FORMALIZED MATHEMATICS
Volume 9, Number 4, 2001
University of Bialystok

On the Instructions of SCM!

Artur Kornitowicz
University of Bialtystok

MML Identifier: AMI_6.

The articles [15], [8], [9], [10], [14], [11], [18], [2], [4], [6], [7], [5], [16], [1], [3], [19],
[20], [12], [17], and [13] provide the notation and terminology for this paper.
For simplicity, we adopt the following rules: a, b are data-locations, i1, i2, i3
are instruction-locations of SCM, s1, s9 are states of SCM, T is an instruction
type of SCM, and k is a natural number.
We now state a number of propositions:

(1) a ¢ the instruction locations of SCM.

(2) Data-Locscm # the instruction locations of SCM.

(3) For every object o of SCM holds 0 = ICgcm or o € the instruction

locations of SCM or o is a data-location.

(4) If ig # i3, then Next(ia) # Next(iz).

(5) If s; and s9 are equal outside the instruction locations of SCM, then

s1(a) = sa(a).

(6) Let N be aset with non empty elements, S be a realistic IC-Ins-separated
definite non empty non void AMI over N, t, u be states of S, i1 be an
instruction-location of S, e be an element of ObjectKind(ICg), and I be
an element of ObjectKind(i1). If e = ¢; and u = t+-[ICg — e,i; —],
then u(i1) = I and IC, = i1 and ICgjiowing(u) = (Exec(u(ICy),u))(ICs).
) AddressPart(haltscm) = 0.

) AddressPart(a:=b) = (a,b).
9) AddressPart(AddTo(a,b)) = (a,b).

) AddressPart(SubFrom(a,b)) = (a, b).
(11) AddressPart(MultBy(a,b)) = (a, b).

1This work has been partially supported by TYPES grant IST-1999-29001.

@ 2001 University of Bialystok
659 ISSN 1426-2630

660 ARTUR KORNILOWICZ

AddressPart(Divide(a, b)) = (a, b).

AddressPart(goto i2) = (i2).

AddressPart(if a = 0 goto iz) = (i2, a).

AddressPart(if a > 0 goto iz) = (is, a).

If T'= 0, then AddressPartsT = {0}.

Let us consider T'. One can check that AddressPartsT is non empty.

A/_\,_\/_\A
[y

The following propositions are true:

If T'=1, then dom [[s gdressparts 7 = 11, 2}
If T = 2, then dom [Txqgressparts 7 = {1, 2}
If T'= 3, then dom [[5 gdressparts = 11, 2}
If T'= 4, then dom [[5 gdressparts 7 = 11,2}
If T'=5, then dom [[5 gqressparts 7 = 11, 2}-
If T'= 6, then dom [y qqressparts = {1}-
If T'=7, then dom [[5 gdressparts 7 = 11,2}
If T'= 8, then dom [[s gdressparts = 11,2}

HAddressParts InsCode(a::b)() - Data'LOCSCM-
HAddressParts InsCode(a:=)() = Data-Locscu-

HAddressParts InsCode(AddTo(a,b)(1) = Data'LOCSCM'

NN NN N NN~ ==
S T AW N R O O 00

[\
oo

[T AddressParts InsCode(AddTo(a,5)) (2) = Data-Locsen.
(1) = Data-Locscn-
(

\V]
Ne)

HAddressParts InsCode(SubFrom(a,b)

w
(==}

HAddressParts InsCode(SubFrom(a,b) 2) = Data-Locsom.

w
—

)
)

[T AddressParts InsCode(MultBy (a,)) (1) = Data-Locscm.
))(2) = Data-Locscm.

w
[\

HAddressParts InsCode(MultBy (a,b) 2

w
w

)
HAddressParts InsCode(Divide(a,b)) (1 = Data-Locscm-

HAddressParts InsCode(Divide(a,b)) 2) Da‘ta_LOCSCM
[T AddressParts InsCode(goto i) (1) = the instruction locations of SCM.

o~~~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~~~ o~~~
~— N T Y Y N N~ N N Y T N N N N N N

w
at

36 HAddressParts InsCode(if a=0 goto 12)(1) = the instruction locations of
SCM.

(37) HAddressParts InsCode(if a=0 goto ZQ)(Q) = Data-Locgom.

(38) HAddressParts InsCode(if a>0 goto 22)(1) = the instruction locations of
SCM.

(39) TTAddressParts InsCode(if a>0 goto i2)(2) = Data-Locsom-
(40) NIC(haltscm,i1) = {i1}-

Let us note that JUMP (haltsca) is empty.

One can prove the following proposition
(41) NIC(a:=b,i1) = {Next(i1)}.

ON THE INSTRUCTIONS OF SCM 661

Let us consider a, b. One can verify that JUMP(a:=b) is empty.
Next we state the proposition
(42) NIC(AddTo(a,b),i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.
The following proposition is true
(43) NIC(SubFrom(a,b),i1) = {Next(i1)}.
Let us consider a, b. One can check that JUMP(SubFrom(a, b)) is empty.
Next we state the proposition
(44) NIC(MultBy(a,b),i1) = {Next(i1)}.
Let us consider a, b. Observe that JUMP(MultBy(a, b)) is empty.
The following proposition is true
(45) NIC(Divide(a,b),i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP (Divide(a, b)) is empty.
We now state two propositions:
(46) NIC(goto ig,i1) = {iz}.
(47) JUMP(goto i9) = {is}.
Let us consider ig. One can check that JUMP(goto i3) is non empty and
trivial.
The following two propositions are true:
(48) iy € NIC(if a = 0 goto iz, i1) and NIC(if a = 0 goto iz, i;) C
{i2, Next(i1)}.
(49) JUMP(if a = 0 goto iz) = {i2}.
Let us consider a, i2. Note that JUMP(if a = 0 goto i2) is non empty and
trivial.
One can prove the following propositions:
(50) ia € NIC(if a > 0 goto iz, i1) and NIC(if a > 0 goto iz, i;) C
{ig, Next(il)}.
(51) JUMP(if a > 0 goto iz) = {ia}.
Let us consider a, i2. One can check that JUMP(if a > 0 goto i2) is non
empty and trivial.
Next we state two propositions:
(52) SUCC(i1) = {i1, Next(i1)}.
(53) Let f be a function from N into the instruction locations of SCM. Sup-
pose that for every natural number & holds f(k) = i;. Then
(i) f is bijective, and
(ii) for every natural number k holds f(k+1) € SUCC(f(k)) and for every
natural number j such that f(j) € SUCC(f(k)) holds k£ < ;.
Let us note that SCM is standard.
One can prove the following three propositions:

662 ARTUR KORNILOWICZ

(54) ilscm(k) = ik
(55) Next(ilscm(k)) = ilsem(k +1).
(56) Next(i1) = NextLoci;.

Let us observe that InsCode(haltgcn) is jump-only.

Let us observe that haltgcn is jump-only.

Let us consider ia. Observe that InsCode(goto iz) is jump-only.

Let us consider i5. Note that goto i is jump-only non sequential and non
instruction location free.

Let us consider a, ig. One can verify that InsCode(if a = 0 goto i2) is jump-
only and InsCode(if a > 0 goto i3) is jump-only.

Let us consider a, i2. One can verify that if a = 0 goto 42 is jump-only non
sequential and non instruction location free and if a > 0 goto io is jump-only
non sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

* InsCode(a:=b) is non jump-only,

*x InsCode(AddTo(a, b)) is non jump-only,

* InsCode(SubFrom(a, b)) is non jump-only,

* InsCode(MultBy(a,b)) is non jump-only, and

* InsCode(Divide(a, b)) is non jump-only.

Let us consider a, b. One can check the following observations:

* a:=b is non jump-only and sequential,

* AddTo(a,b) is non jump-only and sequential,

% SubFrom(a, b) is non jump-only and sequential,

* MultBy(a, b) is non jump-only and sequential, and

* Divide(a, b) is non jump-only and sequential.

Let us note that SCM is homogeneous and has explicit jumps and no implicit
jumps.

Let us observe that SCM is regular.

We now state three propositions:

(57) IncAddr(goto iz, k) = goto ilgcm(locnum(iz) + k).

(58) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilscm(locnum(iz) + k).

(59) IncAddr(if a > 0 goto i2, k) = if a > 0 goto ilscm(locnum(iz) + k).
Let us note that SCM is 1C-good and Exec-preserving.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281—
290, 1990.

ON THE INSTRUCTIONS OF SCM 663

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Artur Kornitowicz. On the composition of macro instructions of standard computers.

Formalized Mathematics, 9(2):303-316, 2001.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144,

1996.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51-56, 1993.

Andrzej Trybulec, Piotr Rudnicki, and Artur Kornitowicz. Standard ordering of instruc-
tion locations. Formalized Mathematics, 9(2):291-301, 2001.

Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received May 8, 2001

