ and $(p_2)_1 = p_1$ holds $p_1 \in \mathcal{L}(p, p_2)$ or $p_2 \in \mathcal{L}(p, p_1)$.
- (28) If $p \neq p_1$ and $p \neq p_2$ and $p \in \mathcal{L}(p_1, p_2)$, then $p_1 \notin \mathcal{L}(p, p_2)$.
- (29) Let given p, p_1, p_2, q . Suppose $q \notin \mathcal{L}(p_1, p_2)$ and $p \in \mathcal{L}(p_1, p_2)$ and $p \neq p_1$ and $p \neq p_2$ and $(p_1)_1 = (p_2)_1$ and $(p_2)_1 = q_1$ or $(p_1)_2 = (p_2)_2$ and $(p_2)_2 = q_2$. Then $p_1 \in \mathcal{L}(q, p)$ or $p_2 \in \mathcal{L}(q, p)$.
- (30) Let p_1, p_2, p_3, p_4, p be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $(p_1)_1 = (p_2)_1$ and $(p_3)_1 = (p_4)_1$ or $(p_1)_2 = (p_2)_2$ and $(p_3)_2 = (p_4)_2$ but $\mathcal{L}(p_1, p_2) \cap \mathcal{L}(p_3, p_4) = \{p\}$. Then $p = p_1$ or $p = p_2$ or $p = p_3$.

6. The Position of the Points of a Polygon with Respect to Another Polygon

We now state several propositions:

- (31) Let given p, p_1, p_2, f . Suppose $\mathcal{L}(f) \cap \mathcal{L}(p_1, p_2) = \{p\}$. Let r be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) $r \notin \mathcal{L}(p_1, p_2),$
 - (ii) $p_1 \notin \widetilde{\mathcal{L}}(f)$,
- (iii) $p_2 \notin \widetilde{\mathcal{L}}(f),$
- (iv) $(p_1)_1 = (p_2)_1$ and $(p_1)_1 = r_1$ or $(p_1)_2 = (p_2)_2$ and $(p_1)_2 = r_2$,
- (v) there exists *i* such that $1 \leq i$ and $i+1 \leq \text{len } f$ and $r \in \text{right_cell}(f, i, \text{the Go-board of } f)$ or $r \in \text{left_cell}(f, i, \text{the Go-board of } f)$ and $p \in \mathcal{L}(f, i)$, and

⁽vi) $r \notin \mathcal{L}(f)$.

Then

- (vii) there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\mathcal{L}(f))^c$ and $r \in C$ and $p_1 \in C$, or
- (viii) there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $r \in C$ and $p_2 \in C$.
- (32) Let given f, p_1 , p_2 , p. Suppose $\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(p_1, p_2) = \{p\}$. Let r_1 , r_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) $p_1 \notin \mathcal{L}(f)$,
 - (ii) $p_2 \notin \mathcal{L}(f),$
- (iii) $(p_1)_1 = (p_2)_1$ and $(p_1)_1 = (r_1)_1$ and $(r_1)_1 = (r_2)_1$ or $(p_1)_2 = (p_2)_2$ and $(p_1)_2 = (r_1)_2$ and $(r_1)_2 = (r_2)_2$,
- (iv) there exists *i* such that $1 \leq i$ and $i+1 \leq \text{len } f$ and $r_1 \in \text{left_cell}(f, i, \text{the Go-board of } f)$ and $r_2 \in \text{right_cell}(f, i, \text{the Go-board of } f)$ and $p \in \mathcal{L}(f, i)$,
- (v) $r_1 \notin \mathcal{L}(f)$, and
- (vi) $r_2 \notin \mathcal{L}(f)$.

Then it is not true that there exists a subset C of $\mathcal{E}_{\mathrm{T}}^2$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $p_1 \in C$ and $p_2 \in C$.

- (33) Let given p, f, p_1, p_2 . Suppose $\mathcal{L}(f) \cap \mathcal{L}(p_1, p_2) = \{p\}$ and $(p_1)_1 = (p_2)_1$ or $(p_1)_2 = (p_2)_2$ and $p_1 \notin \mathcal{L}(f)$ and $p_2 \notin \mathcal{L}(f)$ and rng f misses $\mathcal{L}(p_1, p_2)$. Then it is not true that there exists a subset C of \mathcal{E}_T^2 such that C is a component of $(\mathcal{L}(f))^c$ and $p_1 \in C$ and $p_2 \in C$.
- (34) Let f be a non constant standard special circular sequence and g be a special finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f and g are in general position. Let given k. Suppose $1 \leq k$ and $k+1 \leq \log g$. Then $\overline{\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(g,k)}$ is an even natural number if and only if there exists a subset C of $\mathcal{E}_{\mathrm{T}}^2$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^c$ and $g(k) \in C$ and $g(k+1) \in C$.
- (35) Let f_1, f_2, g_1 be special finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) $f_1 \sim f_2$ is a non constant standard special circular sequence,
 - (ii) $f_1 \sim f_2$ and g_1 are in general position,
- (iii) $\operatorname{len} g_1 \ge 2$, and
- (iv) g_1 is unfolded and s.n.c..

Then $\widetilde{\mathcal{L}}(f_1 \frown f_2) \cap \widetilde{\mathcal{L}}(g_1)$ is an even natural number if and only if there exists a subset C of \mathcal{E}^2_T such that C is a component of $(\widetilde{\mathcal{L}}(f_1 \frown f_2))^c$ and $g_1(1) \in C$ and $g_1(\operatorname{len} g_1) \in C$.

- (36) Let f_1, f_2, g_1, g_2 be special finite sequences of elements of \mathcal{E}_T^2 . Suppose that
 - (i) $f_1 \sim f_2$ is a non constant standard special circular sequence,
 - (ii) $g_1 \sim g_2$ is a non constant standard special circular sequence,
- (iii) $\mathcal{L}(f_1)$ misses $\mathcal{L}(g_2)$,
- (iv) $\widehat{\mathcal{L}}(f_2)$ misses $\widehat{\mathcal{L}}(g_1)$, and

MARIUSZ GIERO

- (v) $f_1 \frown f_2$ and $g_1 \frown g_2$ are in general position.
 - Let p_1, p_2, q_1, q_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that $f_1(1) = p_1$ and $f_1(\mathrm{len} f_1) = p_2$ and $g_1(1) = q_1$ and $g_1(\mathrm{len} g_1) = q_2$ and $(f_1)_{\mathrm{len} f_1} = (f_2)_1$ and $(g_1)_{\mathrm{len} g_1} = (g_2)_1$ and $p_1 \neq p_2$ and $q_1 \neq q_2$ and $p_1 \in \widetilde{\mathcal{L}}(f_1) \cap \widetilde{\mathcal{L}}(f_2)$ and $q_1 \in \widetilde{\mathcal{L}}(g_1) \cap \widetilde{\mathcal{L}}(g_2)$ and there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f_1 \cap f_2))^{\mathrm{c}}$ and $q_1 \in C$ and $q_2 \in C$. Then there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(g_1 \frown g_2))^{\mathrm{c}}$ and $p_1 \in C$ and $p_2 \in C$.

Acknowledgments

I would like to thank Prof. Andrzej Trybulec for his help in preparation of this article. I also thank Adam Grabowski, Robert Milewski and Adam Naumowicz for their helpful comments.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [5] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [7] Czesław Byliński. Some properties of cells on Go-board. Formalized Mathematics, 8(1):139–146, 1999.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [14] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [15] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. *Formalized Mathematics*, 3(2):137–142, 1992.
- [16] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297–304, 1996.
- [17] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [19] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [20] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [22] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.

94

- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.[24] Andrzej Trybulec. Left and right component of the complement of a special closed curve.
- Formalized Mathematics, 5(4):465–468, 1996.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
 [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- 1(1):73-83, 1990.

Received May 27, 2002

Introducing Spans¹

Andrzej Trybulec University of Białystok

Summary. A sequence of internal approximations of simple closed curves is introduced. They are called spans.

MML Identifier: JORDAN13.

The notation and terminology used here are introduced in the following papers: [23], [17], [26], [2], [18], [27], [5], [4], [1], [3], [4], [25], [11], [12], [21], [7], [9], [10], [10], [12], [14], [28], [6], [7], [19], and [23].

Let C be a non vertical non horizontal non empty subset of $\mathcal{E}_{\mathrm{T}}^2$ satisfying conditions of simple closed curve and let n be a natural number. Let us assume that n is sufficiently large for C. The functor $\mathrm{Span}(C,n)$ yielding a clockwise oriented standard non constant special circular sequence is defined by the conditions (Def. 1).

(Def. 1)(i) Span(C, n) is a sequence which elements belong to Gauge(C, n),

- (ii) $(\operatorname{Span}(C, n))_1 = \operatorname{Gauge}(C, n) \circ (X-\operatorname{SpanStart}(C, n), Y-\operatorname{SpanStart}(C, n)),$
- (iii) $(\text{Span}(C, n))_2 = \text{Gauge}(C, n) \circ (X-\text{SpanStart}(C, n) 1, Y-\text{SpanStart}(C, n))$, and
- (iv) for every natural number k such that $1 \leq k$ and $k + 2 \leq len \operatorname{Span}(C, n)$ holds if front_right_cell($\operatorname{Span}(C, n), k, \operatorname{Gauge}(C, n)$) misses C and front_left_cell($\operatorname{Span}(C, n), k, \operatorname{Gauge}(C, n)$) misses C, then $\operatorname{Span}(C, n)$ turns left k, $\operatorname{Gauge}(C, n)$ and if front_right_cell($\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) misses C and front_left_cell($\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) meets C, then $\operatorname{Span}(C, n)$ goes straight k, $\operatorname{Gauge}(C, n)$ and if front_right_cell($\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) meets C, then $\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) meets C, then $\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) meets C, then $\operatorname{Span}(C, n)$, k, $\operatorname{Gauge}(C, n)$ and if front_right_cell($\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) meets C, then $\operatorname{Span}(C, n)$ turns right k, $\operatorname{Gauge}(C, n)$.

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

ANDRZEJ TRYBULEC

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2]Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe*matics*, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [5]Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, |6|1990.
- Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
- [8] Czesław Byliński. Some properties of cells on Go-board. Formalized Mathematics, 8(1):139-146, 1999.
- Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991. [11] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments
- and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991. [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed
- curves. Formalized Mathematics, 2(5):663-664, 1991.
- [13] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- [14] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [15] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [16] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
- [17] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(1):223–230, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Andrzej Trybulec. More on the external approximation of a continuum. Formalized Mathematics, 9(4):831-841, 2001.
- [22] Andrzej Trybulec. Preparing the internal approximations of simple closed curves. Formalized Mathematics, 10(2):85-87, 2002.
- [23] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541–548, 1997.
- [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990. Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67–71, 1990.
- [25]
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 27, 2002

General Fashoda Meet Theorem for Unit Circle

Yatsuka Nakamura Shinshu University Nagano

Summary. Outside and inside Fashoda theorems are proven for points in general position on unit circle. Four points must be ordered in a sense of ordering for simple closed curve. For preparation of proof, the relation between the order and condition of coordinates of points on unit circle is discussed.

MML Identifier: JGRAPH_5.

The articles [11], [9], [17], [21], [3], [4], [20], [5], [10], [1], [18], [7], [8], [12], [19], [16], [6], [2], [15], [14], and [13] provide the terminology and notation for this paper.

1. Preliminaries

In this paper x, a are real numbers.

Next we state a number of propositions:

- (1) If $a \ge 0$ and $(x-a) \cdot (x+a) \ge 0$, then $-a \ge x$ or $x \ge a$.
- (2) If $a \leq 0$ and x < a, then $x^2 > a^2$.
- (3) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $|p| \leq 1$ holds $-1 \leq p_1$ and $p_1 \leq 1$ and $-1 \leq p_2$ and $p_2 \leq 1$.
- (4) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $|p| \leq 1$ and $p_1 \neq 0$ and $p_2 \neq 0$ holds $-1 < p_1$ and $p_1 < 1$ and $-1 < p_2$ and $p_2 < 1$.
- (5) Let a, b, d, e, r_3 be real numbers, P_1, P_2 be non empty metric structures, x be an element of the carrier of P_1 , and x_2 be an element of the carrier of P_2 . Suppose $d \leq a$ and $a \leq b$ and $b \leq e$ and $P_1 = [a, b]_M$ and $P_2 = [d, e]_M$ and $x = x_2$ and $x \in$ the carrier of P_1 and $x_2 \in$ the carrier of P_2 . Then $Ball(x, r_3) \subseteq Ball(x_2, r_3)$.

C 2002 University of Białystok ISSN 1426-2630

YATSUKA NAKAMURA

- (6) Let a, b, d, e be real numbers and B be a subset of $[d, e]_{T}$. If $d \leq a$ and $a \leq b$ and $b \leq e$ and B = [a, b], then $[a, b]_{T} = [d, e]_{T} \upharpoonright B$.
- (7) For all real numbers a, b and for every subset B of \mathbb{I} such that $0 \leq a$ and $a \leq b$ and $b \leq 1$ and B = [a, b] holds $[a, b]_{\mathrm{T}} = \mathbb{I} \upharpoonright B$.
- (8) Let X be a topological structure, Y, Z be non empty topological structures, f be a map from X into Y, and h be a map from Y into Z. If h is a homeomorphism and f is continuous, then $h \cdot f$ is continuous.
- (9) Let X, Y, Z be topological structures, f be a map from X into Y, and h be a map from Y into Z. If h is a homeomorphism and f is one-to-one, then h cdot f is one-to-one.
- (10) Let X be a topological structure, S, V be non empty topological structures, B be a non empty subset of S, f be a map from X into $S \upharpoonright B$, g be a map from S into V, and h be a map from X into V. If $h = g \cdot f$ and f is continuous and g is continuous, then h is continuous.
- (11) Let $a, b, d, e, s_1, s_2, t_1, t_2$ be real numbers and h be a map from $[a, b]_T$ into $[d, e]_T$. Suppose h is a homeomorphism and $h(s_1) = t_1$ and $h(s_2) = t_2$ and h(a) = d and h(b) = e and $d \leq e$ and $t_1 \leq t_2$ and $s_1 \in [a, b]$ and $s_2 \in [a, b]$. Then $s_1 \leq s_2$.
- (12) Let $a, b, d, e, s_1, s_2, t_1, t_2$ be real numbers and h be a map from $[a, b]_T$ into $[d, e]_T$. Suppose h is a homeomorphism and $h(s_1) = t_1$ and $h(s_2) = t_2$ and h(a) = e and h(b) = d and $e \ge d$ and $t_1 \ge t_2$ and $s_1 \in [a, b]$ and $s_2 \in [a, b]$. Then $s_1 \le s_2$.
- (13) For every natural number n holds $-0_{\mathcal{E}_{T}^{n}} = 0_{\mathcal{E}_{T}^{n}}$.

2. FASHODA MEET THEOREMS FOR CIRCLE IN SPECIAL CASE

Next we state two propositions:

- (14) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$, a, b, c, d be real numbers, and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $a \neq b$ and $c \neq d$ and $f(O)_1 = a$ and $c \leqslant f(O)_2$ and $f(O)_2 \leqslant d$ and $f(I)_1 = b$ and $c \leqslant f(I)_2$ and $f(I)_2 \leqslant d$ and $g(O)_2 = c$ and $a \leqslant g(O)_1$ and $g(O)_1 \leqslant b$ and $g(I)_2 = d$ and $a \leqslant g(I)_1$ and $g(I)_1 \leqslant b$ and for every point r of \mathbb{I} holds $a \geqslant f(r)_1$ or $f(r)_1 \geqslant b$ or $c \geqslant f(r)_2$ or $f(r)_2 \geqslant d$ but $a \geqslant g(r)_1$ or $g(r)_1 \geqslant b$ or $c \geqslant g(r)_2 \Rightarrow d$. Then rng f meets rng g.
- (15) Let f be a map from I into \$\mathcal{E}_T^2\$. Suppose f is continuous and one-to-one. Then there exists a map \$f_2\$ from I into \$\mathcal{E}_T^2\$ such that \$f_2(0) = f(1)\$ and \$f_2(1) = f(0)\$ and rng \$f_2 = rng f\$ and \$f_2\$ is continuous and one-to-one. In the sequel \$p\$, \$q\$ denote points of \$\mathcal{E}_T^2\$. Next we state several propositions:

100

- (16) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2, C_0, K_1, K_2, K_3, K_4$ be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 =$ $\{p: |p| \leq 1\}$ and $K_1 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \leq 1\}$ $(q_1)_1 \wedge (q_1)_2 \ge -(q_1)_1$ and $K_2 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}_T^2$: $|q_2| = 1 \land (q_2)_2 \ge (q_2)_1 \land (q_2)_2 \le -(q_2)_1$ and $K_3 = \{q_3; q_3 \text{ ranges over }$ points of $\mathcal{E}^2_{\mathrm{T}}$: $|q_3| = 1 \land (q_3)_2 \ge (q_3)_1 \land (q_3)_2 \ge -(q_3)_1$ and $K_4 = \{q_4; q_4\}$ ranges over points of $\mathcal{E}_{\mathrm{T}}^2$: $|q_4| = 1 \land (q_4)_2 \leq (q_4)_1 \land (q_4)_2 \leq -(q_4)_1$ and $f(O) \in K_2$ and $f(I) \in K_1$ and $g(O) \in K_3$ and $g(I) \in K_4$ and rng $f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (17) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2, C_0, K_1, K_2, K_3, K_4$ be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of I. Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 =$ $\{p: |p| \ge 1\}$ and $K_1 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \leqslant$ $(q_1)_1 \wedge (q_1)_2 \ge -(q_1)_1$ and $K_2 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}_T^2$: $|q_2| = 1 \land (q_2)_2 \ge (q_2)_1 \land (q_2)_2 \le -(q_2)_1$ and $K_3 = \{q_3; q_3 \text{ ranges over }$ points of $\mathcal{E}^2_{\mathrm{T}}$: $|q_3| = 1 \land (q_3)_2 \ge (q_3)_1 \land (q_3)_2 \ge -(q_3)_1$ and $K_4 = \{q_4; q_4\}$ ranges over points of $\mathcal{E}_{\mathrm{T}}^2$: $|q_4| = 1 \land (q_4)_2 \leqslant (q_4)_1 \land (q_4)_2 \leqslant -(q_4)_1$ and $f(O) \in K_2$ and $f(I) \in K_1$ and $g(O) \in K_4$ and $g(I) \in K_3$ and rng $f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (18) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2, C_0, K_1, K_2, K_3, K_4$ be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of I. Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 =$ $\{p: |p| \ge 1\}$ and $K_1 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \leqslant$ $(q_1)_1 \wedge (q_1)_2 \ge -(q_1)_1$ and $K_2 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}^2_T$: $|q_2| = 1 \land (q_2)_2 \ge (q_2)_1 \land (q_2)_2 \le -(q_2)_1$ and $K_3 = \{q_3; q_3 \text{ ranges over}\}$ points of \mathcal{E}_{T}^{2} : $|q_{3}| = 1 \land (q_{3})_{2} \ge (q_{3})_{1} \land (q_{3})_{2} \ge -(q_{3})_{1}$ and $K_{4} = \{q_{4}; q_{4}\}$ ranges over points of $\mathcal{E}_{\mathrm{T}}^2$: $|q_4| = 1 \land (q_4)_2 \leq (q_4)_1 \land (q_4)_2 \leq -(q_4)_1$ and $f(O) \in K_2$ and $f(I) \in K_1$ and $g(O) \in K_3$ and $g(I) \in K_4$ and rng $f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (19) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$ and C_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose that $C_0 = \{q : |q| \ge 1\}$ and f is continuous and one-to-one and g is continuous and one-to-one and f(0) = [-1, 0] and f(1) = [1, 0] and g(1) = [0, 1] and g(0) = [0, -1] and rng $f \subseteq C_0$ and rng $g \subseteq C_0$. Then rng f meets rng g.
- (20) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and C_0 be a subset of \mathcal{E}_T^2 . Suppose that $C_0 = \{ p : |p| \ge 1 \},$ (i)
 - $|p_1| = 1,$ (ii)
- (iii)
- $|p_2| = 1,$
- (iv) $|p_3| = 1,$
- (v) $|p_4| = 1$, and
- there exists a map h from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$ such that h is a homeomorphism (vi)

YATSUKA NAKAMURA

and $h^{\circ}C_0 \subseteq C_0$ and $h(p_1) = [-1, 0]$ and $h(p_2) = [0, 1]$ and $h(p_3) = [1, 0]$ and $h(p_4) = [0, -1]$.

Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$. Suppose that f is continuous and oneto-one and g is continuous and one-to-one and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_4$ and $g(1) = p_2$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.

3. Properties of Fan Morphisms

The following propositions are true:

- (21) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 > 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphN(q), then $p_2 > 0$.
- (22) Let c_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 \ge 0$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphN(q), then $p_2 \ge 0$.
- (23) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 \ge 0$ and $\frac{q_1}{|q|} < c_1$ and $|q| \ne 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphN(q), then $p_2 \ge 0$ and $p_1 < 0$.
- (24) Let c_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 \ge 0$ and $(q_2)_2 \ge 0$ and $|q_1| \ne 0$ and $|q_2| \ne 0$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = c_1$ -FanMorphN (q_1) and $p_2 = c_1$ -FanMorphN (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (25) Let s_3 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_3$ and $s_3 < 1$ and $q_1 > 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = s_3$ -FanMorphE(q), then $p_1 > 0$.
- (26) Let s_3 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_3$ and $s_3 < 1$ and $q_1 \ge 0$ and $\frac{q_2}{|q|} < s_3$ and $|q| \ne 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = s_3$ -FanMorphE(q), then $p_1 \ge 0$ and $p_2 < 0$.
- (27) Let s_3 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_3$ and $s_3 < 1$ and $(q_1)_1 \ge 0$ and $(q_2)_1 \ge 0$ and $|q_1| \ne 0$ and $|q_2| \ne 0$ and $\frac{(q_1)_2}{|q_1|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = s_3$ -FanMorphE (q_1) and $p_2 = s_3$ -FanMorphE (q_2) , then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.
- (28) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 < 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphS(q), then $p_2 < 0$.
- (29) Let c_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 < 0$ and $\frac{q_1}{|q|} > c_1$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphS(q), then $p_2 < 0$ and $p_1 > 0$.

102

(30) Let c_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 \leq 0$ and $(q_2)_2 \leq 0$ and $|q_1| \neq 0$ and $|q_2| \neq 0$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = c_1$ -FanMorphS (q_1) and $p_2 = c_1$ -FanMorphS (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.

4. Order of Points on Circle

One can prove the following propositions:

- (31) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q : |q| = 1\}$ holds W-bound P = -1 and E-bound P = 1 and S-bound P = -1 and N-bound P = 1.
- (32) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q : |q| = 1\}$ holds W-min P = [-1, 0].
- (33) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q : |q| = 1\}$ holds E-max P = [1, 0].
- (34) For every map f from $\mathcal{E}_{\mathrm{T}}^2$ into \mathbb{R}^1 such that for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $f(p) = \operatorname{proj1}(p)$ holds f is continuous.
- (35) For every map f from $\mathcal{E}_{\mathrm{T}}^2$ into \mathbb{R}^1 such that for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $f(p) = \operatorname{proj2}(p)$ holds f is continuous.
- (36) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{q; q \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|q| = 1\}$ holds UpperArc $P \subseteq P$ and LowerArc $P \subseteq P$.
- (37) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{q; q \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|q| = 1\}$. Then UpperArc $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p \in P \land p_{2} \ge 0\}$.
- (38) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{q; q \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|q| = 1\}$. Then LowerArc $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}$: $p \in P \land p_{2} \leq 0\}$.
- (39) Let a, b, d, e be real numbers. Suppose $a \leq b$ and e > 0. Then there exists a map f from $[a, b]_{T}$ into $[e \cdot a + d, e \cdot b + d]_{T}$ such that f is a homeomorphism and for every real number r such that $r \in [a, b]$ holds $f(r) = e \cdot r + d$.
- (40) Let a, b, d, e be real numbers. Suppose $a \leq b$ and e < 0. Then there exists a map f from $[a, b]_{T}$ into $[e \cdot b + d, e \cdot a + d]_{T}$ such that f is a homeomorphism and for every real number r such that $r \in [a, b]$ holds $f(r) = e \cdot r + d$.
- (41) There exists a map f from \mathbb{I} into $[-1, 1]_{\mathrm{T}}$ such that f is a homeomorphism and for every real number r such that $r \in [0, 1]$ holds $f(r) = (-2) \cdot r + 1$ and f(0) = 1 and f(1) = -1.

YATSUKA NAKAMURA

- (42) There exists a map f from \mathbb{I} into $[-1, 1]_T$ such that f is a homeomorphism and for every real number r such that $r \in [0, 1]$ holds $f(r) = 2 \cdot r 1$ and f(0) = -1 and f(1) = 1.
- (43) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{p; p \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|p| = 1\}$. Then there exists a map f from $[-1, 1]_{T}$ into $(\mathcal{E}_{T}^{2}) \upharpoonright$ LowerArc P such that f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} such that $q \in$ LowerArc P holds $f(q_{1}) = q$ and f(-1) = W-min P and f(1) = E-max P.
- (44) Let P be a compact non empty subset of \mathcal{E}_{T}^{2} . Suppose $P = \{p; p \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|p| = 1\}$. Then there exists a map f from $[-1, 1]_{T}$ into (\mathcal{E}_{T}^{2}) | UpperArc P such that f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} such that $q \in$ UpperArc P holds $f(q_{1}) = q$ and f(-1) = W-min P and f(1) = E-max P.
- (45) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $|p| = 1\}$. Then there exists a map f from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2)$ bowerArc P such that
 - (i) f is a homeomorphism,
 - (ii) for all points q_1 , q_2 of \mathcal{E}_T^2 and for all real numbers r_1 , r_2 such that $f(r_1) = q_1$ and $f(r_2) = q_2$ and $r_1 \in [0, 1]$ and $r_2 \in [0, 1]$ holds $r_1 < r_2$ iff $(q_1)_1 > (q_2)_1$,
- (iii) f(0) = E-max P, and
- (iv) $f(1) = W-\min P$.
- (46) Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $|p| = 1\}$. Then there exists a map f from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2)$ UpperArc P such that
- (i) f is a homeomorphism,
- (ii) for all points q_1 , q_2 of \mathcal{E}_T^2 and for all real numbers r_1 , r_2 such that $f(r_1) = q_1$ and $f(r_2) = q_2$ and $r_1 \in [0, 1]$ and $r_2 \in [0, 1]$ holds $r_1 < r_2$ iff $(q_1)_1 < (q_2)_1$,
- (iii) f(0) = W-min P, and
- (iv) f(1) = E-max P.
- (47) Let p_1, p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . If $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_2 \in \text{UpperArc } P$ and $\text{LE}(p_1, p_2, P)$, then $p_1 \in \text{UpperArc } P$.
- (48) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 < 0$ and $(p_2)_2 < 0$. Then $(p_1)_1 > (p_2)_1$ and $(p_1)_2 < (p_2)_2$.
- (49) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$.

104

Then $(p_1)_1 < (p_2)_1$ and $(p_1)_2 < (p_2)_2$.

- (50) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$. Then $(p_1)_1 < (p_2)_1$.
- (51) Let p_1, p_2 be points of \mathcal{E}^2_T and P be a compact non empty subset of \mathcal{E}^2_T . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}^2_T : |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_2 \leq 0$ and $(p_2)_2 \leq 0$ and $p_1 \neq \text{W-min } P$. Then $(p_1)_1 > (p_2)_1$.
- (52) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ but $(p_2)_2 \ge 0$ or $(p_2)_1 \ge 0$ but $\text{LE}(p_1, p_2, P)$. Then $(p_1)_2 \ge 0$ or $(p_1)_1 \ge 0$.
- (53) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $p_1 \neq p_2$ and $(p_1)_1 \ge 0$ and $(p_2)_1 \ge 0$. Then $(p_1)_2 > (p_2)_2$.
- (54) Let p_1, p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 < 0$ and $(p_2)_2 < 0$ and $(p_1)_1 \ge (p_2)_1$ or $(p_1)_2 \le (p_2)_2$. Then $LE(p_1, p_2, P)$.
- (55) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 > 0$ and $(p_2)_1 > 0$ and $(p_1)_2 < 0$ and $(p_2)_2 < 0$ and $(p_1)_1 \ge (p_2)_1$ or $(p_1)_2 \ge (p_2)_2$. Then $LE(p_1, p_2, P)$.
- (56) Let p_1, p_2 be points of $\mathcal{E}^2_{\mathrm{T}}$ and P be a compact non empty subset of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_1)_1 \le (p_2)_1$ or $(p_1)_2 \le (p_2)_2$. Then $\mathrm{LE}(p_1, p_2, P)$.
- (57) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_1)_1 \le (p_2)_1$. Then $\text{LE}(p_1, p_2, P)$.
- (58) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_1 \ge 0$ and $(p_2)_1 \ge 0$ and $(p_1)_2 \ge (p_2)_2$. Then $\text{LE}(p_1, p_2, P)$.
- (59) Let p_1, p_2 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $p_1 \in P$ and $p_2 \in P$ and $(p_1)_2 \leq 0$ and $(p_2)_2 \leq 0$ and $p_2 \neq W$ -min P and $(p_1)_1 \geq (p_2)_1$. Then $LE(p_1, p_2, P)$.
- (60) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 \leq 0$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphS(q), then $p_2 \leq 0$.
- (61) Let c_1 be a real number, p_1, p_2, q_1, q_2 be points of \mathcal{E}^2_T , and P be a compact

non empty subset of \mathcal{E}_{T}^{2} . Suppose $-1 < c_{1}$ and $c_{1} < 1$ and $P = \{p; p \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|p| = 1\}$ and $\text{LE}(p_{1}, p_{2}, P)$ and $q_{1} = c_{1}$ -FanMorphS (p_{1}) and $q_{2} = c_{1}$ -FanMorphS (p_{2}) . Then $\text{LE}(q_{1}, q_{2}, P)$.

(62) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $(p_1)_1 < 0$ and $(p_1)_2 \ge 0$ and $(p_2)_1 < 0$ and $(p_2)_2 \ge 0$ and $(p_3)_1 < 0$ and $(p_3)_2 \ge 0$ and $(p_4)_1 < 0$ and $(p_4)_2 \ge 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(63) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $\text{LE}(p_2, p_3, P)$ and $\text{LE}(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_3)_2 \ge 0$ and $(p_4)_2 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} \ge 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} \ge 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} \ge 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} \ge 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(64) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $\text{LE}(p_2, p_3, P)$ and $\text{LE}(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ and $(p_2)_2 \ge 0$ and $(p_3)_2 \ge 0$ and $(p_4)_2 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(65) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ or $(p_1)_1 \ge$ 0 and $(p_2)_2 \ge 0$ or $(p_2)_1 \ge 0$ and $(p_3)_2 \ge 0$ or $(p_3)_1 \ge 0$ and $(p_4)_2 > 0$ or $(p_4)_1 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}^2_{T} holds |f(q)| = |q|

and $q_1 = f(p_1)$ and $q_2 = f(p_2)$ and $q_3 = f(p_3)$ and $q_4 = f(p_4)$ and $(q_1)_2 \ge 0$ and $(q_2)_2 \ge 0$ and $(q_3)_2 \ge 0$ and $(q_4)_2 > 0$ and $\text{LE}(q_1, q_2, P)$ and $\text{LE}(q_2, q_3, P)$ and $\text{LE}(q_3, q_4, P)$.

(66) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $(p_1)_2 \ge 0$ or $(p_1)_1 \ge$ 0 and $(p_2)_2 \ge 0$ or $(p_2)_1 \ge 0$ and $(p_3)_2 \ge 0$ or $(p_3)_1 \ge 0$ and $(p_4)_2 > 0$ or $(p_4)_1 > 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(67) Let p_1, p_2, p_3, p_4 be points of $\mathcal{E}_{\mathrm{T}}^2$ and P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |p| = 1\}$ and $p_4 = \text{W-min } P$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$. Then there exists a map f from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$ and there exist points q_1, q_2, q_3, q_4 of $\mathcal{E}_{\mathrm{T}}^2$ such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

(68) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 and there exist points q_1, q_2, q_3, q_4 of \mathcal{E}_T^2 such that

f is a homeomorphism and for every point q of \mathcal{E}_{T}^{2} holds |f(q)| = |q| and $q_{1} = f(p_{1})$ and $q_{2} = f(p_{2})$ and $q_{3} = f(p_{3})$ and $q_{4} = f(p_{4})$ and $(q_{1})_{1} < 0$ and $(q_{1})_{2} < 0$ and $(q_{2})_{1} < 0$ and $(q_{2})_{2} < 0$ and $(q_{3})_{1} < 0$ and $(q_{3})_{2} < 0$ and $(q_{4})_{1} < 0$ and $(q_{4})_{2} < 0$ and $LE(q_{1}, q_{2}, P)$ and $LE(q_{2}, q_{3}, P)$ and $LE(q_{3}, q_{4}, P)$.

5. General Fashoda Theorems

One can prove the following propositions:

(69) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose that $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_4, P)$ and $p_1 \neq p_2$ and $p_2 \neq p_3$ and $p_3 \neq p_4$ and $(p_1)_1 < 0$ and $(p_2)_1 < 0$ and $(p_3)_1 < 0$ and $(p_4)_1 < 0$ and

YATSUKA NAKAMURA

 $(p_1)_2 < 0$ and $(p_2)_2 < 0$ and $(p_3)_2 < 0$ and $(p_4)_2 < 0$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that f is a homeomorphism and for every point q of \mathcal{E}_T^2 holds |f(q)| = |q| and $[-1, 0] = f(p_1)$ and $[0, 1] = f(p_2)$ and $[1, 0] = f(p_3)$ and $[0, -1] = f(p_4)$.

- (70) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a compact non empty subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ and $\text{LE}(p_1, p_2, P)$ and $\text{LE}(p_2, p_3, P)$ and $\text{LE}(p_3, p_4, P)$ and $p_1 \neq p_2$ and $p_2 \neq p_3$ and $p_3 \neq p_4$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that f is a homeomorphism and for every point q of \mathcal{E}_T^2 holds |f(q)| = |q| and $[-1, 0] = f(p_1)$ and $[0, 1] = f(p_2)$ and $[1, 0] = f(p_3)$ and $[0, -1] = f(p_4)$.
- (71) Let p_1, p_2, p_3, p_4 be points of $\mathcal{E}_{\mathrm{T}}^2$, P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, and C_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $|p| = 1\}$ and $\mathrm{LE}(p_1, p_2, P)$ and $\mathrm{LE}(p_2, p_3, P)$ and $\mathrm{LE}(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_2$ and $g(1) = p_4$ and $\mathrm{rng} f \subseteq C_0$ and $\mathrm{rng} g \subseteq C_0$. Then $\mathrm{rng} f$ meets $\mathrm{rng} g$.
- (72) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_4$ and $g(1) = p_2$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (73) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \ge 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_4$ and $g(1) = p_2$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (74) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \ge 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_2$ and $g(1) = p_4$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.

References

- Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
 [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized
- Mathematics, 6(3):427–440, 1997.
- [7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. *Formalized Mathematics*, 2(4):605–608, 1991.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [13] Yatsuka Nakamura. Fan homeomorphisms in the plane. Formalized Mathematics, 10(1):1– 19, 2002.
- [14] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. *Formalized Mathematics*, 6(4):563–572, 1997.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received June 24, 2002

Properties of the Internal Approximation of Jordan's Curve¹

Robert Milewski University of Białystok

MML Identifier: JORDAN14.

The articles [19], [25], [14], [10], [1], [16], [2], [3], [24], [11], [18], [9], [26], [6], [17], [7], [8], [12], [13], [20], [15], [4], [5], [21], [23], and [22] provide the notation and terminology for this paper.

One can prove the following propositions:

- (1) For every non constant standard special circular sequence f holds BDD $\widetilde{\mathcal{L}}(f) = \text{RightComp}(f)$ or BDD $\widetilde{\mathcal{L}}(f) = \text{LeftComp}(f)$.
- (2) For every non constant standard special circular sequence f holds UBD $\widetilde{\mathcal{L}}(f) = \operatorname{RightComp}(f)$ or UBD $\widetilde{\mathcal{L}}(f) = \operatorname{LeftComp}(f)$.
- (3) Let G be a Go-board, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, and k be a natural number. Suppose $1 \leq k$ and $k+1 \leq \mathrm{len} f$ and f is a sequence which elements belong to G. Then $\mathrm{left_cell}(f, k, G)$ is closed.
- (4) Let G be a Go-board, p be a point of $\mathcal{E}_{\mathrm{T}}^2$, and i, j be natural numbers. Suppose $1 \leq i$ and $i+1 \leq \mathrm{len} G$ and $1 \leq j$ and $j+1 \leq \mathrm{width} G$. Then $p \in \mathrm{Int} \operatorname{cell}(G, i, j)$ if and only if the following conditions are satisfied:
- (i) $(G \circ (i, j))_1 < p_1,$
- (ii) $p_1 < (G \circ (i+1,j))_1,$
- (iii) $(G \circ (i, j))_2 < p_2$, and
- (iv) $p_2 < (G \circ (i, j+1))_2.$
- (5) For every non constant standard special circular sequence f holds BDD $\widetilde{\mathcal{L}}(f)$ is connected.

Let f be a non constant standard special circular sequence. Observe that BDD $\widetilde{\mathcal{L}}(f)$ is connected.

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

Let C be a simple closed curve and let n be a natural number. The functor SpanStart(C, n) yields a point of $\mathcal{E}^2_{\mathrm{T}}$ and is defined as follows:

- (Def. 1) SpanStart(C, n) = Gauge $(C, n) \circ (X$ -SpanStart(C, n), Y-SpanStart(C, n)). The following four propositions are true:
 - (6) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then $(\text{Span}(C, n))_1 = \text{SpanStart}(C, n)$.
 - (7) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\text{SpanStart}(C, n) \in \text{BDD} C$.
 - (8) Let C be a simple closed curve and n, k be natural numbers. Suppose n is sufficiently large for C. Suppose $1 \leq k$ and $k + 1 \leq len \operatorname{Span}(C, n)$. Then right_cell($\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) misses C and left_cell($\operatorname{Span}(C, n), k$, $\operatorname{Gauge}(C, n)$) meets C.
 - (9) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then C misses $\widetilde{\mathcal{L}}(\text{Span}(C, n))$.

Let C be a simple closed curve and let n be a natural number. Observe that $\overline{\text{RightComp}(\text{Span}(C, n))}$ is compact.

Next we state a number of propositions:

- (10) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then C meets LeftComp(Span(C, n)).
- (11) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then C misses RightComp(Span(C, n)).
- (12) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $C \subseteq \text{LeftComp}(\text{Span}(C, n))$.
- (13) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $C \subseteq \text{UBD} \widetilde{\mathcal{L}}(\text{Span}(C, n))$.
- (14) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds BDD $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n)) \subseteq \operatorname{BDD} C$.
- (15) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds UBD $C \subseteq$ UBD $\widetilde{\mathcal{L}}(\text{Span}(C, n))$.
- (16) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds RightComp(Span(C, n)) \subseteq BDD C.
- (17) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds UBD $C \subseteq \text{LeftComp}(\text{Span}(C, n))$.
- (18) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then UBD C misses BDD $\widetilde{\mathcal{L}}(\text{Span}(C, n))$.
- (19) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then UBD C misses RightComp(Span(C, n)).
- (20) Let C be a simple closed curve, P be a subset of $\mathcal{E}_{\mathrm{T}}^2$, and n be a natural number. Suppose n is sufficiently large for C. If P is outside component

of C, then P misses $\mathcal{L}(\text{Span}(C, n))$.

- (21) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then UBD C misses $\widetilde{\mathcal{L}}(\text{Span}(C, n))$.
- (22) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n)) \subseteq \operatorname{BDD} C$.
- (23) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leq k$ and $k \leq \text{len} \text{Span}(C, n)$ and $\langle i, j \rangle \in \text{the indices of Gauge}(C, n)$ and $(\text{Span}(C, n))_k = \text{Gauge}(C, n) \circ (i, j)$. Then i > 1.
- (24) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leq k$ and $k \leq \operatorname{len} \operatorname{Span}(C, n)$ and $\langle i, j \rangle \in \operatorname{the}$ indices of $\operatorname{Gauge}(C, n)$ and $(\operatorname{Span}(C, n))_k = \operatorname{Gauge}(C, n) \circ (i, j)$. Then $i < \operatorname{len} \operatorname{Gauge}(C, n)$.
- (25) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leq k$ and $k \leq \operatorname{len} \operatorname{Span}(C, n)$ and $\langle i, j \rangle \in \operatorname{the indices of } \operatorname{Gauge}(C, n)$ and $(\operatorname{Span}(C, n))_k = \operatorname{Gauge}(C, n) \circ (i, j)$. Then j > 1.
- (26) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leq k$ and $k \leq \operatorname{len} \operatorname{Span}(C, n)$ and $\langle i, j \rangle \in \operatorname{the indices} of \operatorname{Gauge}(C, n)$ and $(\operatorname{Span}(C, n))_k = \operatorname{Gauge}(C, n) \circ (i, j)$. Then $j < \operatorname{width} \operatorname{Gauge}(C, n)$.
- (27) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds Y-SpanStart(C, n) < width Gauge(C, n).
- (28) Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and n, m be natural numbers. If $m \ge n$ and $n \ge 1$, then X-SpanStart $(C,m) = 2^{m-n} \cdot (X-\operatorname{SpanStart}(C,n)-2)+2$.
- (29) Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and n, m be natural numbers. Suppose $n \leq m$ and n is sufficiently large for C. Then m is sufficiently large for C.
- (30) Let G be a Go-board, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, and i, j be natural numbers. Suppose f is a sequence which elements belong to G and special and $i \leq \mathrm{len} G$ and $j \leq \mathrm{width} G$. Then $\mathrm{cell}(G, i, j) \setminus \widetilde{\mathcal{L}}(f)$ is connected.
- (31) Let *C* be a simple closed curve and *n*, *k* be natural numbers. Suppose *n* is sufficiently large for *C* and Y-SpanStart(*C*, *n*) \leq *k* and *k* $\leq 2^{n-'\operatorname{ApproxIndex}C} \cdot (\operatorname{Y-InitStart}C -' 2) + 2$. Then cell(Gauge(*C*, *n*), X-SpanStart(*C*, *n*) -' 1, *k*) \ $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n)) \subseteq$ BDD $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
- (32) Let C be a subset of $\mathcal{E}_{\mathrm{T}}^2$ and n, m, i be natural numbers. If $m \leq n$ and 1 < i and $i + 1 < \operatorname{len} \operatorname{Gauge}(C, m)$, then $2^{n-m} \cdot (i-2) + 2 + 1 < 1$

len $\operatorname{Gauge}(C, n)$.

- (33) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leq m$, then RightComp(Span(C, n)) meets RightComp(Span(C, m)).
- (34) Let G be a Go-board and f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f is a sequence which elements belong to G and special. Let i, j be natural numbers. If $i \leq \mathrm{len} G$ and $j \leq \mathrm{width} G$, then $\mathrm{Int} \mathrm{cell}(G, i, j) \subseteq (\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$.
- (35) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leq m$, then $\widetilde{\mathcal{L}}(\operatorname{Span}(C,m)) \subseteq \overline{\operatorname{LeftComp}(\operatorname{Span}(C,n))}$.
- (36) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leq m$, then RightComp(Span(C, n)) \subseteq RightComp(Span(C, m)).
- (37) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leq m$, then LeftComp(Span(C, m)) \subseteq LeftComp(Span(C, n)).

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
- [5] Czesław Byliński. Some properties of cells on Go-board. Formalized Mathematics, 8(1):139–146, 1999.
- [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [13] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [14] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [15] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. *Formalized Mathematics*, 8(1):1–13, 1999.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [17] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.

- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(1):223–230, 1990.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.[20] Andrzej Trybulec. Left and right component of the complement of a special closed curve.
- Formalized Mathematics, 5(4):465-468, 1996.
- [21] Andrzej Trybulec. More on the external approximation of a continuum. Formalized Mathematics, 9(4):831-841, 2001.
- [22] Andrzej Trybulec. Introducing spans. Formalized Mathematics, 10(2):97–98, 2002.
- [23] Andrzej Trybulec. Preparing the internal approximations of simple closed curves. Formalized Mathematics, 10(2):85–87, 2002.
- [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received June 27, 2002

Contents

Upper and Lower Sequence on the Cage, Upper and Lower Arcs By ROBERT MILEWSKI	73
Fibonacci Numbers	
By Robert M. Solovay	81
Preparing the Internal Approximations of Simple Closed Curves By ANDRZEJ TRYBULEC	85
On the General Position of Special Polygons By Mariusz Giero	89
Introducing Spans	
By Andrzej Trybulec	97
General Fashoda Meet Theorem for Unit Circle	
By YATSUKA NAKAMURA	99
Properties of the Internal Approximation of Jordan's Curve	
By Robert Milewski	111

 $Continued \ on \ inside \ back \ cover$