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Hierarchies and Classifications of Sets!

Mariusz Giero
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Summary. This article is a continuation of [2] article. Further properties
of classification of sets are proved. The notion of hierarchy of a set is introduced.
Properties of partitions and hierarchies are shown. The main theorem says that
for each hierarchy there exists a classification which the union is equal to the
considered hierarchy.

MML Identifier: TAXONOM2.

The terminology and notation used here have been introduced in the following
articles: [7], [11], [6], [9], [4], [12], [5], [10], [8], [2], [3], and [L].

1. TREE AND CLASSIFICATION OF A SET

For simplicity, we follow the rules: A denotes a relational structure, X de-
notes a non empty set, P, P>, P3, Y, a, b, ¢, x denote sets, and S; denotes a
subset of Y.

Let us consider A. We say that A has superior elements if and only if:

(Def. 1) There exists an element of A which is superior of the internal relation of
A.

Let us consider A. We say that A has comparable down elements if and only
if:

(Def. 2) For all elements z, y of A such that there exists an element z of A such
that z < x and z < y holds x <y or y < x.

The following proposition is true
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(1) For every set a holds ({{a}}, C) is non empty, reflexive, transitive, and
antisymmetric and has superior elements and comparable down elements.

Let us observe that there exists a relational structure which is non empty,
reflexive, transitive, antisymmetric, and strict and has superior elements and
comparable down elements.

A tree is a poset with superior elements and comparable down elements.

Next we state four propositions:

(2) For every equivalence relation E; of X and for all sets z, y, z such that
z € [z](p,) and 2 € [y] p,) holds [z] gy = [y](g,)-

(3) For every partition P of X and for all sets z, y, z such that x € P and
y€ Pand z € x and z € y holds z = y.

(4) For all sets C, x such that C is a classification of X and x € |JC holds
z C X.

(5) For every set C such that C is a strong classification of X holds (| J C, C)
is a tree.

2. THE HIERARCHY OF A SET

Let us consider Y. We say that Y is hierarchic if and only if:

(Def. 3) For all sets x, y such that z € Y and y € Y holds x Cyory Cz or x
misses .
One can verify that every set which is trivial is also hierarchic.
Let us note that there exists a set which is non trivial and hierarchic.
The following propositions are true:

(6) 0 is hierarchic.
(7) {0} is hierarchic.
Let us consider Y. A family of subsets of Y is said to be a hierarchy of Y if:
(Def. 4) Tt is hierarchic.
Let us consider Y. We say that Y is mutually-disjoint if and only if:
(Def. 5) For all sets z, y such that z € Y and y € Y and x # y holds x misses y.
In the sequel H denotes a hierarchy of Y.
Let us consider Y. Observe that there exists a family of subsets of Y which
is mutually-disjoint.
Next we state three propositions:
(8) 0 is mutually-disjoint.
(9) {0} is mutually-disjoint.
(10) {a} is mutually-disjoint.
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Let us consider Y and let F' be a family of subsets of Y. We say that F' is
T3 if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let A be a subset of Y. Suppose A € F. Let  be an element of Y. If
x ¢ A, then there exists a subset B of Y such that © € B and B € F and
A misses B.

We now state the proposition
(11) For every family F of subsets of Y such that F' = ) holds F' is Ts.

Let us consider Y. One can verify that there exists a hierarchy of Y which
is covering and Tj.
Let us consider Y and let F' be a family of subsets of Y. We say that F' is
lower-bounded if and only if the condition (Def. 7) is satisfied.
(Def. 7) Let B be a set. Suppose B # () and B C F and for all a, b such that
a € Bandb e Bholdsa CborbC a. Then there exists ¢ such that ¢ € F
and ¢ C () B.
Next we state the proposition
(12) Let B be a mutually-disjoint family of subsets of Y. Suppose that for
every set b such that b € B holds S7 misses b and Y # ). Then BU{S;} isa
mutually-disjoint family of subsets of Y and if S; # 0, then | J(BU{S1}) #
UB.
Let us consider Y and let F' be a family of subsets of Y. We say that F' has
maximum elements if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let S be a subset of Y. Suppose S € F. Then there exists a subset T
of Y such that S C T and T € F and for every subset V of Y such that
TCVandV € Fholds V=Y.

3. SOME PROPERTIES OF PARTITIONS, HIERARCHIES AND CLASSIFICATIONS
OF SETS

The following propositions are true:

(13) For every covering hierarchy H of Y such that H has maximum elements
there exists a partition P of Y such that P C H.

(14) Let H be a covering hierarchy of Y and B be a mutually-disjoint family
of subsets of Y. Suppose B C H and for every mutually-disjoint family C
of subsets of Y such that C' C H and |JB C |JC holds B = C. Then B
is a partition of Y.

(15) Let H be a covering T3 hierarchy of Y. Suppose H is lower-bounded and
) ¢ H. Let A be a subset of Y and B be a mutually-disjoint family of

subsets of Y. Suppose that
(i) AeB,
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(i) BC H,and

(ili)  for every mutually-disjoint family C' of subsets of ¥ such that A € C
and C C H and |JB C |JC holds B =JC.
Then B is a partition of Y.

(16) Let H be a covering T3 hierarchy of Y. Suppose H is lower-bounded and
() ¢ H. Let A be a subset of Y and B be a mutually-disjoint family of
subsets of Y. Suppose A € B and B C H and for every mutually-disjoint
family C' of subsets of Y such that A € C and C C H and B C C holds
B = C. Then B is a partition of Y.

(17) Let H be a covering T3 hierarchy of Y. Suppose H is lower-bounded and
() ¢ H. Let A be a subset of Y. If A € H, then there exists a partition P
of Y such that A€ P and P C H.

(18) Let h be a non empty set, Py be a partition of X, and h; be a set.
Suppose h1 € Py and h C hy. Let Pg be a partition of X. Suppose h € P
and for every x such that © € Ps holds x C hy or hy C x or h; misses
x. Let P5 be a set. Suppose that for every a holds a € Ps iff a € Ps and
a C hy. Then Ps U (Py\ {h1}) is a partition of X and Ps U (Py \ {h1}) is
finer than Pj.

(19) Let h be a non empty set. Suppose h C X. Let P3 be a partition of X.
Suppose there exists a set hg such that hy € Pg and he C h and for every
x such that x € Ps holds x C h or h C x or h misses x. Let P; be a set.
Suppose that for every = holds x € P; iff x € Ps and x misses h. Then

(i) P;U{h} is a partition of X,
(ii)  Pg is finer than P U {h}, and

(ili)  for every partition Py of X such that Py is finer than P4 and for every
set hy such that hy € Py and h C hy holds P; U {h} is finer than Pj.

(20) Let H be a covering T3 hierarchy of X. Suppose that

(i) H is lower-bounded,
(i) 0 ¢ H, and

(iii)  for every set Cy such that C1 # () and C; € PARTITIONS(X) and for
all sets Py, Py such that Py € C1 and Pjg € C1 holds Py is finer than Pjq
or Pjg is finer than Py there exist P, P, such that P, € C; and P, € Cy
and for every Pj such that P3 € C7 holds Pj is finer than P, and P; is
finer than Ps;.

Then there exists a classification C' of X such that |JC = H.
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