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The notation and terminology used in this paper are introduced in the following
papers: [21], [7], [15], [8], [2], [19], [4], [17], [3], (14], [13], [6], [1], [5), [11], [22]
[12], [18], [20], [16], [9], and [10].

1. PRELIMINARIES

In this paper n is a natural number.
One can prove the following propositions:

(1) For every non empty subset X of £2 and for every compact subset Y of
E% such that X C Y holds N-bound X < N-boundY.

(2) For every non empty subset X of £2 and for every compact subset Y of
5% such that X C Y holds E-bound X < E-boundY.

(3) For every non empty subset X of £2 and for every compact subset Y of
5% such that X C Y holds S-bound X > S-bound Y.

(4) For every non empty subset X of £2 and for every compact subset Y of
5% such that X C Y holds W-bound X > W-boundY.

(5) Let f, g be finite sequences of elements of £2. Suppose f is in the area
of g. Let p be an element of the carrier of 5%. If perngf, then f—:pis
in the area of g.

(6) Let f, g be finite sequences of elements of 5%. Suppose f is in the area
of g. Let p be an element of the carrier of £%. If p € rng f, then f:—p is
in the area of g.
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(7) For every non empty finite sequence f of elements of £2 and for every
point p of £ such that p € Z(f) holds | p, f # 0.

(8) Let f be a non empty finite sequence of elements of £2 and p be a point
of 2. 1f p e L(f) and len | f,p > 2, then f(1) € L(| f,p).

(9) Let f be a non empty finite sequence of elements of 5%. Suppose f is
a special sequence. Let p be a point of E2. If p € L(f), then f(1) ¢
L(mid(f, Index(p, f) + 1,len f)).

(10) For all natural numbers ¢, j, m, n such that i +j = m +n and i < m
and j < n holds i = m.

(11) Let f be a non empty finite sequence of elements of 5’%. Suppose f is a
special sequence. Let p be a point of E2. If p € L(f) and f(1) e E(J D, f),
then f(1) = p.

2. ABouT UPPER AND LOWER SEQUENCE OF A CAGE

Let C' be a compact non vertical non horizontal subset of 5% and let n
be a natural number. The functor UpperSeq(C, n) yielding a finite sequence of
elements of £ is defined as follows:

(Def. 1) UpperSeq(C,n) = ((Cage(C, n))g_minﬁ(cage(c’n)))—:E—max L(Cage(C,n)).
The following proposition is true
(12) For every compact non vertical non horizontal subset C of

5% and for every natural number n holds lenUpperSeq(C,n) =

(E-max Z(Cage(C’, n))) «f ((Cage(C, n))g—min E(Cage(c,n)))'

Let C be a compact non vertical non horizontal subset of £2 and let n be a
natural number. The functor LowerSeq(C, n) yields a finite sequence of elements
of 5’% and is defined as follows:

(Def. 2) LowerSeq(C,n) = ((Cage(C,n))sy ™™ H(OCm)y. B max £(Cage(C, n)).
Next we state the proposition

(13) Let C be a compact non vertical non horizontal subset of
&2 and n be a natural number. Then lenLowerSeq(C,n) =

(len((Cage(C, n)) Y™ £(C2e(Cm)y _ (g max £(Cage(C, n))) «p

((Cage(07 n))g—min E(Cage(C,n)))) +1.

Let C be a compact non vertical non horizontal subset of 5% and let n be a
natural number. Note that UpperSeq(C,n) is non empty and LowerSeq(C, n) is
non empty.

Let C' be a compact non vertical non horizontal subset of £% and let n be
a natural number. Observe that UpperSeq(C,n) is one-to-one special unfolded
and s.n.c. and LowerSeq(C,n) is one-to-one special unfolded and s.n.c..
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The following propositions are true:

(14) For every compact non vertical non horizontal subset C' of £% and for
every natural number n holds len UpperSeq(C, n) + len LowerSeq(C, n) =
len Cage(C,n) + 1.

(15) For every compact non vertical non horizontal subset C of &3

and for every natural number n holds (Cage(C, n))g_minﬁ(cage(c’n)) =
UpperSeq(C, n) ~ LowerSeq(C,n).
(16) For every compact non vertical non horizontal subset C' of &% and for

every natural number n holds £(Cage(C,n)) = L(UpperSeq(C,n) ~
LowerSeq(C, n)).

(17) For every compact non vertical non horizontal non empty subset
C of &% and for every natural number n holds L(Cage(C,n)) =
L(UpperSeq(C, n)) U L(LowerSeq(C, n)).

(18) For every simple closed curve P holds W-min P # E-min P.

(19) For every compact non vertical non horizontal subset C of &2
and for every natural number n holds len UpperSeq(C,n) > 3 and
len LowerSeq(C, n) > 3.

Let C' be a compact non vertical non horizontal subset of E% and let n
be a natural number. Observe that UpperSeq(C,n) is special sequence and
LowerSeq(C, n) is special sequence.

Next we state several propositions:

(20) For every compact non vertical non horizontal subset C' of €2 and for
every natural number n holds £(UpperSeq(C,n)) N £(LowerSeq(C, n)) =
{W-min £(Cage(C, n)), E-max £(Cage(C, n))}.

(21) For every compact non vertical non horizontal subset C' of 2 holds
UpperSeq(C, n) is in the area of Cage(C,n).

(22) For every compact non vertical non horizontal subset C' of €2 holds
LowerSeq(C, n) is in the area of Cage(C,n).

(23) For every compact connected non vertical non horizontal subset C' of £
holds ((Cage(C,n))2)2 = N-bound L(Cage(C, n)).

(24) Let C be a compact connected non vertical non horizontal subset of
E2 and k be a natural number. If 1 < k and k + 1 < len Cage(C,n)
and (Cage(C,n)), = BE-max £(Cage(C,n)), then ((Cage(C,n))ps1)1 =
E-bound £(Cage(C, n)).

(25) Let C be a compact connected non vertical non horizontal subset o
&% and k be a natural number. If 1 < k and k + 1 < len Cage(C,n
and (Cage(C,n)), = S-max £(Cage(C,n)), then ((Cage(C,n))ps1)2
S-bound £(Cage(C, n)).

(26) Let C be a compact connected non vertical non horizontal subset of
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&2 and k be a natural number. If 1 < k and k + 1 < lenCage(C,n)
and (Cage(C,n))r = W-min £(Cage(C,n)), then ((Cage(C,n))g+1)1 =

W-bound £L(Cage(C, n)).
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