
FORMALIZED MATHEMATICS

Volume 9, Number 4, 2001

University of Białystok

On the Instructions of SCMFSA
1

Artur Korniłowicz

University of Białystok

MML Identifier: SCMFSA10.

The articles [18], [10], [11], [12], [22], [5], [14], [3], [6], [20], [7], [8], [9], [4], [19], [1],

[2], [23], [24], [17], [16], [13], [21], and [15] provide the terminology and notation

for this paper.

For simplicity, we use the following convention: a, b are integer locations, f

is a finite sequence location, i1, i2, i3 are instruction-locations of SCMFSA, T

is an instruction type of SCMFSA, and k is a natural number.

Next we state two propositions:

(1) For every function f and for all sets a, A, b, B, c, C such that a 6= b and

a 6= c holds (f+·(a7−→. A)+·(b7−→. B)+·(c7−→. C))(a) = A.

(2) For all sets a, b holds 〈a〉+· (1, b) = 〈b〉.

Let l1, l2 be integer locations and let a, b be integers. Then [l1 7−→ a, l2 7−→ b]

is a finite partial state of SCMFSA.

One can prove the following propositions:

(3) a /∈ the instruction locations of SCMFSA.

(4) f /∈ the instruction locations of SCMFSA.

(5) Data-LocSCMFSA 6= the instruction locations of SCMFSA.

(6) Data∗-LocSCMFSA 6= the instruction locations of SCMFSA.

(7) Let o be an object of SCMFSA. Then

(i) o = ICSCMFSA , or

(ii) o ∈ the instruction locations of SCMFSA, or

(iii) o is an integer location or a finite sequence location.

(8) If i2 6= i3, then Next(i2) 6= Next(i3).

(9) a:=b = 〈〈1, 〈a, b〉〉〉.

(10) AddTo(a, b) = 〈〈2, 〈a, b〉〉〉.

1This work has been partially supported by TYPES grant IST-1999-29001.

673
c© 2001 University of Białystok

ISSN 1426–2630



674 artur korniłowicz

(11) SubFrom(a, b) = 〈〈3, 〈a, b〉〉〉.

(12) MultBy(a, b) = 〈〈4, 〈a, b〉〉〉.

(13) Divide(a, b) = 〈〈5, 〈a, b〉〉〉.

(14) goto i1 = 〈〈6, 〈i1〉〉〉.

(15) if a = 0 goto i1 = 〈〈7, 〈i1, a〉〉〉.

(16) if a > 0 goto i1 = 〈〈8, 〈i1, a〉〉〉.

(17) AddressPart(haltSCMFSA) = ∅.

(18) AddressPart(a:=b) = 〈a, b〉.

(19) AddressPart(AddTo(a, b)) = 〈a, b〉.

(20) AddressPart(SubFrom(a, b)) = 〈a, b〉.

(21) AddressPart(MultBy(a, b)) = 〈a, b〉.

(22) AddressPart(Divide(a, b)) = 〈a, b〉.

(23) AddressPart(goto i2) = 〈i2〉.

(24) AddressPart(if a = 0 goto i2) = 〈i2, a〉.

(25) AddressPart(if a > 0 goto i2) = 〈i2, a〉.

(26) AddressPart(b:=fa) = 〈b, f, a〉.

(27) AddressPart(fa:=b) = 〈b, f, a〉.

(28) AddressPart(a:=lenf) = 〈a, f〉.

(29) AddressPart(f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉) = 〈a, f〉.

(30) If T = 0, then AddressPartsT = {0}.

Let us consider T . Observe that AddressPartsT is non empty.

Next we state a number of propositions:

(31) If T = 1, then dom
∏

AddressPartsT = {1, 2}.

(32) If T = 2, then dom
∏

AddressPartsT = {1, 2}.

(33) If T = 3, then dom
∏

AddressPartsT = {1, 2}.

(34) If T = 4, then dom
∏

AddressPartsT = {1, 2}.

(35) If T = 5, then dom
∏

AddressPartsT = {1, 2}.

(36) If T = 6, then dom
∏

AddressPartsT = {1}.

(37) If T = 7, then dom
∏

AddressPartsT = {1, 2}.

(38) If T = 8, then dom
∏

AddressPartsT = {1, 2}.

(39) If T = 9, then dom
∏

AddressPartsT = {1, 2, 3}.

(40) If T = 10, then dom
∏

AddressPartsT = {1, 2, 3}.

(41) If T = 11, then dom
∏

AddressPartsT = {1, 2}.

(42) If T = 12, then dom
∏

AddressPartsT = {1, 2}.

(43)
∏

AddressParts InsCode(a:=b)(1) = Data-LocSCMFSA .

(44)
∏

AddressParts InsCode(a:=b)(2) = Data-LocSCMFSA .



on the instructions of SCMFSA 675

(45)
∏

AddressParts InsCode(AddTo(a,b))(1) = Data-LocSCMFSA .

(46)
∏

AddressParts InsCode(AddTo(a,b))(2) = Data-LocSCMFSA .

(47)
∏

AddressParts InsCode(SubFrom(a,b))(1) = Data-LocSCMFSA .

(48)
∏

AddressParts InsCode(SubFrom(a,b))(2) = Data-LocSCMFSA .

(49)
∏

AddressParts InsCode(MultBy(a,b))(1) = Data-LocSCMFSA .

(50)
∏

AddressParts InsCode(MultBy(a,b))(2) = Data-LocSCMFSA .

(51)
∏

AddressParts InsCode(Divide(a,b))(1) = Data-LocSCMFSA .

(52)
∏

AddressParts InsCode(Divide(a,b))(2) = Data-LocSCMFSA .

(53)
∏

AddressParts InsCode(goto i2)(1) = the instruction locations of SCMFSA.

(54)
∏

AddressParts InsCode(if a=0 goto i2)(1) = the instruction locations of

SCMFSA.

(55)
∏

AddressParts InsCode(if a=0 goto i2)(2) = Data-LocSCMFSA .

(56)
∏

AddressParts InsCode(if a>0 goto i2)(1) = the instruction locations of

SCMFSA.

(57)
∏

AddressParts InsCode(if a>0 goto i2)(2) = Data-LocSCMFSA .

(58)
∏

AddressParts InsCode(b:=fa)(1) = Data-LocSCMFSA .

(59)
∏

AddressParts InsCode(b:=fa)(2) = Data∗-LocSCMFSA .

(60)
∏

AddressParts InsCode(b:=fa)(3) = Data-LocSCMFSA .

(61)
∏

AddressParts InsCode(fa:=b)(1) = Data-LocSCMFSA .

(62)
∏

AddressParts InsCode(fa:=b)(2) = Data∗-LocSCMFSA .

(63)
∏

AddressParts InsCode(fa:=b)(3) = Data-LocSCMFSA .

(64)
∏

AddressParts InsCode(a:=lenf)(1) = Data-LocSCMFSA .

(65)
∏

AddressParts InsCode(a:=lenf)(2) = Data∗-LocSCMFSA .

(66)
∏

AddressParts InsCode(f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉)(1) = Data-LocSCMFSA .

(67)
∏

AddressParts InsCode(f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉)(2) = Data∗-LocSCMFSA .

(68) NIC(haltSCMFSA , i1) = {i1}.

One can verify that JUMP(haltSCMFSA) is empty.

We now state the proposition

(69) NIC(a:=b, i1) = {Next(i1)}.

Let us consider a, b. Note that JUMP(a:=b) is empty.

One can prove the following proposition

(70) NIC(AddTo(a, b), i1) = {Next(i1)}.

Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.

Next we state the proposition

(71) NIC(SubFrom(a, b), i1) = {Next(i1)}.



676 artur korniłowicz

Let us consider a, b. Note that JUMP(SubFrom(a, b)) is empty.

One can prove the following proposition

(72) NIC(MultBy(a, b), i1) = {Next(i1)}.

Let us consider a, b. Note that JUMP(MultBy(a, b)) is empty.

Next we state the proposition

(73) NIC(Divide(a, b), i1) = {Next(i1)}.

Let us consider a, b. One can verify that JUMP(Divide(a, b)) is empty.

We now state two propositions:

(74) NIC(goto i2, i1) = {i2}.

(75) JUMP(goto i2) = {i2}.

Let us consider i2. One can verify that JUMP(goto i2) is non empty and

trivial.

We now state two propositions:

(76) i2 ∈ NIC(if a = 0 goto i2, i1) and NIC(if a = 0 goto i2, i1) ⊆

{i2,Next(i1)}.

(77) JUMP(if a = 0 goto i2) = {i2}.

Let us consider a, i2. One can check that JUMP(if a = 0 goto i2) is non

empty and trivial.

One can prove the following two propositions:

(78) i2 ∈ NIC(if a > 0 goto i2, i1) and NIC(if a > 0 goto i2, i1) ⊆

{i2,Next(i1)}.

(79) JUMP(if a > 0 goto i2) = {i2}.

Let us consider a, i2. Note that JUMP(if a > 0 goto i2) is non empty and

trivial.

The following proposition is true

(80) NIC(a:=fb, i1) = {Next(i1)}.

Let us consider a, b, f . Observe that JUMP(a:=fb) is empty.

Next we state the proposition

(81) NIC(fb:=a, i1) = {Next(i1)}.

Let us consider a, b, f . One can check that JUMP(fb:=a) is empty.

The following proposition is true

(82) NIC(a:=lenf, i1) = {Next(i1)}.

Let us consider a, f . Observe that JUMP(a:=lenf) is empty.

The following proposition is true

(83) NIC(f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉, i1) = {Next(i1)}.

Let us consider a, f . Note that JUMP(f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉) is empty.

The following two propositions are true:



on the instructions of SCMFSA 677

(84) SUCC(i1) = {i1,Next(i1)}.

(85) Let f be a function from N into the instruction locations of SCMFSA.

Suppose that for every natural number k holds f(k) = insloc(k). Then

(i) f is bijective, and

(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

Let us observe that SCMFSA is standard.

The following propositions are true:

(86) ilSCMFSA(k) = insloc(k).

(87) Next(ilSCMFSA(k)) = ilSCMFSA(k + 1).

(88) Next(i1) = NextLoc i1.

Let us mention that InsCode(haltSCMFSA) is jump-only.

Let us mention that haltSCMFSA is jump-only.

Let us consider i2. One can verify that InsCode(goto i2) is jump-only.

Let us consider i2. Observe that goto i2 is jump-only non sequential and non

instruction location free.

Let us consider a, i2. One can check that InsCode(if a = 0 goto i2) is jump-

only and InsCode(if a > 0 goto i2) is jump-only.

Let us consider a, i2. Observe that if a = 0 goto i2 is jump-only non sequ-

ential and non instruction location free and if a > 0 goto i2 is jump-only non

sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

∗ InsCode(a:=b) is non jump-only,

∗ InsCode(AddTo(a, b)) is non jump-only,

∗ InsCode(SubFrom(a, b)) is non jump-only,

∗ InsCode(MultBy(a, b)) is non jump-only, and

∗ InsCode(Divide(a, b)) is non jump-only.

Let us consider a, b. One can verify the following observations:

∗ a:=b is non jump-only and sequential,

∗ AddTo(a, b) is non jump-only and sequential,

∗ SubFrom(a, b) is non jump-only and sequential,

∗ MultBy(a, b) is non jump-only and sequential, and

∗ Divide(a, b) is non jump-only and sequential.

Let us consider a, b, f . One can check that InsCode(b:=fa) is non jump-only

and InsCode(fa:=b) is non jump-only.

Let us consider a, b, f . Observe that b:=fa is non jump-only and sequential

and fa:=b is non jump-only and sequential.



678 artur korniłowicz

Let us consider a, f . One can check that InsCode(a:=lenf) is non jump-only

and InsCode(f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉) is non jump-only.

Let us consider a, f . Note that a:=lenf is non jump-only and sequential and

f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉 is non jump-only and sequential.

One can verify that SCMFSA is homogeneous and has explicit jumps and

no implicit jumps.

Let us note that SCMFSA is regular.

The following propositions are true:

(89) IncAddr(goto i2, k) = goto ilSCMFSA(locnum(i2) + k).

(90) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilSCMFSA(locnum(i2) +

k).

(91) IncAddr(if a > 0 goto i2, k) = if a > 0 goto ilSCMFSA(locnum(i2) +

k).

Let us note that SCMFSA is IC-good and Exec-preserving.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–
290, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[9] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[10] Artur Korniłowicz. On the composition of macro instructions of standard computers.
Formalized Mathematics, 9(2):303–316, 2001.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[12] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[13] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,
1996.

[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[16] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[17] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of scm. For-
malized Mathematics, 5(4):507–512, 1996.



on the instructions of SCMFSA 679

[18] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruc-
tion locations. Formalized Mathematics, 9(2):291–301, 2001.

[19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[22] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received May 8, 2001


