FORMALIZED MATHEMATICS
Volume 9, Number 4, 2001
University of Bialystok

Introduction to Turing Machines

Jing-Chao Chen Yatsuka Nakamura
Bell Labs Research China Shinshu University
Lucent Technologies Nagano
Bejing

Summary. A Turing machine can be viewed as a simple kind of computer,
whose operations are constrainted to reading and writing symbols on a tape, or
moving along the tape to the left or right. In theory, one has proven that the
computability of Turing machines is equivalent to recursive functions. This ar-
ticle defines and verifies the Turing machines of summation and three primitive
functions which are successor, zero and project functions. It is difficult to com-
pute sophisticated functions by simple Turing machines. Therefore, we define the
combination of two Turing machines.

MML Identifier: TURING_1.

The notation and terminology used in this paper are introduced in the following
articles: [3], [4], [13], [2], [5], [18], [14], [6], [7], [8], [12], [17], [16], [1], [11], [20],
110], [19], [15], and [9]

1. PRELIMINARIES

In this paper n, i, j, k denote natural numbers.

Let A, B be non empty sets, let f be a function from A into B, and let g be
a partial function from A to B. Then f+-¢ is a function from A into B.

Let X, Y be non empty sets, let a be an element of X, and let b be an
element of Y. Then a——b is a partial function from X to Y.

Let n be a natural number. The functor Seg;,; n yielding a subset of N is
defined as follows:

(Def. 1) Segpyn = {k:k <n}.

@ 2001 University of Bialystok
721 ISSN 1426-2630

722 JING-CHAO CHEN AND YATSUKA NAKAMURA

Let n be a natural number. One can verify that Seg,,;n is finite and non
empty.
One can prove the following propositions:
(1) ke Segyniff k <n.
(2) For every function f and for all sets z, y, 2z, u, v such that u # z holds
(f+(z, y)=—2))(u, v)) = f({u, v}).
(3) For every function f and for all sets z, y, z, u, v such that v # y holds
(f+(z, y)=—2))(u, v)) = f({u, v}).
In the sequel i1, 19, i3, 74 denote elements of Z.
We now state three propositions:

(4) Z<i17i2> =11 + io.
(5) D _(i1,i2,i3) = i1 + iz + i3.
(6) > _(i1,42,13,14) = i1 + 2 + i3 + ia.
Let f be a finite sequence of elements of N and let ¢ be a natural number.
The functor Prefix(f,) yields a finite sequence of elements of Z and is defined
by:
(Def. 2) Prefix(f,i) = f|Segi.
Next we state two propositions:

(7) For all natural numbers z1, xo holds > Prefix((z1,z2),1) = x; and
> Prefix({x1, x2),2) = x1 + x2.

(8) For all natural numbers x;, x2, x3 holds) Prefix({x, z2,23),1) = 21
and > Prefix((x1, x2, x3),2) = x1+x2 and) Prefix({(x1, 2, 23),3) = 1+
T2 + X3.

2. DEFINITIONS AND TERMINOLOGY FOR TURING MACHINE

We consider Turing machine structures as systems

(symbols, control states, a transition, an initial state, an accepting state),
where the symbols and the control states constitute finite non empty sets, the
transition is a function from [the control states, the symbols] into [the control
states, the symbols, {—1,0, 1} |, and the initial state and the accepting state are
elements of the control states.

Let T be a Turing machine structure. A state of 71" is an element of the
control states of T. A tape of T is an element of (the symbols of T)%. A symbol
of T is an element of the symbols of T'.

Let T be a Turing machine structure, let ¢ be a tape of T', let h be an integer,
and let s be a symbol of T'. The functor Tape-Chg(t, h, s) yields a tape of T' and
is defined as follows:

INTRODUCTION TO TURING MACHINES 723

(Def. 3) Tape-Chg(t, h,s) = t+-(h——s).

Let T be a Turing machine structure. A State of T" is an element of [the
control states of T, Z, (the symbols of T)%]. A transition-source of T is an
element of [the control states of T', the symbols of T']. A transition-target of
T is an element of | the control states of T, the symbols of T, {—1,0,1}.

Let T be a Turing machine structure and let g be a transition-target of T'.
The functor offset(g) yields an integer and is defined as follows:

(Def. 4) offset(g) = g3.

Let T be a Turing machine structure and let s be a State of T'. The functor
Head(s) yielding an integer is defined by:

(Def. 5) Head(s) = sa.

(Def. 7) Following(s) =

Let T be a Turing machine structure and let s be a State of T'. The functor
s-target yielding a transition-target of T is defined by:

(Def. 6) s-target = (the transition of T')({s1, (s3 qua tape of T')(Head(s))})).

Let T be a Turing machine structure and let s be a State of T'. The functor
Following(s) yields a State of 7" and is defined as follows:

(s-target,, Head(s) + offset(s-target),
Tape-Chg(ss, Head(s), s-targety)),
if s1 # the accepting state of T,

s, otherwise.

Let T be a Turing machine structure and let s be a State of T'. The functor
Computation(s) yielding a function from N into [the control states of T, Z,
(the symbols of T)%] is defined as follows:

(Def. 8) (Computation(s))(0) = s and for every ¢ holds (Computation(s))(i+1) =

Following((Computation(s))(7)).

In the sequel T is a Turing machine structure and s is a State of T'.
The following propositions are true:
(9) Let T be a Turing machine structure and s be a State of T'. If s = the
accepting state of T, then s = Following(s).
(10) (Computation(s))(0) = s.
(11) (Computation(s))(k + 1) = Following((Computation(s))(k)).
(12) (Computation(s))(1) = Following(s).
(13) (Computation(s))(i + k) = (Computation((Computation(s))(4)))(k).
(14) If ¢« < j and Following((Computation(s))(:z)) = (Computation(s))(%),
then (Computation(s))(j) = (Computation(s))(7).
(15) If ¢ < j and (Computation(s))(i); = the accepting state of T', then
(Computation(s))(j) = (Computation(s))(7).

Let T be a Turing machine structure and let s be a State of T'. We say that

s is accepting if and only if:

724 JING-CHAO CHEN AND YATSUKA NAKAMURA

(Def. 9) There exists k such that (Computation(s))(k)1 = the accepting state of
T.
Let T be a Turing machine structure and let s be a State of T'. Let us assume
that s is accepting. The functor Result(s) yielding a State of T' is defined by:
(Def. 10) There exists k such that Result(s) = (Computation(s))(k) and
(Computation(s))(k)1 = the accepting state of T.
We now state the proposition
(16) Let T be a Turing machine structure and s be a State of T. Suppose s
is accepting. Then there exists a natural number k such that
(i) (Computation(s))(k)1 = the accepting state of T,
(ii) Result(s) = (Computation(s))(k), and
(ili) for every natural number i such that i < k holds (Computation(s))(i)1 #
the accepting state of T'.
Let A, B be non empty sets and let y be a set. Let us assume that y € B.
The functor id(A, B,y) yields a function from A into [A, B] and is defined as
follows:
(Def. 11) For every element x of A holds (id(A, B,y))(z) = (z, y).
The function SumTran from [Seg,, 5, {0,1}] into | Seg,, 5, {0,1}, {—1,0,1}]
is defined as follows:
(Def. 12) SumTran = id([Seg,, 5, {0,1}1,{-1,0,1},0)+-({0, 0)——(0, 0, 1))+-({0,
1=—(1, 0, 1)+((L, 1)=—(1, 1, 1)+ ({1, 0)=—=(2, 1, 1))+((2, 1)=—(2,
Next we state the proposition
(17) SumTran({0, 0)) = (0,0, 1) and SumTran({0, 1)) = (1,0, 1) and
SumTran((1, 1)) = (1,1,1) and SumTran({1,0)) = (2,1, 1) and
SumTran((2, 1)) = (2,1, 1) and SumTran({2,0)) = (3,0, —1) and
SumTran((3, 1)) = (4,0, —1) and SumTran((4, 1)) = (4, 1, —1) and
SumTran((4, 0)) = (5, 0, 0).
Let T' be a Turing machine structure, let ¢ be a tape of T, and let i, j be
integers. We say that ¢ is 1 between i, j if and only if:
(Def. 13) t(i) = 0 and t(j) = 0 and for every integer k such that i < k and k < j
holds t(k) = 1.
Let f be a finite sequence of elements of N, let T' be a Turing machine
structure, and let ¢t be a tape of T. We say that t stores data f if and only if:
(Def. 14) For every natural number ¢ such that 1 < i and ¢ < len f holds ¢ is 1
between > Prefix(f,i) +2- (i — 1), > Prefix(f,i + 1) +2-4.

We now state several propositions:

INTRODUCTION TO TURING MACHINES

(18) Let T be a Turing machine structure, ¢t be a tape of T, and s, n be
natural numbers. If ¢ stores data (s, n), then ¢ is 1 between s, s +n + 2.

(19) Let T be a Turing machine structure, ¢t be a tape of T, and s, n be
natural numbers. If ¢ is 1 between s, s +n + 2, then ¢ stores data (s, n).

(20) Let T be a Turing machine structure, ¢ be a tape of T', and s, n be natural
numbers. Suppose t stores data (s,n). Then t(s) =0 and t(s+n+2) =0
and for every integer ¢ such that s < i and i < s +n + 2 holds ¢(i) = 1.

(21) Let T be a Turing machine structure, ¢ be a tape of T, and s, ny, ns be
natural numbers. Suppose t stores data (s,ni,ns). Then ¢ is 1 between s,
s+ mn1+ 2 and 1 between s +n; + 2, s + n1 + ng + 4.

(22) Let T be a Turing machine structure, t be a tape of T, and s, n1, na be
natural numbers. Suppose t stores data (s,n1,n2). Then

(i) t(s) =0,
(i) t(s+mni1+2)=0,

(ili) t(s+mni+n2+4)=0,

(iv) for every integer ¢ such that s < i and ¢ < s+ nj + 2 holds ¢(i) = 1,
and

(v) for every integer i such that s + n; +2 < iand i < s+mnj +ng+4
holds ¢(i) = 1.

(23) Let f be a finite sequence of elements of N and s be a natural number. If
len f > 1, then) Prefix((s) ~ f,1) = s and) Prefix((s) ~ f,2) = s + fi.

(24) Let f be a finite sequence of elements of N and s be a natural number.
Suppose len f > 3. Then > Prefix((s) "~ f,1) = s and) Prefix((s) " f,2) =
s+ fi1 and > Prefix((s) ~ f,3) = s+ f1 + f2 and >_ Prefix((s) ~ f,4) =
s+hi+fe+ /s

(25) Let T be a Turing machine structure, ¢t be a tape of T', s be a natural
number, and f be a finite sequence of elements of N. If len f > 1 and ¢
stores data (s) ~ f, then ¢ is 1 between s, s + f1 + 2.

(26) Let T be a Turing machine structure, ¢t be a tape of T, s be a natural
number, and f be a finite sequence of elements of N. Suppose len f > 3
and t stores data (s) ~ f. Then ¢ is 1 between s, s + f1 + 2, 1 between
s+ fi+2, s+ fi+ fo+4, and 1 between s+ f1 + fo+4, s+ f1+ fo+ f3+6.

3. SUMMATION OF TwO NATURAL NUMBERS

The strict Turing machine structure SumTuring is defined by the conditions
(Def. 15).

(Def. 15)(1) The symbols of SumTuring = {0, 1},

(ii) the control states of SumTuring = Seg,; 5,

725

726 JING-CHAO CHEN AND YATSUKA NAKAMURA

(iii) the transition of SumTuring = SumTran,
(iv) the initial state of SumTuring = 0, and
(v) the accepting state of SumTuring = 5.

Next we state several propositions:

(27) Let T be a Turing machine structure, s be a State of T', and p, h, t be
sets. If s = (p, h, t), then Head(s) = h.

(28) Let T be a Turing machine structure, ¢ be a tape of T', h be an integer,
and s be a symbol of T If t(h) = s, then Tape-Chg(t, h,s) = t.

(29) Let T be a Turing machine structure, s be a State of T, and
p, h, t be sets. Suppose s = (p, h,t) and p # the accepting
state of T. Then Following(s) = (s-target,, Head(s) + offset(s-target),
Tape-Chg(ss, Head(s), s -target,)).

(30) Let T be a Turing machine structure, ¢ be a tape of T, h be an integer,
s be a symbol of T', and i be a set. Then (Tape-Chg(t, h,s))(h) = s and if
i # h, then (Tape-Chg(t, h, s))(i) = t(7).

(31) Let s be a State of SumTuring, ¢ be a tape of SumTuring, and hy, nq,
ng be natural numbers. Suppose s = (0, hi, t) and ¢ stores data (hy,nq,
ng). Then s is accepting and (Result(s))2 = 1+ hy and (Result(s))s stores
data (1 + hy,nq + na).

Let T be a Turing machine structure and let F' be a function. We say that
T computes F' if and only if the condition (Def. 16) is satisfied.

(Def. 16) Let s be a State of T', ¢t be a tape of T, a be a natural number, and =
be a finite sequence of elements of N. Suppose € dom F' and s = (the
initial state of T, a, t) and ¢ stores data (a) ~ . Then s is accepting and
there exist natural numbers b, y such that (Result(s))2 = b and y = F(z)
and (Result(s))s stores data (b) ™ (y).

Next we state two propositions:
(32) dom[+] C N2.
(33) SumTuring computes [+].

4. COMPUTING SUCCESSOR FUNCTION

The function SuccTran from [Seg,, 4, {0,1}] into [Seg,, 4, {0,1}, {—1,0,1}
is defined as follows:
(Def. 17) SuccTran = id(} Segy, 4, {0,1}4,{—1,0,1},0)+-({0, 0)——(1, 0, 1))+-({1,
1)"—>(17 L, 1))+'(<17 0)"—><27 L, 1))+'(<27 O)"—><37 0, _1))+'(<27 1)"—>(37
0, _1))+'((37 1)"—>(3a L, _1))+'((3a 0)"—>(4a 0, 0))
We now state the proposition

INTRODUCTION TO TURING MACHINES 727

(34) SuccTran({0, 0)) = (1,0, 1) and SuccTran({1, 1)) = (1,1, 1) and
SuccTran((1, 0)) = (2,1, 1) and SuccTran((2, 0)) = (3,0, —1) and
SuccTran((2, 1)) = (3,0, —1) and SuccTran((3, 1)) = (3, 1, —1) and
SuccTran((3, 0)) = (4, 0, 0).

The strict Turing machine structure SuccTuring is defined by the conditions

(Def. 18).

(Def. 18)() The symbols of SuccTuring = {0, 1},
(ii) the control states of SuccTuring = Seg,, 4,
(iii) the transition of SuccTuring = SuccTran,
(iv) the initial state of SuccTuring = 0, and
(v) the accepting state of SuccTuring = 4.
The following propositions are true:
(36)! Let s be a State of SuccTuring, ¢ be a tape of SuccTuring, and hy, n be
natural numbers. Suppose s = (0, hq, t) and ¢ stores data (hi,n). Then s
is accepting and (Result(s))2 = h; and (Result(s))s stores data (hy,n+1).

(37) SuccTuring computes succy (1).

5. COMPUTING ZERO FUNCTION

The function ZeroTran from [Seg,, 4, {0,1}] into | Seg,, 4, {0,1}, {—1,0,1}]
is defined as follows:
(Def. 19) ZeroTran = id([Seg,, 4, {0,1}1,{—1,0,1},1)+-({0, 0)——(1, 0, 1))+-((1,
De=(2, 1, 1)+((2, 0)=—(3, 0, =1))+({2, 1)=—(3, 0, —1))+
((3, 1)——(4, 1, —1)).
Next we state the proposition
(38) ZeroTran({(0, 0)) = (1,0,1) and ZeroTran({1, 1)) = (2,1, 1) and
ZeroTran((2, 0)) = (3,0, —1) and ZeroTran((2, 1)) = (3,0, —1) and
ZeroTran((3, 1)) = (4, 1, —1).
The strict Turing machine structure ZeroTuring is defined by the conditions
(Def. 20).

(Def. 20)(i) The symbols of ZeroTuring = {0, 1},
(ii) the control states of ZeroTuring = Seg,; 4,
(iii) the transition of ZeroTuring = ZeroTran,
(iv) the initial state of ZeroTuring = 0, and
(v) the accepting state of ZeroTuring = 4.

We now state two propositions:

!The proposition (35) has been removed.

728 JING-CHAO CHEN AND YATSUKA NAKAMURA

(39) Let s be a State of ZeroTuring, ¢t be a tape of ZeroTuring, h; be a natural
number, and f be a finite sequence of elements of N. Suppose len f > 1
and s = (0, hy, t) and ¢ stores data (hi1) = f. Then s is accepting and
(Result(s))2 = h1 and (Result(s))s stores data (hq,0).

(40) If n > 1, then ZeroTuring computes consty(0).

6. COMPUTING n-ARY PROJECT FUNCTION

The function n-proj3Tran from [Seg,,; 3, {0,1}] into
FSega 3, {0,1}, {—1,0,1}] is defined by:

(Def. 21) n-proj3Tran = id(fSegu,3,{0,1}4,{-1,0,1},0)+-({0, 0)——(1, 0,
1))+'(<17 1)'.—><17 0, 1>)+'((1a 0)*'—>(2, 0, 1))""((2’ 1)'.—><2’ 0, 1))+'((2’
0)——(3, 0, 0)).

The following proposition is true
(41) mn-proj3Tran((0, 0)) = (1, 0, 1) and n-proj3Tran({1, 1)) = (1, 0, 1) and
n-proj3Tran((1, 0)) = (2, 0, 1) and n-proj3Tran((2, 1)) = (2, 0, 1) and
n-proj3Tran((2, 0)) = (3, 0, 0).
The strict Turing machine structure n-proj3Turing is defined by the condi-
tions (Def. 22).
(Def. 22)(i) The symbols of n-proj3Turing = {0,1},
) the control states of n-proj3Turing = Seg,; 3,
(ili) the transition of n-proj3Turing = n-proj3Tran,
) the initial state of n-proj3Turing = 0, and
(v) the accepting state of n-proj3Turing = 3.
Next we state two propositions:

(42) Let s be a State of n-proj3Turing, ¢ be a tape of n-proj3Turing, h; be
a natural number, and f be a finite sequence of elements of N. Suppose
len f >3 and s = (0, hi, t) and ¢ stores data (hi) ~ f. Then s is accepting
and (Result(s))2 = h1 + fi + fo + 4 and (Result(s))s stores data (h; +
fi+ fa+4, f3).

(43) If n > 3, then n-proj3Turing computes proj,,(3).

7. COMBINING TwO TURING MACHINES INTO ONE

Let t1, to be Turing machine structures. The functor SeqStates(t1,t2) yiel-
ding a finite non empty set is defined by the condition (Def. 23).
(Def. 23) SeqStates(t1,t2) = | the control states of t1, {the initial state of ta}] U
[{the accepting state of t1}, the control states of ¢ {.

INTRODUCTION TO TURING MACHINES 729

One can prove the following four propositions:

(44) Let t1, t2 be Turing machine structures. Then
(i) (the initial state of ¢, the initial state of t2) € SeqStates(t1,t2), and
(ii) (the accepting state of t1, the accepting state of t3) € SeqStates(t1,t2).

(45) For all Turing machine structures s, ¢ and for every state = of s holds
(z, the initial state of t) € SeqStates(s,t).

(46) For all Turing machine structures s, ¢ and for every state x of ¢ holds
(the accepting state of s, z) € SeqStates(s,t).

(47) Let s, t be Turing machine structures and z be an element of
SeqStates(s,t). Then there exists a state z1 of s and there exists a state
x9 of t such that x = (z1, x2).

Let s, t be Turing machine structures and let = be a transition-target of
s. The functor 15'SeqTran(s,t,x) yielding an element of | SeqStates(s,t), (the
symbols of s) U (the symbols of ¢),{—1,0,1}] is defined as follows:
(Def. 24) 1%5'SeqTran(s,t,z) = ({x1, the initial state of ¢}, za, x3).
Let s, t be Turing machine structures and let x be a transition-target of
t. The functor 2"SeqTran(s,t¢,z) yielding an element of [SeqStates(s,t), (the
symbols of s) U (the symbols of t),{—1,0,1}] is defined as follows:
(Def. 25) 2°dSeqTran(s,t,) = ({the accepting state of s, x1), x2, z3).
Let s, t be Turing machine structures and let = be an element of SeqStates(s, t).
Then 1 is a state of s. Then zo is a state of ¢.
Let s, t be Turing machine structures and let = be an element of [SeqStates(s, t),
(the symbols of s) U (the symbols of ¢)]. The functor 13*SeqState x yields a state
of s and is defined by:
(Def. 26) 1%'SeqStatex = (z1)1.
The functor 2"4SeqState z yielding a state of ¢ is defined as follows:
(Def. 27) 2"4SeqStatex = (x1)a.
Let X, Y, Z be non empty sets and let x be an element of [X, YU Z]. Let
us assume that there exist a set u and an element y of Y such that = (u, y).
The functor 15*SeqSymbol z yielding an element of Y is defined as follows:
(Def. 28) 1%'SeqSymbol z = z.
Let X, Y, Z be non empty sets and let = be an element of [X, YU Z . Let
us assume that there exist a set v and an element z of Z such that x = (u, z).
The functor 2"4SeqSymbol z yielding an element of Z is defined by:
(Def. 29) 2"4SeqSymbol z = z.
Let s, t be Turing machine structures and let « be an element of [SeqStates(s, t),
(the symbols of s) U (the symbols of ¢)]. The functor SeqTran(s, ¢, z) yielding an
element of | SeqStates(s,t), (the symbols of s) U (the symbols of ¢), {—1,0,1}]
is defined by:

730 JING-CHAO CHEN AND YATSUKA NAKAMURA

15'SeqTran(s, t, (the transition of s)({ 15'SeqState z,
15tSeqSymbol x))), if there exists a state p of s
and there exists a symbol y of s such that x =
({(p, the initial state of t), y) and p # the accepting
state of s,

28dSeqTran(s, ¢, (the transition of ¢)({ 2"4SeqState =,
2MdSeqSymbol z))), if there exists a state g of ¢
and there exists a symbol y of ¢ such that z =
({the accepting state of s, q), y),

[(z1, z2, —1), otherwise.

(Def. 30) SeqTran(s,t,z) =

Let s, t be Turing machine structures. The functor SeqTran(s,t) yielding
a function from [SeqStates(s,t), (the symbols of s) U (the symbols of ¢)] into
E SeqStates(s,t), (the symbols of s) U (the symbols of ¢),{—1,0,1}] is defined
by:
(Def. 31) For every element x of | SeqStates(s, t), (the symbols of s)U(the symbols
of t)] holds (SeqTran(s,t))(z) = SeqTran(s,t, z).
Let T1, T5 be Turing machine structures. The functor T7; T yielding a strict
Turing machine structure is defined by the conditions (Def. 32).

(Def. 32)() The symbols of T7; T5 = (the symbols of T1) U (the symbols of T3),

(ii) the control states of T7; T5 = SeqStates(11,13),

(iii) the transition of T7; Tb = SeqTran(17,T5),

(iv) the initial state of T1; To = (the initial state of T}, the initial state of
T5), and

(v) the accepting state of T1; To = (the accepting state of 71, the accepting
state of Tp).

We now state several propositions:

(48) Let Ty, Ty be Turing machine structures, g be a transition-target of T3,
p be a state of 71, and y be a symbol of T7. Suppose p # the accepting
state of 71 and g = (the transition of 71)({p, y)). Then (the transition of
T1; To)({(p, the initial state of Tz), y)) = ({g1, the initial state of T3), g2,
gs)-

(49) Let T3, Ty be Turing machine structures, g be a transition-target of Ts,
q be a state of Ty, and y be a symbol of T,. Suppose g = (the transition
of T5)({q, y)). Then (the transition of T7; T5)({(the accepting state of T1,
q), y)) = ((the accepting state of 71, g1), g2, g3)-

(50) Let Ty, To be Turing machine structures, s; be a State of 71, h be a
natural number, t be a tape of 17, so be a State of T3, and s3 be a State
of T1; T5. Suppose that

(i) s1 is accepting,
(ii) s; = (the initial state of T3, h, t),
(ili) sg is accepting,

INTRODUCTION TO TURING MACHINES 731

(iv) s2 = (the initial state of T, (Result(s1))2, (Result(s1))s), and
(v) s3 = (the initial state of Ty; T5, h, t).
Then s3 is accepting and (Result(sz))2 = (Result(s2))2 and
(Result(s3))s = (Result(s2))s.
(51) Let t3, t4 be Turing machine structures and ¢ be a tape of t3. If the
symbols of t3 = the symbols of t4, then t is a tape of t3; t4.

(52) Let ts, t4 be Turing machine structures and ¢ be a tape of t3; t4. Suppose
the symbols of t3 = the symbols of 4. Then t is a tape of t3 and a tape of
ty.

(53) Let f be a finite sequence of elements of N, ¢3, t4 be Turing machine
structures, 1 be a tape of t3, and t9 be a tape of t4. If £ = £9 and ¢; stores
data f, then to stores data f.

(54) Let s be a State of ZeroTuring; SuccTuring, ¢ be a tape of ZeroTuring,
and hj, n be natural numbers. Suppose s = ({0, 0), hy, t) and t stores
data (hi,n). Then s is accepting and (Result(s))2 = h; and (Result(s))s
stores data (hy,1).

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Grzegorz Bancerek and Piotr Rudnicki. The set of primitive recursive functions. Forma-
lized Mathematics, 9(4):705-720, 2001.

[4] Czestaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676,

1990.
[5] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529-536, 1990.

[6] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[7] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
[8] Czestaw Byliniski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

1990.

[10] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175-182, 1999.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

[12] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623-627, 1991.

[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

[14] Andrzej Trybulec. Function domains and Freenkel operator. Formalized Mathematics,
1(8):495-500, 1990.

[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.
[17] Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

732 JING-CHAO CHEN AND YATSUKA NAKAMURA

18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
199%) v

[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received July 27, 2001

