
FORMALIZED MATHEMATICS

Volume 10, Number 2, 2002
University of Białystok

Upper and Lower Sequence on the Cage,
Upper and Lower Arcs1

Robert Milewski
University of Białystok

MML Identifier: JORDAN1J.

The articles [25], [30], [2], [4], [3], [29], [5], [14], [27], [20], [24], [13], [1], [23], [10],
[11], [8], [28], [16], [12], [21], [26], [7], [18], [19], [6], [22], [9], [15], and [17] provide
the notation and terminology for this paper.

In this paper n is a natural number.
The following propositions are true:

(1) Let G be a Go-board and i1, i2, j1, j2 be natural numbers. Suppose
1 ¬ j1 and j1 ¬ width G and 1 ¬ j2 and j2 ¬ width G and 1 ¬ i1 and
i1 < i2 and i2 ¬ len G. Then (G ◦ (i1, j1))1 < (G ◦ (i2, j2))1.

(2) Let G be a Go-board and i1, i2, j1, j2 be natural numbers. Suppose
1 ¬ i1 and i1 ¬ len G and 1 ¬ i2 and i2 ¬ len G and 1 ¬ j1 and j1 < j2

and j2 ¬ width G. Then (G ◦ (i1, j1))2 < (G ◦ (i2, j2))2.

Let f be a non empty finite sequence and let g be a finite sequence. One can
verify that f aa g is non empty.

The following propositions are true:

(3) Let C be a compact connected non vertical non horizontal subset of E2
T

and n be a natural number. Then L̃(Cage(C, n)−:E-max L̃(Cage(C, n)))∩
L̃(Cage(C, n) :− E-max L̃(Cage(C, n))) =
{N-min L̃(Cage(C, n)), E-max L̃(Cage(C, n))}.

(4) For every compact connected non vertical non horizontal subset

C of E2
T holds UpperSeq(C, n) = ((Cage(C, n))E-max eL(Cage(C,n))

ª ) :−
W-min L̃(Cage(C, n)).

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(5) For every compact non vertical non horizontal subset C of E2
T holds

W-min L̃(Cage(C, n)) ∈ rng UpperSeq(C, n) and W-min L̃(Cage(C, n)) ∈
L̃(UpperSeq(C, n)).

(6) For every compact connected non vertical non horizontal sub-
set C of E2

T holds W-max L̃(Cage(C, n)) ∈ rng UpperSeq(C, n) and
W-max L̃(Cage(C, n)) ∈ L̃(UpperSeq(C, n)).

(7) For every compact connected non vertical non horizontal sub-
set C of E2

T holds N-min L̃(Cage(C, n)) ∈ rng UpperSeq(C, n) and
N-min L̃(Cage(C, n)) ∈ L̃(UpperSeq(C, n)).

(8) For every compact connected non vertical non horizontal sub-
set C of E2

T holds N-max L̃(Cage(C, n)) ∈ rng UpperSeq(C, n) and
N-max L̃(Cage(C, n)) ∈ L̃(UpperSeq(C, n)).

(9) For every compact non vertical non horizontal subset C of E2
T holds

E-max L̃(Cage(C, n)) ∈ rng UpperSeq(C, n) and E-max L̃(Cage(C, n)) ∈
L̃(UpperSeq(C, n)).

(10) For every compact non vertical non horizontal subset C of E2
T holds

E-max L̃(Cage(C, n)) ∈ rng LowerSeq(C, n) and E-max L̃(Cage(C, n)) ∈
L̃(LowerSeq(C, n)).

(11) For every compact non vertical non horizontal subset C of E2
T holds

E-min L̃(Cage(C, n)) ∈ rng LowerSeq(C, n) and E-min L̃(Cage(C, n)) ∈
L̃(LowerSeq(C, n)).

(12) For every compact non vertical non horizontal subset C of E2
T holds

S-max L̃(Cage(C, n)) ∈ rng LowerSeq(C, n) and S-max L̃(Cage(C, n)) ∈
L̃(LowerSeq(C, n)).

(13) For every compact non vertical non horizontal subset C of E2
T holds

S-min L̃(Cage(C, n)) ∈ rng LowerSeq(C, n) and S-min L̃(Cage(C, n)) ∈
L̃(LowerSeq(C, n)).

(14) For every compact non vertical non horizontal subset C of E2
T holds

W-min L̃(Cage(C, n)) ∈ rng LowerSeq(C, n) and W-min L̃(Cage(C, n)) ∈
L̃(LowerSeq(C, n)).

(15) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

N-min Y ∈ X holds N-min X = N-min Y.

(16) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

N-max Y ∈ X holds N-max X = N-max Y.

(17) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

E-min Y ∈ X holds E-min X = E-min Y.

(18) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

E-max Y ∈ X holds E-max X = E-max Y.

(19) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

S-min Y ∈ X holds S-min X = S-min Y.
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(20) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

S-max Y ∈ X holds S-max X = S-max Y.

(21) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

W-min Y ∈ X holds W-min X = W-min Y.

(22) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y and

W-max Y ∈ X holds W-max X = W-max Y.

(23) For all non empty compact subsets X, Y of E2
T such that N-bound X <

N-bound Y holds N-bound X ∪ Y = N-bound Y.

(24) For all non empty compact subsets X, Y of E2
T such that E-bound X <

E-bound Y holds E-bound X ∪ Y = E-bound Y.

(25) For all non empty compact subsets X, Y of E2
T such that S-bound X <

S-bound Y holds S-bound X ∪ Y = S-bound X.

(26) For all non empty compact subsets X, Y of E2
T such that W-bound X <

W-bound Y holds W-bound X ∪ Y = W-bound X.

(27) For all non empty compact subsets X, Y of E2
T such that N-bound X <

N-bound Y holds N-min X ∪ Y = N-min Y.

(28) For all non empty compact subsets X, Y of E2
T such that N-bound X <

N-bound Y holds N-max X ∪ Y = N-max Y.

(29) For all non empty compact subsets X, Y of E2
T such that E-bound X <

E-bound Y holds E-min X ∪ Y = E-min Y.

(30) For all non empty compact subsets X, Y of E2
T such that E-bound X <

E-bound Y holds E-max X ∪ Y = E-max Y.

(31) For all non empty compact subsets X, Y of E2
T such that S-bound X <

S-bound Y holds S-min X ∪ Y = S-min X.

(32) For all non empty compact subsets X, Y of E2
T such that S-bound X <

S-bound Y holds S-max X ∪ Y = S-max X.

(33) For all non empty compact subsets X, Y of E2
T such that W-bound X <

W-bound Y holds W-min X ∪ Y = W-min X.

(34) For all non empty compact subsets X, Y of E2
T such that W-bound X <

W-bound Y holds W-max X ∪ Y = W-max X.

(35) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If f is a special sequence and p ∈ L̃(f), then (¼ p, f)len ¼ p,f = flen f .

(36) Let f be a non constant standard special circular sequence, p, q be
points of E2

T, and g be a connected subset of E2
T. If p ∈ RightComp(f) and

q ∈ LeftComp(f) and p ∈ g and q ∈ g, then g meets L̃(f).

One can verify that there exists special sequence finite sequence of elements
of E2

T which is non constant, standard, and s.c.c..
Next we state a number of propositions:
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(37) For every S-sequence f in R2 and for every point p of E2
T such that

p ∈ rng f holds ¼ p, f = mid(f, p " f, len f).
(38) Let M be a Go-board and f be a S-sequence in R2. Suppose f is a

sequence which elements belong to M . Let p be a point of E2
T. If p ∈ rng f,

then º f, p is a sequence which elements belong to M .

(39) Let M be a Go-board and f be a S-sequence in R2. Suppose f is a
sequence which elements belong to M . Let p be a point of E2

T. If p ∈ rng f,

then ¼ p, f is a sequence which elements belong to M .

(40) Let G be a Go-board and f be a finite sequence of elements of E2
T.

Suppose f is a sequence which elements belong to G. Let i, j be natural
numbers. If 1 ¬ i and i ¬ len G and 1 ¬ j and j ¬ width G, then if
G ◦ (i, j) ∈ L̃(f), then G ◦ (i, j) ∈ rng f.

(41) Let f be a S-sequence in R2 and g be a finite sequence of elements of
E2

T. Suppose that
(i) g is unfolded, s.n.c., and one-to-one,
(ii) L̃(f) ∩ L̃(g) = {f1},
(iii) f1 = glen g,

(iv) for every natural number i such that 1 ¬ i and i + 2 ¬ len f holds
L(f, i) ∩ L(flen f , g1) = ∅, and

(v) for every natural number i such that 2 ¬ i and i + 1 ¬ len g holds
L(g, i) ∩ L(flen f , g1) = ∅.
Then f a g is s.c.c..

(42) Let C be a compact non vertical non horizontal non empty subset of
E2

T. Then there exists a natural number i such that 1 ¬ i and i + 1 ¬
len Gauge(C, n) and W-min C ∈ cell(Gauge(C, n), 1, i) and W-min C 6=
Gauge(C, n) ◦ (2, i).

(43) For every S-sequence f in R2 and for every point p of E2
T such that

p ∈ L̃(f) and f(len f) ∈ L̃(º f, p) holds f(len f) = p.

(44) For every non empty finite sequence f of elements of E2
T and for every

point p of E2
T holds º f, p 6= ∅.

(45) For every S-sequence f in R2 and for every point p of E2
T such that

p ∈ L̃(f) holds (º f, p)len º f,p = p.

(46) Let C be a compact connected non vertical non horizontal subset
of E2

T and p be a point of E2
T. If p ∈ L̃(UpperSeq(C, n)) and p1 =

E-bound L̃(Cage(C, n)), then p = E-max L̃(Cage(C, n)).
(47) Let C be a compact connected non vertical non horizontal subset

of E2
T and p be a point of E2

T. If p ∈ L̃(LowerSeq(C, n)) and p1 =
W-bound L̃(Cage(C, n)), then p = W-min L̃(Cage(C, n)).

(48) Let G be a Go-board, f , g be finite sequences of elements of E2
T, and k

be a natural number. Suppose 1 ¬ k and k < len f and f a g is a sequence
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which elements belong to G. Then left cell(f a g, k,G) = left cell(f, k, G)
and right cell(f a g, k, G) = right cell(f, k, G).

(49) Let D be a set, f , g be finite sequences of elements of D, and i be a
natural number. If i ¬ len f, then (f aa g)¹i = f¹i.

(50) For every set D and for all finite sequences f , g of elements of D holds
(f aa g)¹ len f = f.

(51) Let G be a Go-board, f , g be finite sequences of elements of E2
T, and k be

a natural number. Suppose 1 ¬ k and k < len f and f aa g is a sequence
which elements belong to G. Then left cell(f aa g, k, G) = left cell(f, k, G)
and right cell(f aa g, k, G) = right cell(f, k, G).

(52) Let G be a Go-board, f be a S-sequence in R2, p be a point of E2
T, and

k be a natural number. Suppose 1 ¬ k and k < p " f and f is a sequence
which elements belong to G and p ∈ rng f. Then left cell(º f, p, k, G) =
left cell(f, k,G) and right cell(º f, p, k,G) = right cell(f, k,G).

(53) Let G be a Go-board, f be a finite sequence of elements of E2
T, p be a

point of E2
T, and k be a natural number. Suppose 1 ¬ k and k < p " f and

f is a sequence which elements belong to G. Then left cell(f −: p, k, G) =
left cell(f, k,G) and right cell(f −: p, k, G) = right cell(f, k, G).

(54) Let f , g be finite sequences of elements of E2
T. Suppose that

(i) f is unfolded, s.n.c., and one-to-one,
(ii) g is unfolded, s.n.c., and one-to-one,
(iii) flen f = g1, and
(iv) L̃(f) ∩ L̃(g) = {g1}.

Then f aa g is s.n.c..

(55) Let f , g be finite sequences of elements of E2
T. Suppose f is one-to-one

and g is one-to-one and rng f ∩ rng g ⊆ {g1}. Then f aa g is one-to-one.

(56) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If f is a
special sequence and p ∈ rng f and p 6= f(1), then Index(p, f)+1 = p " f.

(57) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 < i and i < len Gauge(C, n)
and 1 ¬ j and k ¬ width Gauge(C, n) and Gauge(C, n) ◦ (i, k) ∈
L̃(UpperSeq(C, n)) and Gauge(C, n) ◦ (i, j) ∈ L̃(LowerSeq(C, n)). Then
j 6= k.

(58) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ j and j ¬ k

and k ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦
(i, k)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (i, j)}.
Then L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) meets LowerArc C.

(59) Let C be a simple closed curve and i, j, k be natural numbers.
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Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ j and j ¬ k

and k ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦
(i, k)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (i, j)}.
Then L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) meets UpperArc C.

(60) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose that 1 < i and i < len Gauge(C, n) and 1 ¬
j and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩ UpperArc L̃(Cage(C, n)) =
{Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩
LowerArc L̃(Cage(C, n)) = {Gauge(C, n) ◦ (i, j)}. Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets LowerArc C.

(61) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose that 1 < i and i < len Gauge(C, n) and 1 ¬
j and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩ UpperArc L̃(Cage(C, n)) =
{Gauge(C, n) ◦ (i, k)} and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k)) ∩
LowerArc L̃(Cage(C, n)) = {Gauge(C, n) ◦ (i, j)}. Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets UpperArc C.

(62) Let C be a compact connected non vertical non horizontal subset of E2
T

and j be a natural number. Suppose Gauge(C, n+1)◦(Center Gauge(C, n+
1), j) ∈ UpperArc L̃(Cage(C, n+1)) and 1 ¬ j and j ¬ width Gauge(C, n+
1). Then L(Gauge(C, 1) ◦ (Center Gauge(C, 1), 1), Gauge(C, n + 1) ◦
(Center Gauge(C, n + 1), j)) meets LowerArc L̃(Cage(C, n + 1)).

(63) Let C be a simple closed curve and j, k be natural numbers. Suppose
that

(i) 1 ¬ j,

(ii) j ¬ k,

(iii) k ¬ width Gauge(C, n + 1),
(iv) L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n +

1) ◦ (Center Gauge(C, n + 1), k)) ∩ UpperArc L̃(Cage(C, n + 1)) =
{Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), k)}, and

(v) L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n + 1) ◦
(Center Gauge(C, n+1), k))∩LowerArc L̃(Cage(C, n+1)) = {Gauge(C, n+
1) ◦ (Center Gauge(C, n + 1), j)}.
Then L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n + 1) ◦
(Center Gauge(C, n + 1), k)) meets LowerArc C.

(64) Let C be a simple closed curve and j, k be natural numbers. Suppose
that

(i) 1 ¬ j,

(ii) j ¬ k,
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(iii) k ¬ width Gauge(C, n + 1),
(iv) L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n +

1) ◦ (Center Gauge(C, n + 1), k)) ∩ UpperArc L̃(Cage(C, n + 1)) =
{Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), k)}, and

(v) L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n + 1) ◦
(Center Gauge(C, n+1), k))∩LowerArc L̃(Cage(C, n+1)) = {Gauge(C, n+
1) ◦ (Center Gauge(C, n + 1), j)}.
Then L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n + 1) ◦
(Center Gauge(C, n + 1), k)) meets UpperArc C.
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Summary. We show that Fibonacci commutes with g.c.d.; we then derive
the formula connecting the Fibonacci sequence with the roots of the polynomial
x2 − x− 1.

MML Identifier: FIB NUM.

The terminology and notation used here are introduced in the following articles:
[3], [9], [5], [1], [2], [4], [7], [6], and [8].

1. Fibonacci Commutes with gcd

One can prove the following three propositions:

(1) For all natural numbers m, n holds gcd(m,n) = gcd(m, n + m).
(2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds gcd(k,m ·

n) = gcd(k, n).
(3) For every real number s such that s > 0 there exists a natural number

n such that n > 0 and 0 < 1
n and 1

n ¬ s.

In this article we present several logical schemes. The scheme Fib Ind con-
cerns a unary predicate P, and states that:

For every natural number k holds P[k]
provided the following conditions are met:
• P[0],
• P[1], and
• For every natural number k such that P[k] and P[k + 1] holds
P[k + 2].

81
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The scheme Bin Ind concerns a binary predicate P, and states that:
For all natural numbers m, n holds P[m,n]

provided the parameters satisfy the following conditions:
• For all natural numbers m, n such that P[m,n] holds P[n,m],

and
• Let k be a natural number. Suppose that for all natural numbers

m, n such that m < k and n < k holds P[m,n]. Let m be a
natural number. If m ¬ k, then P[k,m].

We now state two propositions:

(4) For all natural numbers m, n holds Fib(m+(n+1)) = Fib(n) ·Fib(m)+
Fib(n + 1) · Fib(m + 1).

(5) For all natural numbers m, n holds gcd(Fib(m), Fib(n)) =
Fib(gcd(m,n)).

2. Fibonacci Numbers and the Golden Mean

Next we state the proposition

(6) Let x, a, b, c be real numbers. Suppose a 6= 0 and ∆(a, b, c) ­ 0. Then

a · x2 + b · x + c = 0 if and only if x = −b−
√

∆(a,b,c)

2·a or x = −b+
√

∆(a,b,c)

2·a .

The real number τ is defined by:

(Def. 1) τ = 1+
√

5
2 .

The real number τ is defined as follows:

(Def. 2) τ = 1−√5
2 .

One can prove the following propositions:

(7) For every natural number n holds Fib(n) = τn−τn√
5

.

(8) For every natural number n holds |Fib(n)− τn√
5
| < 1.

(9) For all sequences F , G of real numbers such that for every natural num-
ber n holds F (n) = G(n) holds F = G.

(10) For all sequences f , g, h of real numbers such that g is non-zero holds
(f/g) (g/h) = f/h.

(11) For all sequences f , g of real numbers and for every natural number n

holds (f/g)(n) = f(n)
g(n) and (f/g)(n) = f(n) · g(n)−1.

(12) Let F be a sequence of real numbers. Suppose that for every natural
number n holds F (n) = Fib(n+1)

Fib(n) . Then F is convergent and lim F = τ.
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Preparing the Internal Approximations
of Simple Closed Curves1
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University of Białystok

Summary. We mean by an internal approximation of a simple closed curve
a special polygon disjoint with it but sufficiently close to it, i.e. such that it is
clock-wise oriented and its right cells meet the curve. We prove lemmas used in
the next article to construct a sequence of internal approximations.

MML Identifier: JORDAN11.

The articles [18], [5], [20], [11], [1], [16], [2], [21], [4], [3], [12], [17], [7], [8], [9],
[10], [13], [14], [15], [6], and [19] provide the terminology and notation for this
paper.

In this paper j, k, n are natural numbers and C is a subset of E2
T satisfying

conditions of simple closed curve.
Let us consider C. The functor ApproxIndex C yielding a natural number is

defined by:

(Def. 1) ApproxIndex C is sufficiently large for C and for every j such that j is
sufficiently large for C holds j ­ ApproxIndex C.

Next we state the proposition

(1) ApproxIndex C ­ 1.

Let us consider C. The functor Y-InitStart C yields a natural number and
is defined as follows:

(Def. 2) Y-InitStart C < width Gauge(C, ApproxIndex C) and cell(Gauge(C,

ApproxIndex C), X-SpanStart(C, ApproxIndex C) −′ 1, Y-InitStart C) ⊆
BDD C and for every j such that j < width Gauge(C, ApproxIndex C) and
cell(Gauge(C, ApproxIndex C), X-SpanStart(C, ApproxIndex C)−′ 1, j) ⊆
BDD C holds j ­ Y-InitStart C.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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The following propositions are true:

(2) Y-InitStart C > 1.

(3) Y-InitStart C + 1 < width Gauge(C, ApproxIndex C).

Let us consider C, n. Let us assume that n is sufficiently large for C. The
functor Y-SpanStart(C, n) yields a natural number and is defined by the condi-
tions (Def. 3).

(Def. 3)(i) Y-SpanStart(C, n) ¬ width Gauge(C, n),
(ii) for every k such that Y-SpanStart(C, n) ¬ k and k ¬ 2n−′ApproxIndex C ·

(Y-InitStart C−′2)+2 holds cell(Gauge(C, n), X-SpanStart(C, n)−′1, k) ⊆
BDD C, and

(iii) for every j such that j ¬ width Gauge(C, n) and for every k

such that j ¬ k and k ¬ 2n−′ApproxIndex C · (Y-InitStart C −′ 2) + 2
holds cell(Gauge(C, n), X-SpanStart(C, n) −′ 1, k) ⊆ BDD C holds j ­
Y-SpanStart(C, n).

One can prove the following propositions:

(4) If n is sufficiently large for C, then X-SpanStart(C, n) =
2n−′ApproxIndex C · (X-SpanStart(C, ApproxIndex C)− 2) + 2.

(5) If n is sufficiently large for C, then Y-SpanStart(C, n) ¬
2n−′ApproxIndex C · (Y-InitStart C −′ 2) + 2.

(6) If n is sufficiently large for C, then cell(Gauge(C, n), X-SpanStart(C, n)−′
1, Y-SpanStart(C, n)) ⊆ BDD C.

(7) If n is sufficiently large for C, then 1 < Y-SpanStart(C, n) and
Y-SpanStart(C, n) ¬ width Gauge(C, n).

(8) If n is sufficiently large for C, then
〈〈X-SpanStart(C, n), Y-SpanStart(C, n)〉〉 ∈ the indices of Gauge(C, n).

(9) If n is sufficiently large for C, then 〈〈X-SpanStart(C, n) −′ 1,

Y-SpanStart(C, n)〉〉 ∈ the indices of Gauge(C, n).
(10) If n is sufficiently large for C, then cell(Gauge(C, n), X-SpanStart(C, n)−′

1, Y-SpanStart(C, n)−′ 1) meets C.

(11) If n is sufficiently large for C, then cell(Gauge(C, n), X-SpanStart(C, n)−′
1, Y-SpanStart(C, n)) misses C.
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On the General Position
of Special Polygons1

Mariusz Giero
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Summary. In this paper we introduce the notion of general position. We
also show some auxiliary theorems for proving Jordan curve theorem. The follo-
wing main theorems are proved:

1. End points of a polygon are in the same component of a complement of
another polygon if number of common points of these polygons is even;

2. Two points of polygon L are in the same component of a complement
of polygon M if two points of polygon M are in the same component of
polygon L.

MML Identifier: JORDAN12.

The papers [23], [6], [26], [20], [2], [18], [22], [16], [27], [1], [8], [5], [3], [25], [11], [4],
[21], [19], [9], [10], [14], [15], [12], [13], [17], [24], and [7] provide the terminology
and notation for this paper.

1. Preliminaries

We adopt the following rules: i, j, k, n denote natural numbers, a, b, c, x

denote sets, and r denotes a real number.
The following four propositions are true:

(1) If 1 < i, then 0 < i−′ 1.

(2) If 1 ¬ i, then i−′ 1 < i.

(3) 1 is odd.

(4) Let given n, f be a finite sequence of elements of En
T, and given i. If 1 ¬ i

and i + 1 ¬ len f, then fi ∈ rng f and fi+1 ∈ rng f.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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Let us mention that every finite sequence of elements of E2
T which is s.n.c. is

also s.c.c..
Next we state two propositions:

(5) Let f , g be finite sequences of elements of E2
T. If f aa g is unfolded and

s.c.c. and len g ­ 2, then f is unfolded and s.n.c..

(6) For all finite sequences g1, g2 of elements of E2
T holds L̃(g1) ⊆ L̃(g1 aa

g2).

2. The Notion of General Position and Its Properties

Let us consider n and let f1, f2 be finite sequences of elements of En
T. We

say that f1 is in general position wrt f2 if and only if:

(Def. 1) L̃(f1) misses rng f2 and for every i such that 1 ¬ i and i < len f2 holds
L̃(f1) ∩ L(f2, i) is trivial.

Let us consider n and let f1, f2 be finite sequences of elements of En
T. We

say that f1 and f2 are in general position if and only if:

(Def. 2) f1 is in general position wrt f2 and f2 is in general position wrt f1.

Let us note that the predicate f1 and f2 are in general position is symmetric.
The following propositions are true:

(7) Let f1, f2 be finite sequences of elements of E2
T. Suppose f1 and f2

are in general position. Let f be a finite sequence of elements of E2
T. If

f = f2¹ Seg k, then f1 and f are in general position.

(8) Let f1, f2, g1, g2 be finite sequences of elements of E2
T. Suppose f1 aa f2

and g1 aa g2 are in general position. Then f1 aa f2 and g1 are in general
position.

In the sequel f , g are finite sequences of elements of E2
T.

The following propositions are true:

(9) For all k, f , g such that 1 ¬ k and k + 1 ¬ len g and f and g are in
general position holds g(k) ∈ (L̃(f))c and g(k + 1) ∈ (L̃(f))c.

(10) Let f1, f2 be finite sequences of elements of E2
T. Suppose f1 and f2 are

in general position. Let given i, j. If 1 ¬ i and i + 1 ¬ len f1 and 1 ¬ j

and j + 1 ¬ len f2, then L(f1, i) ∩ L(f2, j) is trivial.

(11) For all f , g holds {L(f, i) : 1 ¬ i ∧ i + 1 ¬ len f} e {L(g, j) : 1 ¬
j ∧ j + 1 ¬ len g} is finite.

(12) For all f , g such that f and g are in general position holds L̃(f) ∩ L̃(g)
is finite.

(13) For all f , g such that f and g are in general position and for every k

holds L̃(f) ∩ L(g, k) is finite.
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3. Properties of Being in the Same Component of a Complement
of a Polygon

We use the following convention: f is a non constant standard special circular
sequence, g is a special finite sequence of elements of E2

T, and p, p1, p2, q are
points of E2

T.
One can prove the following propositions:

(14) For all f , p1, p2 such that L(p1, p2) misses L̃(f) there exists a subset C

of E2
T such that C is a component of (L̃(f))c and p1 ∈ C and p2 ∈ C.

(15) There exists a subset C of E2
T such that C is a component of (L̃(f))c and

a ∈ C and b ∈ C if and only if a ∈ RightComp(f) and b ∈ RightComp(f)
or a ∈ LeftComp(f) and b ∈ LeftComp(f).

(16) a ∈ (L̃(f))c and b ∈ (L̃(f))c and it is not true that there exists a subset
C of E2

T such that C is a component of (L̃(f))c and a ∈ C and b ∈ C if and
only if a ∈ LeftComp(f) and b ∈ RightComp(f) or a ∈ RightComp(f)
and b ∈ LeftComp(f).

(17) Let given f , a, b, c. Suppose that
(i) there exists a subset C of E2

T such that C is a component of (L̃(f))c

and a ∈ C and b ∈ C, and
(ii) there exists a subset C of E2

T such that C is a component of (L̃(f))c

and b ∈ C and c ∈ C.

Then there exists a subset C of E2
T such that C is a component of (L̃(f))c

and a ∈ C and c ∈ C.

(18) Let given f , a, b, c. Suppose that
(i) a ∈ (L̃(f))c,

(ii) b ∈ (L̃(f))c,

(iii) c ∈ (L̃(f))c,

(iv) it is not true that there exists a subset C of E2
T such that C is a

component of (L̃(f))c and a ∈ C and b ∈ C, and
(v) it is not true that there exists a subset C of E2

T such that C is a
component of (L̃(f))c and b ∈ C and c ∈ C.

Then there exists a subset C of E2
T such that C is a component of (L̃(f))c

and a ∈ C and c ∈ C.

4. Cells Are Convex

In the sequel G denotes a Go-board.
One can prove the following propositions:

(19) If i ¬ len G, then vstrip(G, i) is convex.

(20) If j ¬ width G, then hstrip(G, j) is convex.
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(21) If i ¬ len G and j ¬ width G, then cell(G, i, j) is convex.

(22) For all f , k such that 1 ¬ k and k + 1 ¬ len f holds leftcell(f, k) is
convex.

(23) For all f , k such that 1 ¬ k and k + 1 ¬ len f holds left cell(f, k, the
Go-board of f) is convex and right cell(f, k, the Go-board of f) is convex.

5. Properties of Points Lying on the Same Line

The following propositions are true:

(24) Let given p1, p2, f and r be a point of E2
T. Suppose r ∈ L(p1, p2) and

there exists x such that L̃(f) ∩ L(p1, p2) = {x} and r /∈ L̃(f). Then L̃(f)
misses L(p1, r) or L̃(f) misses L(r, p2).

(25) For all points p, q, r, s of E2
T such that L(p, q) is vertical and L(r, s) is

vertical and L(p, q) meets L(r, s) holds p1 = r1.

(26) For all p, p1, p2 such that p /∈ L(p1, p2) and (p1)2 = (p2)2 and (p2)2 = p2

holds p1 ∈ L(p, p2) or p2 ∈ L(p, p1).
(27) For all p, p1, p2 such that p /∈ L(p1, p2) and (p1)1 = (p2)1 and (p2)1 = p1

holds p1 ∈ L(p, p2) or p2 ∈ L(p, p1).
(28) If p 6= p1 and p 6= p2 and p ∈ L(p1, p2), then p1 /∈ L(p, p2).
(29) Let given p, p1, p2, q. Suppose q /∈ L(p1, p2) and p ∈ L(p1, p2) and

p 6= p1 and p 6= p2 and (p1)1 = (p2)1 and (p2)1 = q1 or (p1)2 = (p2)2 and
(p2)2 = q2. Then p1 ∈ L(q, p) or p2 ∈ L(q, p).

(30) Let p1, p2, p3, p4, p be points of E2
T. Suppose (p1)1 = (p2)1 and (p3)1 =

(p4)1 or (p1)2 = (p2)2 and (p3)2 = (p4)2 but L(p1, p2) ∩ L(p3, p4) = {p}.
Then p = p1 or p = p2 or p = p3.

6. The Position of the Points of a Polygon with Respect to
Another Polygon

We now state several propositions:

(31) Let given p, p1, p2, f . Suppose L̃(f) ∩ L(p1, p2) = {p}. Let r be a point
of E2

T. Suppose that
(i) r /∈ L(p1, p2),
(ii) p1 /∈ L̃(f),
(iii) p2 /∈ L̃(f),
(iv) (p1)1 = (p2)1 and (p1)1 = r1 or (p1)2 = (p2)2 and (p1)2 = r2,

(v) there exists i such that 1 ¬ i and i+1 ¬ len f and r ∈ right cell(f, i, the
Go-board of f) or r ∈ left cell(f, i, the Go-board of f) and p ∈ L(f, i), and

(vi) r /∈ L̃(f).
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Then
(vii) there exists a subset C of E2

T such that C is a component of (L̃(f))c

and r ∈ C and p1 ∈ C, or
(viii) there exists a subset C of E2

T such that C is a component of (L̃(f))c

and r ∈ C and p2 ∈ C.

(32) Let given f , p1, p2, p. Suppose L̃(f) ∩ L(p1, p2) = {p}. Let r1, r2 be
points of E2

T. Suppose that
(i) p1 /∈ L̃(f),
(ii) p2 /∈ L̃(f),
(iii) (p1)1 = (p2)1 and (p1)1 = (r1)1 and (r1)1 = (r2)1 or (p1)2 = (p2)2 and

(p1)2 = (r1)2 and (r1)2 = (r2)2,

(iv) there exists i such that 1 ¬ i and i+1 ¬ len f and r1 ∈ left cell(f, i, the
Go-board of f) and r2 ∈ right cell(f, i, the Go-board of f) and p ∈ L(f, i),

(v) r1 /∈ L̃(f), and
(vi) r2 /∈ L̃(f).

Then it is not true that there exists a subset C of E2
T such that C is a

component of (L̃(f))c and p1 ∈ C and p2 ∈ C.

(33) Let given p, f , p1, p2. Suppose L̃(f)∩L(p1, p2) = {p} and (p1)1 = (p2)1
or (p1)2 = (p2)2 and p1 /∈ L̃(f) and p2 /∈ L̃(f) and rng f misses L(p1, p2).
Then it is not true that there exists a subset C of E2

T such that C is a
component of (L̃(f))c and p1 ∈ C and p2 ∈ C.

(34) Let f be a non constant standard special circular sequence and g be a
special finite sequence of elements of E2

T. Suppose f and g are in general

position. Let given k. Suppose 1 ¬ k and k+1 ¬ len g. Then L̃(f) ∩ L(g, k)
is an even natural number if and only if there exists a subset C of E2

T such
that C is a component of (L̃(f))c and g(k) ∈ C and g(k + 1) ∈ C.

(35) Let f1, f2, g1 be special finite sequences of elements of E2
T. Suppose that

(i) f1 aa f2 is a non constant standard special circular sequence,
(ii) f1 aa f2 and g1 are in general position,
(iii) len g1 ­ 2, and
(iv) g1 is unfolded and s.n.c..

Then L̃(f1 aa f2) ∩ L̃(g1) is an even natural number if and only if there
exists a subset C of E2

T such that C is a component of (L̃(f1 aa f2))c and
g1(1) ∈ C and g1(len g1) ∈ C.

(36) Let f1, f2, g1, g2 be special finite sequences of elements of E2
T. Suppose

that
(i) f1 aa f2 is a non constant standard special circular sequence,
(ii) g1 aa g2 is a non constant standard special circular sequence,
(iii) L̃(f1) misses L̃(g2),
(iv) L̃(f2) misses L̃(g1), and
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(v) f1 aa f2 and g1 aa g2 are in general position.
Let p1, p2, q1, q2 be points of E2

T. Suppose that f1(1) = p1 and f1(len f1) =
p2 and g1(1) = q1 and g1(len g1) = q2 and (f1)len f1 = (f2)1 and (g1)len g1 =
(g2)1 and p1 6= p2 and q1 6= q2 and p1 ∈ L̃(f1)∩L̃(f2) and q1 ∈ L̃(g1)∩L̃(g2)
and there exists a subset C of E2

T such that C is a component of (L̃(f1 a
a f2))c and q1 ∈ C and q2 ∈ C. Then there exists a subset C of E2

T such
that C is a component of (L̃(g1 aa g2))c and p1 ∈ C and p2 ∈ C.
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Summary. A sequence of internal approximations of simple closed curves
is introduced. They are called spans.

MML Identifier: JORDAN13.

The notation and terminology used here are introduced in the following papers:
[23], [17], [26], [2], [18], [27], [5], [4], [1], [3], [4], [25], [11], [12], [21], [7], [9], [10],
[10], [12], [14], [28], [6], [7], [19], and [23].

Let C be a non vertical non horizontal non empty subset of E2
T satisfying

conditions of simple closed curve and let n be a natural number. Let us assume
that n is sufficiently large for C. The functor Span(C, n) yielding a clockwise
oriented standard non constant special circular sequence is defined by the con-
ditions (Def. 1).

(Def. 1)(i) Span(C, n) is a sequence which elements belong to Gauge(C, n),
(ii) (Span(C, n))1 = Gauge(C, n)◦(X-SpanStart(C, n), Y-SpanStart(C, n)),
(iii) (Span(C, n))2 = Gauge(C, n) ◦ (X-SpanStart(C, n)−′ 1,

Y-SpanStart(C, n)), and
(iv) for every natural number k such that 1 ¬ k and k + 2 ¬

len Span(C, n) holds if front right cell(Span(C, n), k, Gauge(C, n)) mis-
ses C and front left cell(Span(C, n), k, Gauge(C, n)) misses C, then
Span(C, n) turns left k, Gauge(C, n) and if front right cell(Span(C, n), k,

Gauge(C, n)) misses C and front left cell(Span(C, n), k, Gauge(C, n))
meets C, then Span(C, n) goes straight k, Gauge(C, n) and if
front right cell(Span(C, n), k, Gauge(C, n)) meets C, then Span(C, n)
turns right k, Gauge(C, n).

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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Summary. Outside and inside Fashoda theorems are proven for points in
general position on unit circle. Four points must be ordered in a sense of ordering
for simple closed curve. For preparation of proof, the relation between the order
and condition of coordinates of points on unit circle is discussed.

MML Identifier: JGRAPH 5.

The articles [11], [9], [17], [21], [3], [4], [20], [5], [10], [1], [18], [7], [8], [12], [19],
[16], [6], [2], [15], [14], and [13] provide the terminology and notation for this
paper.

1. Preliminaries

In this paper x, a are real numbers.
Next we state a number of propositions:

(1) If a ­ 0 and (x− a) · (x + a) ­ 0, then −a ­ x or x ­ a.

(2) If a ¬ 0 and x < a, then x2 > a2.

(3) For every point p of E2
T such that |p| ¬ 1 holds −1 ¬ p1 and p1 ¬ 1 and

−1 ¬ p2 and p2 ¬ 1.

(4) For every point p of E2
T such that |p| ¬ 1 and p1 6= 0 and p2 6= 0 holds

−1 < p1 and p1 < 1 and −1 < p2 and p2 < 1.

(5) Let a, b, d, e, r3 be real numbers, P1, P2 be non empty metric structures,
x be an element of the carrier of P1, and x2 be an element of the carrier of
P2. Suppose d ¬ a and a ¬ b and b ¬ e and P1 = [a, b]M and P2 = [d, e]M
and x = x2 and x ∈ the carrier of P1 and x2 ∈ the carrier of P2. Then
Ball(x, r3) ⊆ Ball(x2, r3).
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(6) Let a, b, d, e be real numbers and B be a subset of [d, e]T. If d ¬ a and
a ¬ b and b ¬ e and B = [a, b], then [a, b]T = [d, e]T¹B.

(7) For all real numbers a, b and for every subset B of I such that 0 ¬ a and
a ¬ b and b ¬ 1 and B = [a, b] holds [a, b]T = I¹B.

(8) Let X be a topological structure, Y , Z be non empty topological struc-
tures, f be a map from X into Y , and h be a map from Y into Z. If h is
a homeomorphism and f is continuous, then h · f is continuous.

(9) Let X, Y , Z be topological structures, f be a map from X into Y , and
h be a map from Y into Z. If h is a homeomorphism and f is one-to-one,
then h · f is one-to-one.

(10) Let X be a topological structure, S, V be non empty topological struc-
tures, B be a non empty subset of S, f be a map from X into S¹B, g be
a map from S into V , and h be a map from X into V . If h = g · f and f

is continuous and g is continuous, then h is continuous.

(11) Let a, b, d, e, s1, s2, t1, t2 be real numbers and h be a map from [a, b]T
into [d, e]T. Suppose h is a homeomorphism and h(s1) = t1 and h(s2) = t2
and h(a) = d and h(b) = e and d ¬ e and t1 ¬ t2 and s1 ∈ [a, b] and
s2 ∈ [a, b]. Then s1 ¬ s2.

(12) Let a, b, d, e, s1, s2, t1, t2 be real numbers and h be a map from [a, b]T
into [d, e]T. Suppose h is a homeomorphism and h(s1) = t1 and h(s2) = t2
and h(a) = e and h(b) = d and e ­ d and t1 ­ t2 and s1 ∈ [a, b] and
s2 ∈ [a, b]. Then s1 ¬ s2.

(13) For every natural number n holds −0En
T

= 0En
T
.

2. Fashoda Meet Theorems for Circle in Special Case

Next we state two propositions:

(14) Let f , g be maps from I into E2
T, a, b, c, d be real numbers, and O, I

be points of I. Suppose that O = 0 and I = 1 and f is continuous and
one-to-one and g is continuous and one-to-one and a 6= b and c 6= d and
f(O)1 = a and c ¬ f(O)2 and f(O)2 ¬ d and f(I)1 = b and c ¬ f(I)2
and f(I)2 ¬ d and g(O)2 = c and a ¬ g(O)1 and g(O)1 ¬ b and g(I)2 = d

and a ¬ g(I)1 and g(I)1 ¬ b and for every point r of I holds a ­ f(r)1
or f(r)1 ­ b or c ­ f(r)2 or f(r)2 ­ d but a ­ g(r)1 or g(r)1 ­ b or
c ­ g(r)2 or g(r)2 ­ d. Then rng f meets rng g.

(15) Let f be a map from I into E2
T. Suppose f is continuous and one-to-one.

Then there exists a map f2 from I into E2
T such that f2(0) = f(1) and

f2(1) = f(0) and rng f2 = rng f and f2 is continuous and one-to-one.

In the sequel p, q denote points of E2
T.

Next we state several propositions:
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(16) Let f , g be maps from I into E2
T, C0, K1, K2, K3, K4 be subsets of

E2
T, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =
{p : |p| ¬ 1} and K1 = {q1; q1 ranges over points of E2

T: |q1| = 1 ∧ (q1)2 ¬
(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E2

T:
|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over
points of E2

T: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K2 and f(I) ∈ K1 and g(O) ∈ K3 and g(I) ∈ K4 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(17) Let f , g be maps from I into E2
T, C0, K1, K2, K3, K4 be subsets of

E2
T, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =
{p : |p| ­ 1} and K1 = {q1; q1 ranges over points of E2

T: |q1| = 1 ∧ (q1)2 ¬
(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E2

T:
|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over
points of E2

T: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K2 and f(I) ∈ K1 and g(O) ∈ K4 and g(I) ∈ K3 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(18) Let f , g be maps from I into E2
T, C0, K1, K2, K3, K4 be subsets of

E2
T, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =
{p : |p| ­ 1} and K1 = {q1; q1 ranges over points of E2

T: |q1| = 1 ∧ (q1)2 ¬
(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E2

T:
|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over
points of E2

T: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K2 and f(I) ∈ K1 and g(O) ∈ K3 and g(I) ∈ K4 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(19) Let f , g be maps from I into E2
T and C0 be a subset of E2

T. Suppose that
C0 = {q : |q| ­ 1} and f is continuous and one-to-one and g is continuous
and one-to-one and f(0) = [−1, 0] and f(1) = [1, 0] and g(1) = [0, 1] and
g(0) = [0,−1] and rng f ⊆ C0 and rng g ⊆ C0. Then rng f meets rng g.

(20) Let p1, p2, p3, p4 be points of E2
T and C0 be a subset of E2

T. Suppose that
(i) C0 = {p : |p| ­ 1},
(ii) |p1| = 1,

(iii) |p2| = 1,

(iv) |p3| = 1,

(v) |p4| = 1, and
(vi) there exists a map h from E2

T into E2
T such that h is a homeomorphism
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and h◦C0 ⊆ C0 and h(p1) = [−1, 0] and h(p2) = [0, 1] and h(p3) = [1, 0]
and h(p4) = [0,−1].
Let f , g be maps from I into E2

T. Suppose that f is continuous and one-
to-one and g is continuous and one-to-one and f(0) = p1 and f(1) = p3

and g(0) = p4 and g(1) = p2 and rng f ⊆ C0 and rng g ⊆ C0. Then rng f

meets rng g.

3. Properties of Fan Morphisms

The following propositions are true:

(21) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and

c1 < 1 and q2 > 0. Let p be a point of E2
T. If p = c1 -FanMorphN(q), then

p2 > 0.

(22) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and

c1 < 1 and q2 ­ 0. Let p be a point of E2
T. If p = c1 -FanMorphN(q), then

p2 ­ 0.

(23) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and

c1 < 1 and q2 ­ 0 and q1
|q| < c1 and |q| 6= 0. Let p be a point of E2

T. If
p = c1 -FanMorphN(q), then p2 ­ 0 and p1 < 0.

(24) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 ­ 0 and (q2)2 ­ 0 and |q1| 6= 0 and |q2| 6= 0 and
(q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of E2
T. If p1 = c1 -FanMorphN(q1) and

p2 = c1 -FanMorphN(q2), then (p1)1
|p1| < (p2)1

|p2| .

(25) Let s3 be a real number and q be a point of E2
T. Suppose −1 < s3 and

s3 < 1 and q1 > 0. Let p be a point of E2
T. If p = s3 -FanMorphE(q), then

p1 > 0.

(26) Let s3 be a real number and q be a point of E2
T. Suppose −1 < s3 and

s3 < 1 and q1 ­ 0 and q2
|q| < s3 and |q| 6= 0. Let p be a point of E2

T. If
p = s3 -FanMorphE(q), then p1 ­ 0 and p2 < 0.

(27) Let s3 be a real number and q1, q2 be points of E2
T. Suppose −1 < s3

and s3 < 1 and (q1)1 ­ 0 and (q2)1 ­ 0 and |q1| 6= 0 and |q2| 6= 0 and
(q1)2
|q1| < (q2)2

|q2| . Let p1, p2 be points of E2
T. If p1 = s3 -FanMorphE(q1) and

p2 = s3 -FanMorphE(q2), then (p1)2
|p1| < (p2)2

|p2| .

(28) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and

c1 < 1 and q2 < 0. Let p be a point of E2
T. If p = c1 -FanMorphS(q), then

p2 < 0.

(29) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1
|q| > c1. Let p be a point of E2

T. If p = c1 -FanMorphS(q),
then p2 < 0 and p1 > 0.
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(30) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 ¬ 0 and (q2)2 ¬ 0 and |q1| 6= 0 and |q2| 6= 0 and
(q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of E2
T. If p1 = c1 -FanMorphS(q1) and

p2 = c1 -FanMorphS(q2), then (p1)1
|p1| < (p2)1

|p2| .

4. Order of Points on Circle

One can prove the following propositions:

(31) For every compact non empty subset P of E2
T such that P = {q : |q| = 1}

holds W-bound P = −1 and E-bound P = 1 and S-bound P = −1 and
N-bound P = 1.

(32) For every compact non empty subset P of E2
T such that P = {q : |q| = 1}

holds W-min P = [−1, 0].

(33) For every compact non empty subset P of E2
T such that P = {q : |q| = 1}

holds E-max P = [1, 0].

(34) For every map f from E2
T into R1 such that for every point p of E2

T holds
f(p) = proj1(p) holds f is continuous.

(35) For every map f from E2
T into R1 such that for every point p of E2

T holds
f(p) = proj2(p) holds f is continuous.

(36) For every compact non empty subset P of E2
T such that P = {q; q ranges

over points of E2
T: |q| = 1} holds UpperArc P ⊆ P and LowerArc P ⊆ P.

(37) Let P be a compact non empty subset of E2
T. Suppose P = {q; q ranges

over points of E2
T: |q| = 1}. Then UpperArc P = {p; p ranges over points

of E2
T: p ∈ P ∧ p2 ­ 0}.

(38) Let P be a compact non empty subset of E2
T. Suppose P = {q; q ranges

over points of E2
T: |q| = 1}. Then LowerArc P = {p; p ranges over points

of E2
T: p ∈ P ∧ p2 ¬ 0}.

(39) Let a, b, d, e be real numbers. Suppose a ¬ b and e > 0. Then there
exists a map f from [a, b]T into [e · a + d, e · b + d]T such that f is a
homeomorphism and for every real number r such that r ∈ [a, b] holds
f(r) = e · r + d.

(40) Let a, b, d, e be real numbers. Suppose a ¬ b and e < 0. Then there
exists a map f from [a, b]T into [e · b + d, e · a + d]T such that f is a
homeomorphism and for every real number r such that r ∈ [a, b] holds
f(r) = e · r + d.

(41) There exists a map f from I into [−1, 1]T such that f is a home-
omorphism and for every real number r such that r ∈ [0, 1] holds
f(r) = (−2) · r + 1 and f(0) = 1 and f(1) = −1.
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(42) There exists a map f from I into [−1, 1]T such that f is a homeomor-
phism and for every real number r such that r ∈ [0, 1] holds f(r) = 2 ·r−1
and f(0) = −1 and f(1) = 1.

(43) Let P be a compact non empty subset of E2
T. Suppose P = {p; p ranges

over points of E2
T: |p| = 1}. Then there exists a map f from [−1, 1]T into

(E2
T)¹ LowerArc P such that f is a homeomorphism and for every point q

of E2
T such that q ∈ LowerArc P holds f(q1) = q and f(−1) = W-min P

and f(1) = E-max P.

(44) Let P be a compact non empty subset of E2
T. Suppose P = {p; p ranges

over points of E2
T: |p| = 1}. Then there exists a map f from [−1, 1]T into

(E2
T)¹ UpperArc P such that f is a homeomorphism and for every point q

of E2
T such that q ∈ UpperArc P holds f(q1) = q and f(−1) = W-min P

and f(1) = E-max P.

(45) Let P be a compact non empty subset of E2
T. Suppose P = {p; p

ranges over points of E2
T: |p| = 1}. Then there exists a map f from I

into (E2
T)¹ LowerArc P such that

(i) f is a homeomorphism,
(ii) for all points q1, q2 of E2

T and for all real numbers r1, r2 such that
f(r1) = q1 and f(r2) = q2 and r1 ∈ [0, 1] and r2 ∈ [0, 1] holds r1 < r2 iff
(q1)1 > (q2)1,

(iii) f(0) = E-max P, and
(iv) f(1) = W-min P.

(46) Let P be a compact non empty subset of E2
T. Suppose P = {p; p

ranges over points of E2
T: |p| = 1}. Then there exists a map f from I

into (E2
T)¹ UpperArc P such that

(i) f is a homeomorphism,
(ii) for all points q1, q2 of E2

T and for all real numbers r1, r2 such that
f(r1) = q1 and f(r2) = q2 and r1 ∈ [0, 1] and r2 ∈ [0, 1] holds r1 < r2 iff
(q1)1 < (q2)1,

(iii) f(0) = W-min P, and
(iv) f(1) = E-max P.

(47) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
If P = {p; p ranges over points of E2

T: |p| = 1} and p2 ∈ UpperArc P and
LE(p1, p2, P ), then p1 ∈ UpperArc P.

(48) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and p1 6= p2 and (p1)1 < 0 and (p2)1 < 0 and (p1)2 < 0 and (p2)2 < 0.

Then (p1)1 > (p2)1 and (p1)2 < (p2)2.

(49) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and p1 6= p2 and (p1)1 < 0 and (p2)1 < 0 and (p1)2 ­ 0 and (p2)2 ­ 0.
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Then (p1)1 < (p2)1 and (p1)2 < (p2)2.

(50) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and p1 6= p2 and (p1)2 ­ 0 and (p2)2 ­ 0. Then (p1)1 < (p2)1.

(51) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and p1 6= p2 and (p1)2 ¬ 0 and (p2)2 ¬ 0 and p1 6= W-min P. Then
(p1)1 > (p2)1.

(52) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} but (p2)2 ­ 0 or
(p2)1 ­ 0 but LE(p1, p2, P ). Then (p1)2 ­ 0 or (p1)1 ­ 0.

(53) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and p1 6= p2 and (p1)1 ­ 0 and (p2)1 ­ 0. Then (p1)2 > (p2)2.

(54) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and p1 ∈ P and
p2 ∈ P and (p1)1 < 0 and (p2)1 < 0 and (p1)2 < 0 and (p2)2 < 0 and
(p1)1 ­ (p2)1 or (p1)2 ¬ (p2)2. Then LE(p1, p2, P ).

(55) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and p1 ∈ P and
p2 ∈ P and (p1)1 > 0 and (p2)1 > 0 and (p1)2 < 0 and (p2)2 < 0 and
(p1)1 ­ (p2)1 or (p1)2 ­ (p2)2. Then LE(p1, p2, P ).

(56) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and p1 ∈ P and
p2 ∈ P and (p1)1 < 0 and (p2)1 < 0 and (p1)2 ­ 0 and (p2)2 ­ 0 and
(p1)1 ¬ (p2)1 or (p1)2 ¬ (p2)2. Then LE(p1, p2, P ).

(57) Let p1, p2 be points of E2
T and P be a compact non empty subset of

E2
T. Suppose P = {p; p ranges over points of E2

T: |p| = 1} and p1 ∈ P and
p2 ∈ P and (p1)2 ­ 0 and (p2)2 ­ 0 and (p1)1 ¬ (p2)1. Then LE(p1, p2, P ).

(58) Let p1, p2 be points of E2
T and P be a compact non empty subset of

E2
T. Suppose P = {p; p ranges over points of E2

T: |p| = 1} and p1 ∈ P and
p2 ∈ P and (p1)1 ­ 0 and (p2)1 ­ 0 and (p1)2 ­ (p2)2. Then LE(p1, p2, P ).

(59) Let p1, p2 be points of E2
T and P be a compact non empty subset of E2

T.
Suppose P = {p; p ranges over points of E2

T: |p| = 1} and p1 ∈ P and
p2 ∈ P and (p1)2 ¬ 0 and (p2)2 ¬ 0 and p2 6= W-min P and (p1)1 ­ (p2)1.

Then LE(p1, p2, P ).
(60) Let c1 be a real number and q be a point of E2

T. Suppose −1 < c1 and
c1 < 1 and q2 ¬ 0. Let p be a point of E2

T. If p = c1 -FanMorphS(q), then
p2 ¬ 0.

(61) Let c1 be a real number, p1, p2, q1, q2 be points of E2
T, and P be a compact
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non empty subset of E2
T. Suppose −1 < c1 and c1 < 1 and P = {p; p ranges

over points of E2
T: |p| = 1} and LE(p1, p2, P ) and q1 = c1 -FanMorphS(p1)

and q2 = c1 -FanMorphS(p2). Then LE(q1, q2, P ).

(62) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty sub-

set of E2
T. Suppose that P = {p; p ranges over points of E2

T: |p| = 1}
and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)1 < 0 and
(p1)2 ­ 0 and (p2)1 < 0 and (p2)2 ­ 0 and (p3)1 < 0 and (p3)2 ­ 0 and
(p4)1 < 0 and (p4)2 ­ 0. Then there exists a map f from E2

T into E2
T and

there exist points q1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every point q of E2
T holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0
and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0
and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and
LE(q3, q4, P ).

(63) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty subset of

E2
T. Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 and (p2)2 ­ 0 and
(p3)2 ­ 0 and (p4)2 > 0. Then there exists a map f from E2

T into E2
T and

there exist points q1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every point q of E2
T holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0
and (q1)2 ­ 0 and (q2)1 < 0 and (q2)2 ­ 0 and (q3)1 < 0 and (q3)2 ­ 0
and (q4)1 < 0 and (q4)2 ­ 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and
LE(q3, q4, P ).

(64) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty subset of

E2
T. Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 and (p2)2 ­ 0 and
(p3)2 ­ 0 and (p4)2 > 0. Then there exists a map f from E2

T into E2
T and

there exist points q1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every point q of E2
T holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0
and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0
and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and
LE(q3, q4, P ).

(65) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty subset

of E2
T. Suppose that P = {p; p ranges over points of E2

T: |p| = 1} and
LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 or (p1)1 ­
0 and (p2)2 ­ 0 or (p2)1 ­ 0 and (p3)2 ­ 0 or (p3)1 ­ 0 and (p4)2 > 0
or (p4)1 > 0. Then there exists a map f from E2

T into E2
T and there exist

points q1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every point q of E2
T holds |f(q)| = |q|
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and q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and
(q1)2 ­ 0 and (q2)2 ­ 0 and (q3)2 ­ 0 and (q4)2 > 0 and LE(q1, q2, P )
and LE(q2, q3, P ) and LE(q3, q4, P ).

(66) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty subset

of E2
T. Suppose that P = {p; p ranges over points of E2

T: |p| = 1} and
LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 or (p1)1 ­
0 and (p2)2 ­ 0 or (p2)1 ­ 0 and (p3)2 ­ 0 or (p3)1 ­ 0 and (p4)2 > 0
or (p4)1 > 0. Then there exists a map f from E2

T into E2
T and there exist

points q1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every point q of E2
T holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0
and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0
and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and
LE(q3, q4, P ).

(67) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty sub-

set of E2
T. Suppose P = {p; p ranges over points of E2

T: |p| = 1} and
p4 = W-min P and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ).
Then there exists a map f from E2

T into E2
T and there exist points q1,

q2, q3, q4 of E2
T such that

f is a homeomorphism and for every point q of E2
T holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0
and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0
and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and
LE(q3, q4, P ).

(68) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty subset of

E2
T. Suppose P = {p; p ranges over points of E2

T: |p| = 1} and LE(p1, p2, P )
and LE(p2, p3, P ) and LE(p3, p4, P ). Then there exists a map f from E2

T
into E2

T and there exist points q1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every point q of E2
T holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0
and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0
and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and
LE(q3, q4, P ).

5. General Fashoda Theorems

One can prove the following propositions:

(69) Let p1, p2, p3, p4 be points of E2
T and P be a compact non empty subset

of E2
T. Suppose that P = {p; p ranges over points of E2

T: |p| = 1} and
LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and p1 6= p2 and p2 6= p3

and p3 6= p4 and (p1)1 < 0 and (p2)1 < 0 and (p3)1 < 0 and (p4)1 < 0 and
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(p1)2 < 0 and (p2)2 < 0 and (p3)2 < 0 and (p4)2 < 0. Then there exists
a map f from E2

T into E2
T such that f is a homeomorphism and for every

point q of E2
T holds |f(q)| = |q| and [−1, 0] = f(p1) and [0, 1] = f(p2) and

[1, 0] = f(p3) and [0,−1] = f(p4).
(70) Let p1, p2, p3, p4 be points of E2

T and P be a compact non empty subset of
E2

T. Suppose P = {p; p ranges over points of E2
T: |p| = 1} and LE(p1, p2, P )

and LE(p2, p3, P ) and LE(p3, p4, P ) and p1 6= p2 and p2 6= p3 and p3 6= p4.

Then there exists a map f from E2
T into E2

T such that f is a homeomorphism
and for every point q of E2

T holds |f(q)| = |q| and [−1, 0] = f(p1) and [0,

1] = f(p2) and [1, 0] = f(p3) and [0,−1] = f(p4).
(71) Let p1, p2, p3, p4 be points of E2

T, P be a compact non empty subset of
E2

T, and C0 be a subset of E2
T. Suppose P = {p; p ranges over points of E2

T:
|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ¬ 1} and f(0) = p1 and
f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.

(72) Let p1, p2, p3, p4 be points of E2
T, P be a compact non empty subset of

E2
T, and C0 be a subset of E2

T. Suppose P = {p; p ranges over points of E2
T:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ¬ 1} and f(0) = p1 and
f(1) = p3 and g(0) = p4 and g(1) = p2 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.

(73) Let p1, p2, p3, p4 be points of E2
T, P be a compact non empty subset of

E2
T, and C0 be a subset of E2

T. Suppose P = {p; p ranges over points of E2
T:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ­ 1} and f(0) = p1 and
f(1) = p3 and g(0) = p4 and g(1) = p2 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.

(74) Let p1, p2, p3, p4 be points of E2
T, P be a compact non empty subset of

E2
T, and C0 be a subset of E2

T. Suppose P = {p; p ranges over points of E2
T:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ­ 1} and f(0) = p1 and
f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.
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The articles [19], [25], [14], [10], [1], [16], [2], [3], [24], [11], [18], [9], [26], [6], [17],
[7], [8], [12], [13], [20], [15], [4], [5], [21], [23], and [22] provide the notation and
terminology for this paper.

One can prove the following propositions:

(1) For every non constant standard special circular sequence f holds
BDD L̃(f) = RightComp(f) or BDD L̃(f) = LeftComp(f).

(2) For every non constant standard special circular sequence f holds
UBD L̃(f) = RightComp(f) or UBD L̃(f) = LeftComp(f).

(3) Let G be a Go-board, f be a finite sequence of elements of E2
T, and k be

a natural number. Suppose 1 ¬ k and k + 1 ¬ len f and f is a sequence
which elements belong to G. Then left cell(f, k,G) is closed.

(4) Let G be a Go-board, p be a point of E2
T, and i, j be natural numbers.

Suppose 1 ¬ i and i + 1 ¬ len G and 1 ¬ j and j + 1 ¬ width G. Then
p ∈ Int cell(G, i, j) if and only if the following conditions are satisfied:

(i) (G ◦ (i, j))1 < p1,

(ii) p1 < (G ◦ (i + 1, j))1,

(iii) (G ◦ (i, j))2 < p2, and
(iv) p2 < (G ◦ (i, j + 1))2.

(5) For every non constant standard special circular sequence f holds
BDD L̃(f) is connected.

Let f be a non constant standard special circular sequence. Observe that
BDD L̃(f) is connected.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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Let C be a simple closed curve and let n be a natural number. The functor
SpanStart(C, n) yields a point of E2

T and is defined as follows:

(Def. 1) SpanStart(C, n) = Gauge(C, n)◦(X-SpanStart(C, n), Y-SpanStart(C, n)).
The following four propositions are true:

(6) Let C be a simple closed curve and n be a natural number. If n is
sufficiently large for C, then (Span(C, n))1 = SpanStart(C, n).

(7) For every simple closed curve C and for every natural number n such
that n is sufficiently large for C holds SpanStart(C, n) ∈ BDD C.

(8) Let C be a simple closed curve and n, k be natural numbers. Sup-
pose n is sufficiently large for C. Suppose 1 ¬ k and k + 1 ¬
len Span(C, n). Then right cell(Span(C, n), k, Gauge(C, n)) misses C and
left cell(Span(C, n), k, Gauge(C, n)) meets C.

(9) Let C be a simple closed curve and n be a natural number. If n is
sufficiently large for C, then C misses L̃(Span(C, n)).

Let C be a simple closed curve and let n be a natural number. Observe that
RightComp(Span(C, n)) is compact.

Next we state a number of propositions:

(10) Let C be a simple closed curve and n be a natural number. If n is
sufficiently large for C, then C meets LeftComp(Span(C, n)).

(11) Let C be a simple closed curve and n be a natural number. If n is
sufficiently large for C, then C misses RightComp(Span(C, n)).

(12) For every simple closed curve C and for every natural number n such
that n is sufficiently large for C holds C ⊆ LeftComp(Span(C, n)).

(13) For every simple closed curve C and for every natural number n such
that n is sufficiently large for C holds C ⊆ UBD L̃(Span(C, n)).

(14) For every simple closed curve C and for every natural number n such
that n is sufficiently large for C holds BDD L̃(Span(C, n)) ⊆ BDD C.

(15) For every simple closed curve C and for every natural number n such
that n is sufficiently large for C holds UBD C ⊆ UBD L̃(Span(C, n)).

(16) For every simple closed curve C and for every natural number n such
that n is sufficiently large for C holds RightComp(Span(C, n)) ⊆ BDD C.

(17) For every simple closed curve C and for every natural number n such
that n is sufficiently large for C holds UBD C ⊆ LeftComp(Span(C, n)).

(18) Let C be a simple closed curve and n be a natural number. If n is
sufficiently large for C, then UBD C misses BDD L̃(Span(C, n)).

(19) Let C be a simple closed curve and n be a natural number. If n is
sufficiently large for C, then UBD C misses RightComp(Span(C, n)).

(20) Let C be a simple closed curve, P be a subset of E2
T, and n be a natural

number. Suppose n is sufficiently large for C. If P is outside component
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of C, then P misses L̃(Span(C, n)).
(21) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then UBD C misses L̃(Span(C, n)).
(22) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds L̃(Span(C, n)) ⊆ BDD C.

(23) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose
n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,
j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).
Then i > 1.

(24) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose
n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,
j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).
Then i < len Gauge(C, n).

(25) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose
n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,
j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).
Then j > 1.

(26) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose
n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,
j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).
Then j < width Gauge(C, n).

(27) For every simple closed curve C and for every natural number n such that
n is sufficiently large for C holds Y-SpanStart(C, n) < width Gauge(C, n).

(28) Let C be a compact non vertical non horizontal subset of E2
T and n,

m be natural numbers. If m ­ n and n ­ 1, then X-SpanStart(C,m) =
2m−′n · (X-SpanStart(C, n)− 2) + 2.

(29) Let C be a compact non vertical non horizontal subset of E2
T and n, m

be natural numbers. Suppose n ¬ m and n is sufficiently large for C. Then
m is sufficiently large for C.

(30) Let G be a Go-board, f be a finite sequence of elements of E2
T, and i,

j be natural numbers. Suppose f is a sequence which elements belong to
G and special and i ¬ len G and j ¬ width G. Then cell(G, i, j) \ L̃(f) is
connected.

(31) Let C be a simple closed curve and n, k be natural num-
bers. Suppose n is sufficiently large for C and Y-SpanStart(C, n) ¬
k and k ¬ 2n−′ApproxIndex C · (Y-InitStart C −′ 2) + 2. Then
cell(Gauge(C, n), X-SpanStart(C, n)−′ 1, k) \ L̃(Span(C, n)) ⊆
BDD L̃(Span(C, n)).

(32) Let C be a subset of E2
T and n, m, i be natural numbers. If m ¬ n

and 1 < i and i + 1 < len Gauge(C, m), then 2n−′m · (i − 2) + 2 + 1 <
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len Gauge(C, n).
(33) Let C be a simple closed curve and n, m be natural numbers. If n is

sufficiently large for C and n ¬ m, then RightComp(Span(C, n)) meets
RightComp(Span(C, m)).

(34) Let G be a Go-board and f be a finite sequence of elements of E2
T.

Suppose f is a sequence which elements belong to G and special. Let i, j

be natural numbers. If i ¬ len G and j ¬ width G, then Int cell(G, i, j) ⊆
(L̃(f))c.

(35) Let C be a simple closed curve and n, m be natural numbers. If
n is sufficiently large for C and n ¬ m, then L̃(Span(C,m)) ⊆
LeftComp(Span(C, n)).

(36) Let C be a simple closed curve and n, m be natural numbers. If n

is sufficiently large for C and n ¬ m, then RightComp(Span(C, n)) ⊆
RightComp(Span(C, m)).

(37) Let C be a simple closed curve and n, m be natural numbers. If n

is sufficiently large for C and n ¬ m, then LeftComp(Span(C, m)) ⊆
LeftComp(Span(C, n)).
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