On the Instructions of SCM_{FSA}^{-1}

Artur Korniłowicz University of Białystok

MML Identifier: SCMFSA10.

The articles [18], [10], [11], [12], [22], [5], [14], [3], [6], [20], [7], [8], [9], [4], [19], [1], [2], [23], [24], [17], [16], [13], [21], and [15] provide the terminology and notation for this paper.

For simplicity, we use the following convention: a, b are integer locations, f is a finite sequence location, i_1 , i_2 , i_3 are instruction-locations of \mathbf{SCM}_{FSA} , T is an instruction type of \mathbf{SCM}_{FSA} , and k is a natural number.

Next we state two propositions:

- (1) For every function f and for all sets a, A, b, B, c, C such that $a \neq b$ and $a \neq c$ holds $(f + (a \mapsto A) + (b \mapsto B) + (c \mapsto C))(a) = A$.
- (2) For all sets a, b holds $\langle a \rangle + (1, b) = \langle b \rangle$.

Let l_1, l_2 be integer locations and let a, b be integers. Then $[l_1 \longmapsto a, l_2 \longmapsto b]$ is a finite partial state of \mathbf{SCM}_{FSA} .

One can prove the following propositions:

- (3) $a \notin \text{the instruction locations of } \mathbf{SCM}_{FSA}$.
- (4) $f \notin \text{the instruction locations of } \mathbf{SCM}_{\text{FSA}}$.
- (5) Data-Loc_{SCM_{FSA}} \neq the instruction locations of **SCM**_{FSA}.
- (6) Data*-Loc_{SCM_{FSA}} \neq the instruction locations of **SCM**_{FSA}.
- (7) Let o be an object of SCM_{FSA} . Then
- (i) $o = \mathbf{IC}_{\mathbf{SCM}_{FSA}}$, or
- (ii) $o \in \text{the instruction locations of } \mathbf{SCM}_{FSA}, \text{ or }$
- (iii) o is an integer location or a finite sequence location.
- (8) If $i_2 \neq i_3$, then $\text{Next}(i_2) \neq \text{Next}(i_3)$.
- (9) $a := b = \langle 1, \langle a, b \rangle \rangle$.
- (10) AddTo $(a, b) = \langle 2, \langle a, b \rangle \rangle$.

¹This work has been partially supported by TYPES grant IST-1999-29001.

- (11) SubFrom $(a, b) = \langle 3, \langle a, b \rangle \rangle$.
- (12) MultBy $(a, b) = \langle 4, \langle a, b \rangle \rangle$.
- (13) Divide $(a, b) = \langle 5, \langle a, b \rangle \rangle$.
- (14) goto $i_1 = \langle 6, \langle i_1 \rangle \rangle$.
- (15) if a = 0 goto $i_1 = \langle 7, \langle i_1, a \rangle \rangle$.
- (16) if a > 0 goto $i_1 = \langle 8, \langle i_1, a \rangle \rangle$.
- (17) AddressPart($\mathbf{halt_{SCM_{FSA}}}$) = \emptyset .
- (18) AddressPart(a := b) = $\langle a, b \rangle$.
- (19) AddressPart(AddTo(a, b)) = $\langle a, b \rangle$.
- (20) AddressPart(SubFrom(a, b)) = $\langle a, b \rangle$.
- (21) AddressPart(MultBy(a, b)) = $\langle a, b \rangle$.
- (22) AddressPart(Divide(a, b)) = $\langle a, b \rangle$.
- (23) AddressPart(goto i_2) = $\langle i_2 \rangle$.
- (24) AddressPart(**if** a = 0 **goto** i_2) = $\langle i_2, a \rangle$.
- (25) AddressPart(**if** a > 0 **goto** i_2) = $\langle i_2, a \rangle$.
- (26) AddressPart($b := f_a$) = $\langle b, f, a \rangle$.
- (27) AddressPart $(f_a := b) = \langle b, f, a \rangle$.
- (28) AddressPart(a := len f) = $\langle a, f \rangle$.
- (29) AddressPart $(f := \langle \underbrace{0, \dots, 0} \rangle) = \langle a, f \rangle.$
- (30) If T = 0, then AddressParts $T = \{0\}$.

Let us consider T. Observe that AddressParts T is non empty. Next we state a number of propositions:

- (31) If T = 1, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (32) If T = 2, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (33) If T = 3, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (34) If T = 4, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (35) If T = 5, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (36) If T = 6, then dom $\prod_{\text{AddressParts } T} = \{1\}$.
- (37) If T = 7, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (38) If T = 8, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (39) If T = 9, then dom $\prod_{\text{AddressParts } T} = \{1, 2, 3\}$.
- (40) If T = 10, then dom $\prod_{\text{AddressParts } T} = \{1, 2, 3\}$.
- (41) If T = 11, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (42) If T = 12, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (43) $\prod_{\text{AddressParts InsCode}(a:=b)} (1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$
- (44) $\prod_{\text{AddressParts InsCode}(a:=b)} (2) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$

```
\prod_{\text{AddressParts InsCode}(\text{AddTo}(a,b))} (1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.
```

- $\prod_{\text{AddressParts InsCode}(\text{AddTo}(a,b))}(2) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$
- $\prod_{\text{AddressParts InsCode}(\text{SubFrom}(a,b))} (1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$
- $\prod_{\text{AddressParts InsCode}(\text{SubFrom}(a,b))}(2) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (48)
- $\prod_{\text{AddressParts InsCode}(\text{MultBy}(a,b))} (1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (49)
- $\prod_{\text{AddressParts InsCode}(\text{MultBy}(a,b))} (2) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (50)
- $\prod_{\text{AddressParts InsCode}(\text{Divide}(a,b))}(1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (51)
- $\prod_{\text{AddressParts InsCode}(\text{Divide}(a,b))} (2) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$
- $\prod_{\text{AddressParts InsCode(goto } i_2)}(1) = \text{the instruction locations of } \mathbf{SCM}_{FSA}.$
- (54) $\prod_{\text{AddressParts InsCode}(\mathbf{if}\ a=0\ \mathbf{goto}\ i_2)}(1)$ = the instruction locations of SCM_{FSA} .
- (55) $\prod_{\text{AddressParts InsCode}(\mathbf{if}\ a=0\ \mathbf{goto}\ i_2)}(2) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$
- (56) $\prod_{\text{AddressParts InsCode}(\mathbf{if}\ a>0\ \mathbf{goto}\ i_2)}(1) = \text{the instruction locations of}$ $\mathbf{SCM}_{\mathrm{FSA}}$.
- (57) $\prod_{\text{AddressParts InsCode}(\mathbf{if}\ a>0\ \mathbf{goto}\ i_2)}(2) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$
- $\prod_{\text{AddressParts InsCode}(b:=f_a)} (1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$
- $\prod_{\text{AddressParts InsCode}(b:=f_a)} (2) = \text{Data}^* \text{Loc}_{\text{SCM}_{\text{FSA}}}.$
- $\prod_{\text{AddressParts InsCode}(b:=f_a)} (3) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (60)
- $\prod_{\text{AddressParts InsCode}(f_a := b)} (1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (61)
- $\prod_{\text{AddressParts InsCode}(f_a:=b)} (2) = \text{Data}^* \text{Loc}_{\text{SCM}_{\text{FSA}}}.$ (62)
- $\prod_{\text{AddressParts InsCode}(f_a:=b)} (3) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (63)
- $\prod_{\text{AddressParts InsCode}(a:=\text{len}f)} (1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ (64)
- $\prod_{\text{AddressParts InsCode}(a:=\text{len}f)} (2) = \text{Data*-Loc}_{\text{SCM}_{\text{FSA}}}.$
- $\prod_{\text{AddressParts InsCode}(f):=\langle\underbrace{0,\ldots,0\rangle}_{a}\rangle}(1) = \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}.$ $\prod_{\text{AddressParts InsCode}(f):=\langle\underbrace{0,\ldots,0\rangle}_{a}\rangle}(2) = \text{Data*-Loc}_{\text{SCM}_{\text{FSA}}}.$
- (68) $\operatorname{NIC}(\mathbf{halt_{SCM_{FSA}}}, i_1) = \{i_1\}.$

One can verify that $JUMP(\mathbf{halt_{SCM}}_{FSA})$ is empty.

We now state the proposition

(69) $NIC(a:=b, i_1) = {Next(i_1)}.$

Let us consider a, b. Note that JUMP(a:=b) is empty.

One can prove the following proposition

(70) $NIC(AddTo(a, b), i_1) = \{Next(i_1)\}.$

Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.

Next we state the proposition

(71) $NIC(SubFrom(a, b), i_1) = \{Next(i_1)\}.$

Let us consider a, b. Note that JUMP(SubFrom(a, b)) is empty. One can prove the following proposition

(72) $NIC(MultBy(a, b), i_1) = \{Next(i_1)\}.$

Let us consider a, b. Note that JUMP(MultBy(a, b)) is empty.

Next we state the proposition

(73) $NIC(Divide(a, b), i_1) = \{Next(i_1)\}.$

Let us consider a, b. One can verify that JUMP(Divide(a, b)) is empty.

We now state two propositions:

- (74) NIC(goto i_2, i_1) = $\{i_2\}$.
- (75) JUMP(goto i_2) = $\{i_2\}$.

Let us consider i_2 . One can verify that JUMP(goto i_2) is non empty and trivial.

We now state two propositions:

- (76) $i_2 \in \text{NIC}(\mathbf{if} \ a = 0 \ \mathbf{goto} \ i_2, i_1) \text{ and } \text{NIC}(\mathbf{if} \ a = 0 \ \mathbf{goto} \ i_2, i_1) \subseteq \{i_2, \text{Next}(i_1)\}.$
- (77) JUMP(**if** a = 0 **goto** i_2) = $\{i_2\}$.

Let us consider a, i_2 . One can check that JUMP(**if** a = 0 **goto** i_2) is non empty and trivial.

One can prove the following two propositions:

- (78) $i_2 \in \text{NIC}(\mathbf{if} \ a > 0 \ \mathbf{goto} \ i_2, i_1) \text{ and } \text{NIC}(\mathbf{if} \ a > 0 \ \mathbf{goto} \ i_2, i_1) \subseteq \{i_2, \text{Next}(i_1)\}.$
- (79) JUMP(**if** a > 0 **goto** i_2) = $\{i_2\}$.

Let us consider a, i_2 . Note that JUMP(**if** a > 0 **goto** i_2) is non empty and trivial.

The following proposition is true

(80) $NIC(a:=f_b, i_1) = \{Next(i_1)\}.$

Let us consider a, b, f. Observe that $JUMP(a:=f_b)$ is empty.

Next we state the proposition

(81) $NIC(f_b:=a, i_1) = \{Next(i_1)\}.$

Let us consider a, b, f. One can check that $JUMP(f_b:=a)$ is empty.

The following proposition is true

(82) $NIC(a:=len f, i_1) = {Next(i_1)}.$

Let us consider a, f. Observe that JUMP(a:=len f) is empty.

The following proposition is true

(83) $\operatorname{NIC}(f:=\langle \underbrace{0,\ldots,0}_{a}\rangle,i_{1})=\{\operatorname{Next}(i_{1})\}.$

Let us consider a, f. Note that $JUMP(f := \langle \underbrace{0, \dots, 0}_{a} \rangle)$ is empty.

The following two propositions are true:

- (84) $SUCC(i_1) = \{i_1, Next(i_1)\}.$
- (85) Let f be a function from \mathbb{N} into the instruction locations of \mathbf{SCM}_{FSA} . Suppose that for every natural number k holds $f(k) = \operatorname{insloc}(k)$. Then
 - (i) f is bijective, and
 - (ii) for every natural number k holds $f(k+1) \in SUCC(f(k))$ and for every natural number j such that $f(j) \in SUCC(f(k))$ holds $k \leq j$.

Let us observe that SCM_{FSA} is standard.

The following propositions are true:

- (86) $il_{\mathbf{SCM}_{FSA}}(k) = insloc(k)$.
- (87) $\operatorname{Next}(\operatorname{il}_{\mathbf{SCM}_{FSA}}(k)) = \operatorname{il}_{\mathbf{SCM}_{FSA}}(k+1).$
- (88) $\operatorname{Next}(i_1) = \operatorname{NextLoc} i_1$.

Let us mention that InsCode(halt_{SCM_{FSA}) is jump-only.}

Let us mention that $halt_{SCM_{FSA}}$ is jump-only.

Let us consider i_2 . One can verify that InsCode(goto i_2) is jump-only.

Let us consider i_2 . Observe that goto i_2 is jump-only non sequential and non instruction location free.

Let us consider a, i_2 . One can check that InsCode(**if** a = 0 **goto** i_2) is jump-only and InsCode(**if** a > 0 **goto** i_2) is jump-only.

Let us consider a, i_2 . Observe that **if** a = 0 **goto** i_2 is jump-only non sequential and non instruction location free and **if** a > 0 **goto** i_2 is jump-only non sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

- * InsCode(a:=b) is non jump-only,
- * InsCode(AddTo(a, b)) is non jump-only,
- * InsCode(SubFrom(a, b)) is non jump-only,
- * InsCode(MultBy(a,b)) is non jump-only, and
- * $\operatorname{InsCode}(\operatorname{Divide}(a, b))$ is non jump-only.

Let us consider a, b. One can verify the following observations:

- * a := b is non jump-only and sequential,
- * AddTo(a, b) is non jump-only and sequential,
- * SubFrom(a, b) is non jump-only and sequential,
- * MultBy(a, b) is non jump-only and sequential, and
- * Divide(a, b) is non jump-only and sequential.

Let us consider a, b, f. One can check that $InsCode(b:=f_a)$ is non jump-only and $InsCode(f_a:=b)$ is non jump-only.

Let us consider a, b, f. Observe that $b:=f_a$ is non jump-only and sequential and $f_a:=b$ is non jump-only and sequential.

Let us consider a, f. One can check that $\operatorname{InsCode}(a:=\operatorname{len} f)$ is non jump-only and $\operatorname{InsCode}(f:=\langle 0,\ldots,0\rangle)$ is non jump-only.

Let us consider a, f. Note that a := len f is non jump-only and sequential and $f := \langle 0, \dots, 0 \rangle$ is non jump-only and sequential.

One can verify that \mathbf{SCM}_{FSA} is homogeneous and has explicit jumps and no implicit jumps.

Let us note that SCM_{FSA} is regular.

The following propositions are true:

- (89) IncAddr(goto i_2, k) = goto $il_{\mathbf{SCM}_{FSA}}(locnum(i_2) + k)$.
- (90) IncAddr(if a = 0 goto i_2, k) = if a = 0 goto $il_{SCM_{FSA}}(locnum(i_2) + k)$.
- (91) IncAddr(if a > 0 goto $i_2, k) =$ if a > 0 goto $il_{SCM_{FSA}}(locnum(i_2) + k)$.

Let us note that **SCM**_{FSA} is IC-good and Exec-preserving.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–290, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [10] Artur Korniłowicz. On the composition of macro instructions of standard computers. Formalized Mathematics, 9(2):303–316, 2001.
- [11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- [12] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, 5(1):1–8, 1996.
- [13] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144, 1996
- [14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [16] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Formalized Mathematics, 5(4):519–528, 1996.
- [17] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of scm. Formalized Mathematics, 5(4):507–512, 1996.

- [18] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruction locations. Formalized Mathematics, 9(2):291-301, 2001.
- [19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990. [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [22] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathe matics, 1(1):17-23, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

Received May 8, 2001