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Summary. We follow [23] in defining the set of primitive recursive func-
tions. The important helper notion is the homogeneous function from finite se-
quences of natural numbers into natural numbers where homogeneous means
that all the sequences in the domain are of the same length. The set of all such
functions is then used to define the notion of a set closed under composition
of functions and under primitive recursion. We call a set primitively recursively
closed iff it contains the initial functions (nullary constant function returning
0, unary successor and projection functions for all arities) and is closed under
composition and primitive recursion. The set of primitive recursive functions is
then defined as the smallest set of functions which is primitive recursively closed.
We show that this set can be obtained by primitive recursive approximation.
We finish with showing that some simple and well known functions are primitive
recursive.

MML Identifier: COMPUT 1.

The articles [17], [22], [3], [4], [6], [20], [18], [7], [8], [2], [5], [11], [1], [15], [9], [16],

[24], [25], [14], [12], [21], [19], [13], and [10] provide the notation and terminology

for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: i, j, k, c, m, n are natural

numbers, a, x, y, z, X, Y are sets, D, E are non empty sets, R is a binary

relation, f , g are functions, and p, q are finite sequences.

1This work has been supported by NSERC Grant OGP9207, NATO CRG 951368 and
TYPES grant IST-1999-29001.
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Let X be a non empty set, let n be a natural number, let p be an element

of Xn, let i be a natural number, and let x be an element of X. Then p +· (i, x)

is an element of Xn.

Let n be a natural number, let t be an element of Nn, and let i be a natural

number. Then t(i) is an element of N.

The following propositions are true:

(3)2 〈x, y〉+· (1, z) = 〈z, y〉 and 〈x, y〉+· (2, z) = 〈x, z〉.

(5)3 If f +· (a, x) = g +· (a, y), then f +· (a, z) = g +· (a, z).

(6) (p +· (i, x))↾i = p↾i.

(7) If p +· (i, a) = q +· (i, a), then p↾i = q↾i.

(8) X0 = {∅}.

(9) If n 6= 0, then ∅n = ∅.

(10) If ∅ ∈ rng f, then
∏∗ f = ∅.

(11) If rng f = D, then rng
∏∗〈f〉 = D1.

(12) If 1 ¬ i and i ¬ n + 1, then for every element p of Dn+1 holds p↾i ∈ Dn.

(13) For every set X and for every set Y of finite sequences of X holds

Y ⊆ X∗.

2. Sets of Compatible Functions

Let X be a set. We say that X is compatible if and only if:

(Def. 1) For all functions f , g such that f ∈ X and g ∈ X holds f ≈ g.

Let us observe that there exists a set which is non empty, functional, and

compatible.

Let X be a functional compatible set. One can verify that
⋃

X is function-

like and relation-like.

The following proposition is true

(14) X is functional and compatible iff
⋃

X is a function.

Let X, Y be sets. One can verify that there exists a non empty set of partial

functions from X to Y which is non empty and compatible.

The following propositions are true:

(15) For every non empty functional compatible set X holds dom
⋃

X =
⋃
{dom f : f ranges over elements of X}.

(16) Let X be a functional compatible set and f be a function. If f ∈ X,

then dom f ⊆ dom
⋃

X and for every set x such that x ∈ dom f holds

(
⋃

X)(x) = f(x).

2The propositions (1) and (2) have been removed.
3The proposition (4) has been removed.
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(17) For every non empty functional compatible set X holds rng
⋃

X =
⋃
{rng f : f ranges over elements of X}.

Let us consider X, Y . Observe that every non empty set of partial functions

from X to Y is functional.

We now state the proposition

(18) Let P be a compatible non empty set of partial functions from X to Y .

Then
⋃

P is a partial function from X to Y .

3. Homogeneous Relations

Let f be a binary relation. We introduce f is into N as a synonym of f is

natural-yielding.

Let f be a binary relation. We say that f is from tuples on N if and only if:

(Def. 2) dom f ⊆ N
∗.

One can check that there exists a function which is from tuples on N and

into N.

Let f be a binary relation from tuples on N. We say that f is length total if

and only if:

(Def. 3) For all finite sequences x, y of elements of N such that lenx = len y and

x ∈ dom f holds y ∈ dom f.

Let f be a binary relation. We say that f is homogeneous if and only if:

(Def. 4) For all finite sequences x, y such that x ∈ dom f and y ∈ dom f holds

lenx = len y.

One can prove the following proposition

(19) If domR ⊆ Dn, then R is homogeneous.

Let us observe that ∅ is homogeneous.

Let p be a finite sequence and let x be a set. Observe that {p} 7−→ x is non

empty and homogeneous.

Let us note that there exists a function which is non empty and homogeneous.

Let f be a homogeneous function and let g be a function. Observe that g · f

is homogeneous.

Let X, Y be sets. Note that there exists a partial function from X∗ to Y

which is homogeneous.

Let X, Y be non empty sets. Observe that there exists a partial function

from X∗ to Y which is non empty and homogeneous.

Let X be a non empty set. Observe that there exists a partial function from

X∗ to X which is non empty, homogeneous, and quasi total.

One can check that there exists a function from tuples on N which is non

empty, homogeneous, into N, and length total.
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One can check that every partial function from N
∗ to N is into N and from

tuples on N.

Let us observe that every partial function from N
∗ to N which is quasi total

is also length total.

The following proposition is true

(20) Every length total function from tuples on N into N is a quasi total

partial function from N
∗ to N.

Let f be a homogeneous binary relation. The functor arity f yielding a na-

tural number is defined by:

(Def. 5)(i) For every finite sequence x such that x ∈ dom f holds arity f = lenx

if there exists a finite sequence x such that x ∈ dom f,

(ii) arity f = 0, otherwise.

The following propositions are true:

(21) arity ∅ = 0.

(22) For every homogeneous binary relation f such that dom f = {∅} holds

arity f = 0.

(23) For every homogeneous partial function f from X∗ to Y holds dom f ⊆

Xarity f .

(24) For every homogeneous function f from tuples on N holds dom f ⊆

N
arity f .

(25) Let f be a homogeneous partial function from X∗ to X. Then f is quasi

total and non empty if and only if dom f = Xarity f .

(26) Let f be a homogeneous function into N and from tuples on N. Then f

is length total and non empty if and only if dom f = N
arity f .

(27) For every non empty homogeneous partial function f from D∗ to D and

for every n such that dom f ⊆ Dn holds arity f = n.

(28) For every homogeneous partial function f from D∗ to D and for every

n such that dom f = Dn holds arity f = n.

Let R be a binary relation. We say that R has the same arity if and only if

the condition (Def. 6) is satisfied.

(Def. 6) Let f , g be functions such that f ∈ rngR and g ∈ rngR. Then

(i) if f is empty, then g is empty or dom g = {∅}, and

(ii) if f is non empty and g is non empty, then there exists a natural

number n and there exists a non empty set X such that dom f ⊆ Xn and

dom g ⊆ Xn.

Let us note that ∅ has the same arity.

One can check that there exists a finite sequence which has the same arity.

Let X be a set. One can verify that there exists a finite sequence of elements of

X which has the same arity and there exists an element of X∗ which has the

same arity.



the set of primitive recursive functions 709

Let F be a binary relation with the same arity. The functor arityF yielding

a natural number is defined as follows:

(Def. 7)(i) For every homogeneous function f such that f ∈ rngF holds

arityF = arity f if there exists a homogeneous function f such that

f ∈ rngF,

(ii) arityF = 0, otherwise.

Next we state the proposition

(29) For every finite sequence F with the same arity such that lenF = 0

holds arityF = 0.

Let X be a set. The functor HFuncsX yielding a non empty set of partial

functions from X∗ to X is defined by:

(Def. 8) HFuncsX = {f ; f ranges over elements of X∗→̇X : f is homogeneous}.

Next we state the proposition

(30) ∅ ∈ HFuncsX.

Let X be a non empty set. Note that there exists an element of HFuncsX

which is non empty, homogeneous, and quasi total.

Let X be a set. Observe that every element of HFuncsX is homogeneous.

Let X be a non empty set and let S be a non empty subset of HFuncsX.

Note that every element of S is homogeneous.

The following propositions are true:

(31) Every homogeneous function into N and from tuples on N is an element

of HFuncsN.

(32) Every length total homogeneous function from tuples on N into N is a

quasi total element of HFuncsN.

(33) Let X be a non empty set and F be a binary relation such that rngF ⊆

HFuncsX and for all homogeneous functions f , g such that f ∈ rngF and

g ∈ rngF holds arity f = arity g. Then F has the same arity.

Let n, m be natural numbers. The functor constn(m) yields a homogeneous

function into N and from tuples on N and is defined by:

(Def. 9) constn(m) = N
n 7−→ m.

We now state the proposition

(34) constn(m) ∈ HFuncsN.

Let n, m be natural numbers. One can check that constn(m) is length total

and non empty.

We now state two propositions:

(35) arity constn(m) = n.

(36) For every element t of Nn holds (constn(m))(t) = m.

Let n, i be natural numbers. The functor succn(i) yields a homogeneous

function into N and from tuples on N and is defined by:
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(Def. 10) dom succn(i) = N
n and for every element p of Nn holds (succn(i))(p) =

pi + 1.

We now state the proposition

(37) succn(i) ∈ HFuncsN.

Let n, i be natural numbers. One can check that succn(i) is length total and

non empty.

Next we state the proposition

(38) arity succn(i) = n.

Let n, i be natural numbers. The functor projn(i) yielding a homogeneous

function into N and from tuples on N is defined by:

(Def. 11) projn(i) = proj(n 7→ N, i).

The following two propositions are true:

(39) projn(i) ∈ HFuncsN.

(40) domprojn(i) = N
n and if 1 ¬ i and i ¬ n, then rng projn(i) = N.

Let n, i be natural numbers. One can verify that projn(i) is length total and

non empty.

We now state two propositions:

(41) arity projn(i) = n.

(42) For every element t of Nn holds (projn(i))(t) = t(i).

Let X be a set. Observe that HFuncsX is functional.

We now state three propositions:

(43) Let F be a function from D into HFuncsE. Suppose rngF is compatible

and for every element x of D holds domF (x) ⊆ En. Then there exists an

element f of HFuncsE such that f =
⋃

F and dom f ⊆ En.

(44) For every function F from N into HFuncsD such that for every i holds

F (i) ⊆ F (i + 1) holds
⋃

F ∈ HFuncsD.

(45) For every finite sequence F of elements of HFuncsD with the same arity

holds dom
∏∗ F ⊆ DarityF .

Let X be a non empty set and let F be a finite sequence of elements of

HFuncsX with the same arity. Observe that
∏∗ F is homogeneous.

The following proposition is true

(46) Let f be an element of HFuncsD and F be a finite sequence of elements

of HFuncsD with the same arity. Then dom(f ·
∏∗ F ) ⊆ DarityF and

rng(f ·
∏∗ F ) ⊆ D and f ·

∏∗ F ∈ HFuncsD.

Let X, Y be non empty sets, let P be a non empty set of partial functions

from X to Y , and let S be a non empty subset of P . We see that the element

of S is an element of P .

Let f be a homogeneous function from tuples on N. One can check that 〈f〉

has the same arity.



the set of primitive recursive functions 711

Next we state several propositions:

(47) For every homogeneous function f into N and from tuples on N holds

arity〈f〉 = arity f.

(48) Let f , g be non empty elements of HFuncsN and F be a finite sequence

of elements of HFuncsN with the same arity. If g = f ·
∏∗ F, then arity g =

arityF.

(49) Let f be a non empty quasi total element of HFuncsD and F be a

finite sequence of elements of HFuncsD with the same arity. Suppose

arity f = lenF and F is non empty and for every element h of HFuncsD

such that h ∈ rngF holds h is quasi total and non empty. Then f ·
∏∗ F is a

non empty quasi total element of HFuncsD and dom(f ·
∏∗ F ) = DarityF .

(50) Let f be a quasi total element of HFuncsD and F be a finite sequence

of elements of HFuncsD with the same arity. Suppose arity f = lenF and

for every element h of HFuncsD such that h ∈ rngF holds h is quasi total.

Then f ·
∏∗ F is a quasi total element of HFuncsD.

(51) For all non empty quasi total elements f , g of HFuncsD such that

arity f = 0 and arity g = 0 and f(∅) = g(∅) holds f = g.

(52) Let f , g be non empty length total homogeneous functions from tuples

on N into N. If arity f = 0 and arity g = 0 and f(∅) = g(∅), then f = g.

4. Primitive Recursiveness

We adopt the following convention: f1, f2 are non empty homogeneous func-

tions into N and from tuples on N, e1, e2 are homogeneous functions into N and

from tuples on N, and p is an element of Narity f1+1.

Let g, f1, f2 be homogeneous functions into N and from tuples on N and let

i be a natural number. We say that g is primitive recursively expressed by f1,

f2 and i if and only if the condition (Def. 12) is satisfied.

(Def. 12) There exists a natural number n such that

(i) dom g ⊆ N
n,

(ii) i ­ 1,

(iii) i ¬ n,

(iv) arity f1 + 1 = n,

(v) n + 1 = arity f2, and

(vi) for every finite sequence p of elements of N such that len p = n holds

p +· (i, 0) ∈ dom g iff p↾i ∈ dom f1 and if p +· (i, 0) ∈ dom g, then g(p +·

(i, 0)) = f1(p↾i) and for every natural number n holds p+·(i, n+1) ∈ dom g

iff p +· (i, n) ∈ dom g and (p +· (i, n)) a 〈g(p +· (i, n))〉 ∈ dom f2 and if

p+·(i, n+1) ∈ dom g, then g(p+·(i, n+1)) = f2((p+·(i, n))a〈g(p+·(i, n))〉).
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Let f1, f2 be homogeneous functions into N and from tuples on N, let i be

a natural number, and let p be a finite sequence of elements of N. The functor

primrec(f1, f2, i, p) yielding an element of HFuncsN is defined by the condition

(Def. 13).

(Def. 13) There exists a function F from N into HFuncsN such that

(i) primrec(f1, f2, i, p) = F (pi),

(ii) if i ∈ dom p and p↾i ∈ dom f1, then F (0) = {p +· (i, 0)} 7−→ f1(p↾i),

(iii) if i /∈ dom p or p↾i /∈ dom f1, then F (0) = ∅, and

(iv) for every natural number m holds if i ∈ dom p and p +· (i,m) ∈

domF (m) and (p+·(i,m))a〈F (m)(p+·(i,m))〉 ∈ dom f2, then F (m+1) =

F (m)+·({p+· (i,m+1)} 7−→ f2((p+· (i,m))a 〈F (m)(p+· (i,m))〉)) and if

i /∈ dom p or p+·(i,m) /∈ domF (m) or (p+·(i,m))a〈F (m)(p+·(i,m))〉 /∈

dom f2, then F (m + 1) = F (m).

We now state several propositions:

(53) For all finite sequences p, q of elements of N such that q ∈

domprimrec(e1, e2, i, p) there exists k such that q = p +· (i, k).

(54) For every finite sequence p of elements of N such that i /∈ dom p holds

primrec(e1, e2, i, p) = ∅.

(55) For all finite sequences p, q of elements of N holds primrec(e1, e2, i, p) ≈

primrec(e1, e2, i, q).

(56) For every finite sequence p of elements of N holds domprimrec(e1, e2, i, p) ⊆

N
1+arity e1 .

(57) For every finite sequence p of elements of N such that e1 is empty holds

primrec(e1, e2, i, p) is empty.

(58) If f1 is length total and f2 is length total and arity f1 + 2 = arity f2 and

1 ¬ i and i ¬ 1 + arity f1, then p ∈ domprimrec(f1, f2, i, p).

Let f1, f2 be homogeneous functions into N and from tuples on N and let

i be a natural number. The functor primrec(f1, f2, i) yielding an element of

HFuncsN is defined as follows:

(Def. 14) There exists a function G from N
arity f1+1 into HFuncsN such that

primrec(f1, f2, i) =
⋃

G and for every element p of N
arity f1+1 holds

G(p) = primrec(f1, f2, i, p).

One can prove the following propositions:

(59) If e1 is empty, then primrec(e1, e2, i) is empty.

(60) domprimrec(f1, f2, i) ⊆ N
arity f1+1.

(61) If f1 is length total and f2 is length total and arity f1 + 2 = arity f2 and

1 ¬ i and i ¬ 1 + arity f1, then domprimrec(f1, f2, i) = N
arity f1+1 and

arity primrec(f1, f2, i) = arity f1 + 1.

(62) If i ∈ dom p, then p +· (i, 0) ∈ domprimrec(f1, f2, i) iff p↾i ∈ dom f1.
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(63) If i ∈ dom p and p +· (i, 0) ∈ domprimrec(f1, f2, i), then

(primrec(f1, f2, i))(p +· (i, 0)) = f1(p↾i).

(64) If i ∈ dom p and f1 is length total, then (primrec(f1, f2, i))(p +· (i, 0)) =

f1(p↾i).

(65) If i ∈ dom p, then p +· (i,m + 1) ∈ domprimrec(f1, f2, i) iff p +· (i, m) ∈

domprimrec(f1, f2, i) and (p+·(i,m))a〈(primrec(f1, f2, i))(p+·(i,m))〉 ∈

dom f2.

(66) If i ∈ dom p and p +· (i, m + 1) ∈ domprimrec(f1, f2, i),

then (primrec(f1, f2, i))(p +· (i,m + 1)) = f2((p +· (i,m)) a

〈(primrec(f1, f2, i))(p +· (i,m))〉).

(67) Suppose f1 is length total and f2 is length total and arity f1+2 = arity f2

and 1 ¬ i and i ¬ 1 + arity f1. Then (primrec(f1, f2, i))(p +· (i,m + 1)) =

f2((p +· (i,m)) a 〈(primrec(f1, f2, i))(p +· (i,m))〉).

(68) If arity f1 + 2 = arity f2 and 1 ¬ i and i ¬ arity f1 + 1, then

primrec(f1, f2, i) is primitive recursively expressed by f1, f2 and i.

(69) Suppose 1 ¬ i and i ¬ arity f1+1. Let g be an element of HFuncsN. If g is

primitive recursively expressed by f1, f2 and i, then g = primrec(f1, f2, i).

5. The Set of Primitive Recursive Functions

Let X be a set. We say that X is composition closed if and only if the

condition (Def. 15) is satisfied.

(Def. 15) Let f be an element of HFuncsN and F be a finite sequence of elements

of HFuncsN with the same arity. If f ∈ X and arity f = lenF and rngF ⊆

X, then f ·
∏∗ F ∈ X.

We say that X is primitive recursion closed if and only if the condition (Def. 16)

is satisfied.

(Def. 16) Let g, f1, f2 be elements of HFuncsN and i be a natural number. Suppose

g is primitive recursively expressed by f1, f2 and i and f1 ∈ X and f2 ∈ X.

Then g ∈ X.

Let X be a set. We say that X is primitive recursively closed if and only if

the conditions (Def. 17) are satisfied.

(Def. 17)(i) const0(0) ∈ X,

(ii) succ1(1) ∈ X,

(iii) for all natural numbers n, i such that 1 ¬ i and i ¬ n holds projn(i) ∈

X, and

(iv) X is composition closed and primitive recursion closed.

We now state the proposition
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(70) HFuncsN is primitive recursively closed.

One can check that there exists a subset of HFuncsN which is primitive

recursively closed and non empty.

In the sequel P is a primitive recursively closed non empty subset of HFuncsN.

We now state several propositions:

(71) For every element g of HFuncsN such that e1 = ∅ and g is primitive

recursively expressed by e1, e2 and i holds g = ∅.

(72) Let g be an element of HFuncsN, f1, f2 be quasi total elements of

HFuncsN, and i be a natural number. Suppose g is primitive recursively

expressed by f1, f2 and i. Then g is quasi total and if f1 is non empty,

then g is non empty.

(73) constn(c) ∈ P.

(74) If 1 ¬ i and i ¬ n, then succn(i) ∈ P.

(75) ∅ ∈ P.

(76) Let f be an element of P and F be a finite sequence of elements of P

with the same arity. If arity f = lenF, then f ·
∏∗ F ∈ P.

(77) Let f1, f2 be elements of P . Suppose arity f1 + 2 = arity f2. Let i be a

natural number. If 1 ¬ i and i ¬ arity f1 + 1, then primrec(f1, f2, i) ∈ P.

The subset PrimRec of HFuncsN is defined as follows:

(Def. 18) PrimRec =
⋂
{R; R ranges over elements of 2HFuncsN: R is primitive

recursively closed}.

The following proposition is true

(78) For every subset X of HFuncsN such that X is primitive recursively

closed holds PrimRec ⊆ X.

Let us observe that PrimRec is non empty and primitive recursively closed.

One can check that every element of PrimRec is homogeneous.

Let x be a set. We say that x is primitive recursive if and only if:

(Def. 19) x ∈ PrimRec .

Let us note that every set which is primitive recursive is also relation-like

and function-like.

Let us observe that every binary relation which is primitive recursive is also

homogeneous, into N, and from tuples on N.

Let us observe that every element of PrimRec is primitive recursive.

Let us note that there exists a function which is primitive recursive and there

exists an element of HFuncsN which is primitive recursive.

The initial functions constitute a subset of HFuncsN defined as follows:

(Def. 20) The initial functions = {const0(0), succ1(1)} ∪ {projn(i);n ranges over

natural numbers, i ranges over natural numbers: 1 ¬ i ∧ i ¬ n}.
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Let Q be a subset of HFuncsN. The primitive recursion closure of Q is a subset

of HFuncsN and is defined by the condition (Def. 21).

(Def. 21) The primitive recursion closure of Q = Q ∪ {g; g ranges over elements

of HFuncsN :
∨

f1,f2 : element of HFuncsN

∨
i : natural number (f1 ∈ Q ∧ f2 ∈

Q ∧ g is primitive recursively expressed by f1, f2 and i)}.

The composition closure of Q is a subset of HFuncsN and is defined by the

condition (Def. 22).

(Def. 22) The composition closure of Q = Q ∪ {f ·
∏∗ F ; f ranges over elements

of HFuncsN, F ranges over elements of (HFuncsN)∗ with the same arity:

f ∈ Q ∧ arity f = lenF ∧ rngF ⊆ Q}.

The function PrimRec≈ from N into 2HFuncsN is defined by the conditions

(Def. 23).

(Def. 23)(i) PrimRec≈(0) = the initial functions, and

(ii) for every natural number m holds PrimRec≈(m + 1) = (the pri-

mitive recursion closure of PrimRec≈(m)) ∪ (the composition closure of

PrimRec≈(m)).

One can prove the following propositions:

(79) If m ¬ n, then PrimRec≈(m) ⊆ PrimRec≈(n).

(80)
⋃

(PrimRec≈) is primitive recursively closed.

(81) PrimRec =
⋃

(PrimRec≈).

(82) For every element f of HFuncsN such that f ∈ PrimRec≈(m) holds f is

quasi total.

Let us note that every element of PrimRec is quasi total and homogeneous.

Let us observe that every element of HFuncsN which is primitive recursive

is also quasi total.

Let us observe that every function from tuples on N which is primitive re-

cursive is also length total and there exists an element of PrimRec which is non

empty.

6. Examples

Let f be a homogeneous binary relation. We say that f is nullary if and only

if:

(Def. 24) arity f = 0.

We say that f is unary if and only if:

(Def. 25) arity f = 1.

We say that f is binary if and only if:

(Def. 26) arity f = 2.
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We say that f is ternary if and only if:

(Def. 27) arity f = 3.

One can check the following observations:

∗ every homogeneous function which is unary is also non empty,

∗ every homogeneous function which is binary is also non empty, and

∗ every homogeneous function which is ternary is also non empty.

One can check the following observations:

∗ proj1(1) is primitive recursive,

∗ proj2(1) is primitive recursive,

∗ proj2(2) is primitive recursive,

∗ succ1(1) is primitive recursive, and

∗ succ3(3) is primitive recursive.

Let i be a natural number. One can check the following observations:

∗ const0(i) is nullary,

∗ const1(i) is unary,

∗ const2(i) is binary,

∗ const3(i) is ternary,

∗ proj1(i) is unary,

∗ proj2(i) is binary,

∗ proj3(i) is ternary,

∗ succ1(i) is unary,

∗ succ2(i) is binary, and

∗ succ3(i) is ternary.

Let j be a natural number. One can check that consti(j) is primitive recursive.

One can verify the following observations:

∗ there exists a homogeneous function which is nullary, primitive recursive,

and non empty,

∗ there exists a homogeneous function which is unary and primitive recur-

sive,

∗ there exists a homogeneous function which is binary and primitive re-

cursive, and

∗ there exists a homogeneous function which is ternary and primitive re-

cursive.

One can verify the following observations:

∗ there exists a homogeneous function from tuples on N which is non

empty, nullary, length total, and into N,
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∗ there exists a homogeneous function from tuples on N which is non

empty, unary, length total, and into N,

∗ there exists a homogeneous function from tuples on N which is non

empty, binary, length total, and into N, and

∗ there exists a homogeneous function from tuples on N which is non

empty, ternary, length total, and into N.

Let f be a nullary non empty primitive recursive function and let g be

a binary primitive recursive function. One can check that primrec(f, g, 1) is

primitive recursive and unary.

Let f be a unary primitive recursive function and let g be a ternary primitive

recursive function. One can verify that primrec(f, g, 1) is primitive recursive and

binary and primrec(f, g, 2) is primitive recursive and binary.

The following propositions are true:

(83) Let f1 be a unary length total homogeneous function from tuples on N

into N and f2 be a non empty homogeneous function into N and from

tuples on N. Then (primrec(f1, f2, 2))(〈i, 0〉) = f1(〈i〉).

(84) If f1 is length total and arity f1 = 0, then (primrec(f1, f2, 1))(〈0〉) =

f1(∅).

(85) Let f1 be a unary length total homogeneous function from tuples

on N into N and f2 be a ternary length total homogeneous function

from tuples on N into N. Then (primrec(f1, f2, 2))(〈i, j + 1〉) = f2(〈i, j,

(primrec(f1, f2, 2))(〈i, j〉)〉).

(86) If f1 is length total and f2 is length total and arity f1 = 0 and arity f2 =

2, then (primrec(f1, f2, 1))(〈i + 1〉) = f2(〈i, (primrec(f1, f2, 1))(〈i〉)〉).

Let g be a function. The functor 〈1,?,2〉g yielding a function is defined by:

(Def. 28) 〈1,?,2〉g = g ·
∏∗〈proj3(1),proj3(3)〉.

Let g be a function into N and from tuples on N. Observe that 〈1,?,2〉g is into

N and from tuples on N.

Let g be a homogeneous function. Note that 〈1,?,2〉g is homogeneous.

Let g be a binary length total homogeneous function from tuples on N into

N. Observe that 〈1,?,2〉g is non empty ternary and length total.

The following propositions are true:

(87) Let f be a binary length total homogeneous function from tuples on N

into N. Then (〈1,?,2〉f)(〈i, j, k〉) = f(〈i, k〉).

(88) For every binary primitive recursive function g holds 〈1,?,2〉g ∈ PrimRec .

Let f be a binary primitive recursive homogeneous function. Observe that
〈1,?,2〉f is primitive recursive and ternary.

The binary primitive recursive function [+] is defined by:

(Def. 29) [+] = primrec(proj1(1), succ3(3), 2).
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We now state the proposition

(89) [+](〈i, j〉) = i + j.

The binary primitive recursive function [∗] is defined by:

(Def. 30) [∗] = primrec(const1(0), 〈1,?,2〉[+], 2).

Next we state the proposition

(90) For all natural numbers i, j holds [∗](〈i, j〉) = i · j.

Let g, h be binary primitive recursive homogeneous functions. Note that 〈g,

h〉 has the same arity.

Let f , g, h be binary primitive recursive functions. Observe that f ·
∏∗〈g,

h〉 is primitive recursive.

Let f , g, h be binary primitive recursive functions. Observe that f ·
∏∗〈g,

h〉 is binary.

Let f be a unary primitive recursive function and let g be a primitive recur-

sive function. Note that f ·
∏∗〈g〉 is primitive recursive.

Let f be a unary primitive recursive function and let g be a binary primitive

recursive function. One can verify that f ·
∏∗〈g〉 is binary.

The unary primitive recursive function [!] is defined by:

(Def. 31) [!] = primrec(const0(1), [∗] ·
∏∗〈succ1(1) ·

∏∗〈proj2(1)〉,proj2(2)〉, 1).

In this article we present several logical schemes. The scheme Primrec1 deals

with a unary length total homogeneous function A from tuples on N into N, a

binary length total homogeneous function B from tuples on N into N, a unary

functor F yielding a natural number, and a binary functor G yielding a natural

number, and states that:

For all natural numbers i, j holds (A·
∏∗〈B〉)(〈i, j〉) = F(G(i, j))

provided the parameters meet the following requirements:

• For every natural number i holds A(〈i〉) = F(i), and

• For all natural numbers i, j holds B(〈i, j〉) = G(i, j).

The scheme Primrec2 deals with binary length total homogeneous functions

A, B, C from tuples on N into N and three binary functors F , G, and H yielding

natural numbers, and states that:

For all natural numbers i, j holds (A·
∏∗〈B, C〉)(〈i, j〉) = F(G(i, j),H(i, j))

provided the parameters meet the following conditions:

• For all natural numbers i, j holds A(〈i, j〉) = F(i, j),

• For all natural numbers i, j holds B(〈i, j〉) = G(i, j), and

• For all natural numbers i, j holds C(〈i, j〉) = H(i, j).

The following proposition is true

(91) [!](〈i〉) = i!.

The binary primitive recursive function [∧] is defined by:

(Def. 32) [∧] = primrec(const1(1), 〈1,?,2〉[∗], 2).

One can prove the following proposition
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(92) [∧](〈i, j〉) = ij .

The unary primitive recursive function [pred] is defined as follows:

(Def. 33) [pred] = primrec(const0(0),proj2(1), 1).

The following proposition is true

(93) [pred](〈0〉) = 0 and [pred](〈i + 1〉) = i.

The binary primitive recursive function [−] is defined as follows:

(Def. 34) [−] = primrec(proj1(1), 〈1,?,2〉([pred] ·
∏∗〈proj2(2)〉), 2).

The following proposition is true

(94) [−](〈i, j〉) = i−′ j.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–
552, 1991.

[3] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65–69, 1991.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[11] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Ma-
thematics, 2(5):711–717, 1991.

[12] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(3):471–475, 1990.

[13] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of uni-
versal algebra. Formalized Mathematics, 3(2):251–253, 1992.

[14] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the
set of real numbers. Formalized Mathematics, 3(2):279–288, 1992.

[15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.

[16] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
[17] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[18] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,
1(3):495–500, 1990.

[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[22] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[23] V. A. Uspenskii. Lektsii o vychislimykh funktsiakh. Gos. Izd. Phys.-Math. Lit., Moskva,
1960.



720 grzegorz bancerek and piotr rudnicki

[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received July 27, 2001


