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The articles [15], [8], [9], [10], [14], [11], [18], [2], [4], [6], [7], [5], [16], [1], [3], [19],
[20], [12], [17], and [13] provide the notation and terminology for this paper.
For simplicity, we adopt the following rules: a, b are data-locations, i1, i2, i3
are instruction-locations of SCM, s1, s9 are states of SCM, T is an instruction
type of SCM, and k is a natural number.
We now state a number of propositions:

(1) a ¢ the instruction locations of SCM.

(2) Data-Locscm # the instruction locations of SCM.

(3) For every object o of SCM holds 0 = ICgcm or o € the instruction

locations of SCM or o is a data-location.

(4) If ig # i3, then Next(ia) # Next(iz).

(5) If s; and s9 are equal outside the instruction locations of SCM, then

s1(a) = sa(a).

(6) Let N be aset with non empty elements, S be a realistic IC-Ins-separated
definite non empty non void AMI over N, t, u be states of S, i1 be an
instruction-location of S, e be an element of ObjectKind(ICg), and I be
an element of ObjectKind(i1). If e = ¢; and u = t+-[ICg — e,i; — ],
then u(i1) = I and IC, = i1 and ICgjiowing(u) = (Exec(u(ICy),u))(ICs).
) AddressPart(haltscm) = 0.

) AddressPart(a:=b) = (a,b).
9) AddressPart(AddTo(a,b)) = (a,b).

) AddressPart(SubFrom(a,b)) = (a, b).
(11) AddressPart(MultBy(a,b)) = (a, b).
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AddressPart(Divide(a, b)) = (a, b).

AddressPart(goto i2) = (i2).

AddressPart(if a = 0 goto iz) = (i2, a).

AddressPart(if a > 0 goto iz) = (is, a).

If T'= 0, then AddressPartsT = {0}.

Let us consider T'. One can check that AddressPartsT is non empty.
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The following propositions are true:

If T'=1, then dom [ [ s gdressparts 7 = 11, 2}
If T = 2, then dom [Txqgressparts 7 = {1, 2}
If T'= 3, then dom [ [ 5 gdressparts = 11, 2}
If T'= 4, then dom [[ 5 gdressparts 7 = 11,2}
If T'=5, then dom [[ 5 gqressparts 7 = 11, 2}-
If T'= 6, then dom [y qqressparts = {1}-
If T'=7, then dom [ [ 5 gdressparts 7 = 11,2}
If T'= 8, then dom [ [ s gdressparts = 11,2}

HAddressParts InsCode(a::b)( ) - Data'LOCSCM-
HAddressParts InsCode(a:= )( ) = Data-Locscu-

HAddressParts InsCode(AddTo(a,b )(1) = Data'LOCSCM'
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[T AddressParts InsCode(AddTo(a,5)) (2) = Data-Locsen.
(1) = Data-Locscn-
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HAddressParts InsCode(SubFrom(a,b) 2) = Data-Locsom.
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[T AddressParts InsCode(MultBy (a,)) (1) = Data-Locscm.
))(2) = Data-Locscm.
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HAddressParts InsCode(MultBy (a,b) 2
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HAddressParts InsCode(Divide(a,b)) (1 = Data-Locscm-

HAddressParts InsCode(Divide(a,b)) 2) Da‘ta_LOCSCM
[T AddressParts InsCode(goto i) (1 ) = the instruction locations of SCM.
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36 HAddressParts InsCode(if a=0 goto 12)(1) = the instruction locations of
SCM.

(37) HAddressParts InsCode(if a=0 goto ZQ)(Q) = Data-Locgom.

(38) HAddressParts InsCode(if a>0 goto 22)(1) = the instruction locations of
SCM.

(39)  TTAddressParts InsCode(if a>0 goto i2)(2) = Data-Locsom-
(40) NIC(haltscm,i1) = {i1}-

Let us note that JUMP (haltsca) is empty.

One can prove the following proposition
(41) NIC(a:=b,i1) = {Next(i1)}.
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Let us consider a, b. One can verify that JUMP(a:=b) is empty.
Next we state the proposition
(42) NIC(AddTo(a,b),i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.
The following proposition is true
(43) NIC(SubFrom(a,b),i1) = {Next(i1)}.
Let us consider a, b. One can check that JUMP(SubFrom(a, b)) is empty.
Next we state the proposition
(44) NIC(MultBy(a,b),i1) = {Next(i1)}.
Let us consider a, b. Observe that JUMP(MultBy(a, b)) is empty.
The following proposition is true
(45) NIC(Divide(a,b),i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP (Divide(a, b)) is empty.
We now state two propositions:
(46) NIC(goto ig,i1) = {iz}.
(47)  JUMP(goto i9) = {is}.
Let us consider ig. One can check that JUMP(goto i3) is non empty and
trivial.
The following two propositions are true:
(48) iy € NIC(if a = 0 goto iz, i1) and NIC(if a = 0 goto iz, i;) C
{i2, Next(i1)}.
(49) JUMP(if a = 0 goto iz) = {i2}.
Let us consider a, i2. Note that JUMP(if a = 0 goto i2) is non empty and
trivial.
One can prove the following propositions:
(50) ia € NIC(if a > 0 goto iz, i1) and NIC(if a > 0 goto iz, i;) C
{ig, Next(il)}.
(51) JUMP(if a > 0 goto iz) = {ia}.
Let us consider a, i2. One can check that JUMP(if a > 0 goto i2) is non
empty and trivial.
Next we state two propositions:
(52) SUCC(i1) = {i1, Next(i1)}.
(53) Let f be a function from N into the instruction locations of SCM. Sup-
pose that for every natural number & holds f(k) = i;. Then
(i)  f is bijective, and
(ii)  for every natural number k holds f(k+1) € SUCC(f(k)) and for every
natural number j such that f(j) € SUCC(f(k)) holds k£ < ;.
Let us note that SCM is standard.
One can prove the following three propositions:
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(54) ilscm(k) = ik
(55) Next(ilscm(k)) = ilsem(k +1).
(56) Next(i1) = NextLoci;.

Let us observe that InsCode(haltgcn) is jump-only.

Let us observe that haltgcn is jump-only.

Let us consider ia. Observe that InsCode(goto iz) is jump-only.

Let us consider i5. Note that goto i is jump-only non sequential and non
instruction location free.

Let us consider a, ig. One can verify that InsCode(if a = 0 goto i2) is jump-
only and InsCode(if a > 0 goto i3) is jump-only.

Let us consider a, i2. One can verify that if a = 0 goto 42 is jump-only non
sequential and non instruction location free and if a > 0 goto io is jump-only
non sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

* InsCode(a:=b) is non jump-only,

*x InsCode(AddTo(a, b)) is non jump-only,

* InsCode(SubFrom(a, b)) is non jump-only,

* InsCode(MultBy(a,b)) is non jump-only, and

* InsCode(Divide(a, b)) is non jump-only.

Let us consider a, b. One can check the following observations:

* a:=b is non jump-only and sequential,

* AddTo(a,b) is non jump-only and sequential,

% SubFrom(a, b) is non jump-only and sequential,

*  MultBy(a, b) is non jump-only and sequential, and

*  Divide(a, b) is non jump-only and sequential.

Let us note that SCM is homogeneous and has explicit jumps and no implicit
jumps.

Let us observe that SCM is regular.

We now state three propositions:

(57) IncAddr(goto iz, k) = goto ilgcm(locnum(iz) + k).

(58) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilscm(locnum(iz) + k).

(59) IncAddr(if a > 0 goto i2, k) = if a > 0 goto ilscm(locnum(iz) + k).
Let us note that SCM is 1C-good and Exec-preserving.
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