FORMALIZED MATHEMATICS

Volume 9, Number 4, 2001
University of Bialystok

On the Instructions of SCMpgy*

Artur Kornitowicz
University of Bialystok

MML Identifier: SCMFSA10.

The articles [18], [10], [11], [12], [22], [5], [14], [3], [6], [20], [7], [8], [9], [4], [19], [1],
2], [23], [24], [17], [16], [13], [21], and [15] provide the terminology and notation
for this paper.

For simplicity, we use the following convention: a, b are integer locations, f
is a finite sequence location, i1, 9, i3 are instruction-locations of SCMgpgp, T
is an instruction type of SCMFpga, and k is a natural number.

Next we state two propositions:

(1) For every function f and for all sets a, A, b, B, ¢, C such that a # b and
a # ¢ holds (f+:(a——A)+:(b——B)+-(c——C))(a) = A.
(2) For all sets a, b holds (a) +- (1,b) = (b).

Let 11, I be integer locations and let a, b be integers. Then [l; — a,ly — b]
is a finite partial state of SCMpga .
One can prove the following propositions:
3
4
5
6) Data*-Locgomygg, 7 the instruction locations of SCMpga .
7) Let o be an object of SCMpgga. Then
(i) o= ICscMyg, > OF
(ii) o € the instruction locations of SCMpgga, or
(iii) o is an integer location or a finite sequence location.
(8) If i # i3, then Next(ig) + NeXt(ig).
(9) a:=b=(1, (a,b)).
(10) AddTo(a,b) = (2, {(a,b)).

a ¢ the instruction locations of SCMpga .
f ¢ the instruction locations of SCMpgy .
Data-Locgomygg, 7 the instruction locations of SCMpga .

I e e T
~— — — ~— —

1This work has been partially supported by TYPES grant IST-1999-29001.

@ 2001 University of Bialystok
673 ISSN 1426-2630

674 ARTUR KORNILOWICZ

[
—

SubFrom(a, b) = (3, (a,b)).
MultBy(a, b) = (4, (a,b)).
Divide(a, b) = (5, (a,b)).
goto i1 = (6, (i1)).
if a =0 goto i1 = (7, (i1,a))
if a > 0 goto i; = (8, (i1, a)).
AddressPart(haltgcmyg,) = 0.
AddressPart(a:=b) = (a, b).
AddressPart(AddTo(a, b)) = (a,b).
AddressPart(SubFrom(a, b)) = (a, b).
AddressPart(MultBy(a, b)) = (a, b).
AddressPart(Divide(a, b)) = (a, b).
AddressPart(goto i) = (i2).
AddressPart(if a = 0 goto iz) = (i2, a).

(

(

(

(

(f:

[= T N
© 00 3 O T = W N

NN
UL = W N~

AddressPart(if a > 0 goto i2) = (i2,a).
AddressPart(b:=f,) = (b, f,a).
AddressPart(fq:=b) = (b, f,a).
AddressPart(a:=lenf) = (a, f).

=(0,...,0)) = {a,).

(30) If T'=0, then AddressPartsT = {0}.
Let us consider T'. Observe that AddressPartsT is non empty.

N N N N N N N N N N N N N N N~ o~~~
N N DN DO
o g O (an)

N N N s N N N N

N
o)

AddressPart(f

Next we state a number of propositions:

(31) If T'=1, then dom [dqressparts = {1,2}-
(32) If T = 2, then dom [T xqqresspartst = {1, 2}-
(33) If T =3, then dom [uqeasparcer = 11, 2}-
(34) If T =4, then dom [[xaqressparts = {1,2}-
(35) If T'=5, then dom []xdqressparts = {1,2}-
(36) If T'= 6, then dom []pqaressparts = {1}-

(37) IfT =7, then dom [Tyyyeespariar = {12}
(38) If T'=8, then dom [ddressparts = {1, 2}-
(39) IfT =9, then dom []pqaressparts = {1,2,3}-
(40) If T'= 10, then dom [[gqressparts = 11+2, 3}
(41) If T'= 11, then dom [[s qaressparts 7 = 11+ 2}-
(42) I T =12, then dom []pqaresspartsT = {1, 2}-
(43) [TaddressParts InsCode(a:=p) (1) = Data-Locscnpgy
(44) TIaddressParts InsCode(a:=b) (2) = Data-Locsomps, -

ON THE INSTRUCTIONS OF SCMpgga 675

(45) T AddressParts InsCode(AddTo(a,5)) (1) = Data-Locscnypg, -
(46) TTAddressParts InsCode(AddTo(a,5)) (2) = Data-Locsenypg, -
(47) ITaddressparts InsCode(SubFrom(a,b)) (1) = Data-LocscMpg, -
(48) ITaddressParts InsCode(SubFrom(a,p)) (2) = Data-Locgcmyg, -
(49) TTAddressParts InsCode(MultBy (a,)) (1) = Data-Locscmgg, -
(50) ITaddressparts InsCode(MultBy (a b))(2) = Data-Locgcnpg, -
(51) ITaddressParts InsCode(Divide(a,5)) (1) = Data-Locscnpg s -
(52) T AddressParts InsCode(Divide(a,p)) (2) = Data-Locscngg, -
(563) [T addressparts InsCode(goto iz)(l) = the instruction locations of SCMpga .
(54) [T addressparts InsCode(if a=0 goto 2-2)(1) = the instruction locations of
SCMpsa -
(55) TTAddressParts InsCode(if a=0 goto i2)(2) = Data-Locscnpg s -
(56) [T Addressparts InsCode(if a>0 goto Z42)(1) = the instruction locations of
SCMrgpsa .-
(57) I addressParts InsCode(if a>0 goto iz) (2) = Data-Locsonps, -
(58) [T addressParts nsCode(be=,) (1) = Data-Locscmps s -
(59) [TaddressParts nsCode(t=£,) (2) = Data®-Locscnpg, -
(60) ITaddvessParts sCode(vi=,) (3) = Data-Locsonyg,
(61) TTaddressParts nsCode(fu:=t) (1) = Data-Locscmps s -
(62) [TaddressParts InsCode(fo:=b) (2) = Data®-Locscnps, -
(63) TTaddressParts InsCode(fui=b) (3) = Data-Locscaps, -
(64) [TaddressParts InsCode(a:=len) (1) = Data-Locsonps, -
(65) [TaddressParts InsCode(a:=len) (2) = Data™=Locscnpgy
(66) [TaddressParts sCode(f:=(0, . . ., 0y) (1) = Data-Locscnpg, -
—
(67) ITaddressParts InsCode(f:=(0, . . ., 0>)<2) = Data®-LocgcMpg, -
~——

(68) NIC(haltSCMFSAa il) = {Zl}
One can verify that JUMP (haltgcm,g,) is empty.
We now state the proposition

(69) NIC(a:=b,i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP (a:=b) is empty.
One can prove the following proposition

(70) NIC(AddTo(a,b),i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.
Next we state the proposition

(71) NIC(SubFrom(a,b),i1) = {Next(i1)}.

676 ARTUR KORNILOWICZ

Let us consider a, b. Note that JUMP (SubFrom(a,b)) is empty.
One can prove the following proposition
(72) NIC(MultBy(a,b),i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(MultBy(a, b)) is empty.
Next we state the proposition
(73) NIC(Divide(a,b),i1) = {Next(i1)}.
Let us consider a, b. One can verify that JUMP(Divide(a, b)) is empty.
We now state two propositions:
(74) NIC(goto i9,i1) = {iz}.
(75) JUMP(goto ig) = {ia}.
Let us consider iy. One can verify that JUMP(goto i) is non empty and
trivial.
We now state two propositions:
(76) ia € NIC(if a = 0 goto is,i1) and NIC(if a = 0 goto ig,i;) C
{ig, Next(z’l)}.
(77) JUMP(if a = 0 goto is) = {i2}.
Let us consider a, i3. One can check that JUMP(if a = 0 goto i3) is non
empty and trivial.
One can prove the following two propositions:
(78) iy € NIC(if a > 0 goto iz, i) and NIC(if a > 0 goto iz, i;) C
{i2, Next(i1)}.
(79) JUMP(If a > 0 goto i) = {iz}.
Let us consider a, i2. Note that JUMP(if a > 0 goto i2) is non empty and
trivial.
The following proposition is true
(80) NIC(a:=fp,i1) = {Next(i1)}.
Let us consider a, b, f. Observe that JUMP(a:=f3) is empty.
Next we state the proposition
(81) NIC(fp:=a,i1) = {Next(i1)}.
Let us consider a, b, f. One can check that JUMP(f,:=a) is empty.
The following proposition is true
(82) NIC(a:=lenf,i;) = {Next(i1)}.
Let us consider a, f. Observe that JUMP (a:=lenf) is empty.
The following proposition is true
(83) NIC(f:=(0,...,0),11) = {Next(i1)}.

a

Let us consider a, f. Note that JUMP(f:=(0,...,0)) is empty.
——

a
The following two propositions are true:

ON THE INSTRUCTIONS OF SCMpgga 677

(84) SUCC(i1) = {i1, Next(i1)}.
(85) Let f be a function from N into the instruction locations of SCMpga .
Suppose that for every natural number k holds f(k) = insloc(k). Then
(i) f is bijective, and
(ii) for every natural number k holds f(k+1) € SUCC(f(k)) and for every
natural number j such that f(j) € SUCC(f(k)) holds k < j.
Let us observe that SCMFpg, is standard.
The following propositions are true:
(86) ﬂSCMFSA (k) == inSlOC(k).
(87) NeXt(ﬂSCMFSA (k)) = ﬂSCMFSA (k‘ + 1).
(88) Next(i1) = NextLoc ;.

Let us mention that InsCode(haltscmyg,) is jump-only.

Let us mention that haltscmyg, is jump-only.

Let us consider ip. One can verify that InsCode(goto i) is jump-only.

Let us consider i9. Observe that goto i9 is jump-only non sequential and non
instruction location free.

Let us consider a, iz. One can check that InsCode(if a = 0 goto iz) is jump-
only and InsCode(if a > 0 goto i2) is jump-only.

Let us consider a, i2. Observe that if a = 0 goto is is jump-only non sequ-
ential and non instruction location free and if a > 0 goto iy is jump-only non
sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

* InsCode(a:=b) is non jump-only,

* InsCode(AddTo(a,b)) is non jump-only,

% InsCode(SubFrom(a, b)) is non jump-only,

* InsCode(MultBy(a, b)) is non jump-only, and

* InsCode(Divide(a, b)) is non jump-only.

Let us consider a, b. One can verify the following observations:

* @a:=b is non jump-only and sequential,

* AddTo(a,b) is non jump-only and sequential,

% SubFrom(a,b) is non jump-only and sequential,

* MultBy(a, b) is non jump-only and sequential, and

* Divide(a, b) is non jump-only and sequential.

Let us consider a, b, f. One can check that InsCode(b:=f,) is non jump-only
and InsCode(f,:=b) is non jump-only.

Let us consider a, b, f. Observe that b:=f, is non jump-only and sequential
and f,:=b is non jump-only and sequential.

678 ARTUR KORNILOWICZ

Let us consider a, f. One can check that InsCode(a:=lenf) is non jump-only
and InsCode(f:=(0,...,0)) is non jump-only.
——

a
Let us consider a, f. Note that a:=lenf is non jump-only and sequential and
f:=(0,...,0) is non jump-only and sequential.
——

Oneacan verify that SCMpga is homogeneous and has explicit jumps and
no implicit jumps.
Let us note that SCMpgg, is regular.
The following propositions are true:
(89) IncAddr(goto iz, k) = goto ilscmyg, (locnum(iz) + k).
(90) IncAddr(if @ = 0 goto iz, k) = if a = 0 goto ilgcmyg, (locnum(iz) +
(91) IncAddr(if @ > 0 goto iz, k) = if a > 0 goto ilgcmyg, (locnum(iz) +
Let us note that SCMgga is IC-good and Exec-preserving.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281—
290, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

[5] Czestaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676,

1990.
[6] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529-536, 1990.

[7] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[8] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[9] Czestaw Bylinski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

[10] Artur Kornitowicz. On the composition of macro instructions of standard computers.
Formalized Mathematics, 9(2):303-316, 2001.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

[12] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1-8, 1996.

Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144,

1996.
Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

]
]
| Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
]

1990.
Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMpsa computer.

Formalized Mathematics, 5(4):519-528, 1996.
[17] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of scm. For-
malized Mathematics, 5(4):507-512, 1996.

ON THE INSTRUCTIONS OF SCMpgga 679

Andrzej Trybulec, Piotr Rudnicki, and Artur Kornilowicz. Standard ordering of instruc-
tion locations. Formalized Mathematics, 9(2):291-301, 2001.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina SWchzkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received May 8, 2001

